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Higher order sound sources of Nth order can radiate sound with 2Nþ 1 orthogonal radiation

patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper

shows that each phase mode response produces a spiral wave front with a different spiral rate, and

therefore a different direction of arrival of sound. Hence, for a given receiver position a higher

order source is equivalent to a linear array of 2Nþ 1 monopole sources. This interpretation suggests

performance similar to a circular array of higher order sources can be produced by an array of

sources, each of which consists of a line array having monopoles at the apparent source locations of

the corresponding phase modes. Simulations of higher order arrays and arrays of equivalent line

sources are presented. It is shown that the interior fields produced by the two arrays are essentially

the same, but that the exterior fields differ because the higher order sources produces different

equivalent source locations for field positions outside the array. This work provides an explanation

of the fact that an array of L Nth order sources can reproduce sound fields whose accuracy

approaches the performance of (2Nþ 1)L monopoles. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4883363]

PACS number(s): 43.38.Md, 43.60.Fg, 43.60.Tj, 43.38.Ja [MRB] Pages: 192–200

I. INTRODUCTION

Recently it has been shown that loudspeakers which can

radiate sound with multiple radiation patterns, known as

higher-order (HO) loudspeakers, can produce improved

sound reproduction over monopole loudspeakers.1,2 While

higher-order loudspeakers require the use of multiple driv-

ers, a small number of HO units is more convenient and eas-

ier to position in a room than a large number of single-driver

(or woofer-tweeter) loudspeakers.

A 2D higher-order loudspeaker of order N produces

2Nþ 1 modes of sound radiation with azimuthal phase

mode responses of the form exp(in/) or, equivalently, am-

plitude mode responses of the form cos(n/) and sin(n/) for

integers n and angle /.3,4 A circular array of Nth-order loud-

speakers can reproduce sound accurately up to the spatial

Nyquist frequency of the array (defined as the frequency

where reproduction of a sound field is accurate throughout

the interior of the array), and this value approaches 2Nþ 1

times the spatial Nyquist frequency of an equal number of

monopole loudspeakers. This claim was verified by simula-

tions in Ref. 2.

If higher-order loudspeakers are used in a semi-

reverberant room, then calibration using a higher-order

microphone may be used to compensate for the effects of

reverberation. In this case the loudspeakers can direct sound

from the room surfaces and achieve better reproduction than

would be produced in the free-field case.5,6 The reflections

from the wall surfaces provided more direction of arrival

of sound, increasing the diversity of the reproduction

environment.

A limitation of higher order loudspeakers in the free-

field case is that they cannot provide an improvement in

sound reproduction accuracy if the loudspeakers are at large

distances from the listener. This is easily seen because for

large distances, the sound fields produced at the origin by an

array of higher order loudspeakers are planar and cannot pro-

duce results which are different from an array of monopole

loudspeakers at the same distance. In practice, of course, the

loudspeakers are always relatively close to the listener and

the 2Nþ 1 improvement can be approximated, particularly

when in a semi-reverberant room. However, the accuracy of

reproduction in the free-field case will depend on the dis-

tance to the loudspeakers.

This paper undertakes a more detailed investigation of

the behavior of higher order loudspeakers, in order to better

understand the mechanism by which they produce an

increase in reproduction accuracy. It is shown that each

phase mode of the higher order loudspeaker produces wave

fronts which form a spiral. Transducers producing first order

spiral fields have been recently developed for use in under-

water bearing estimation.7–9 This idea is extended to the gen-

eral case and it is shown that for a given position in space,

each spiral wave front appears to come from a different

source position. Hence, for free-field reproduction within a

circular array of higher order sources each Nth order speaker

is similar in performance to an array of 2Nþ 1 point sources,
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with positions governed by the wave front curvature of each

higher order phase mode.

For simplicity the 2D case is considered, as in previous

work. However the properties of a 3D spherical higher order

source are also considered and it is shown that, in the case of

2D reproduction in a plane, the phase mode properties of 3D

sources are the same as for 2D sources. The investigation is

restricted to the creation of interior sound fields without

attempting to cancel the exterior field. In this paper a time

dependency of exp ixtð Þ is assumed.

II. EQUIVALENT SOURCE DESCRIPTION OF HIGHER
ORDER LOUDSPEAKERS

It is now shown that the higher order modes produce an

equivalent monopole source at a position defined by the

wavelength and the mode order.

A. 2D higher order sources

The solution to the wave equation in polar coordinates

r;/ð Þ for a region r > r0 exterior to any sound sources is10

pE r;/; kð Þ ¼
X1

n¼�1
Hn krð ÞBn kð Þein/; (1)

where Bn kð Þ is the nth exterior sound field expansion coeffi-

cient, Hn xð Þ ¼ H 2ð Þ
n xð Þ is the nth order Hankel function of

the second kind, k ¼ x=c is the wave number, and c is the

speed of sound.

Consider a source at the origin, of radius R, with a radial

velocity which can be written

vr /ð Þ ¼ V0

XN

n¼�N

anein/; (2)

where N is the order of the expansion and an is the Fourier

series coefficient of the nth term. By requiring that the radial

velocity of the general expression in Eq. (1) equals the sur-

face velocity Eq. (2) at r¼R, it can be shown that the 2D

exterior field has the form1

pE r;/; kð Þ ¼ iqcV0

XN

n¼�N

an
Hn krð Þ
H0n kRð Þ

ein/: (3)

The sound field is a sum of 2Nþ 1 terms, and the sound

source is referred to as an Nth order source. Each term is

known as a phase mode,3 and its frequency-dependent am-

plitude and phase are governed by the Hankel function

Hn krð Þ and the Hankel function derivative H0n kRð Þ. Since

each mode can be independently controlled, the source can

be equalized in such a way to produce frequency-

independent polar responses over a finite frequency range.1

B. Equivalent source position of a phase mode

The nth term in Eq. (3) has the general form

pE;n r;/; kð Þ ¼ bn

Hn krð Þ
H0n kRð Þ

ein/; r > R; (4)

where bn is a constant. The Hankel function has the form11

Hn krð Þ¼
ffiffiffiffiffiffiffi
2

pkr

r
inþ1=2e�ikr

�
Xp�1

q¼0

1

q!

C nþqþ1=2ð Þ
C n�qþ1=2ð Þ

�i

2kr

� �q

þO z�pð Þ

2
4

3
5;
(5)

where O z�pð Þ has a magnitude of order z�p as z tends to

infinity.

For 2kr � 1 this can be approximated as

Hn krð Þ �
ffiffiffiffiffiffiffi
2

pkr

r
inþ1=2e�ikr: (6)

The derivative of the Hankel function, H0n kRð Þ, governs the

response of the nth phase mode with frequency. It does not

vary with radius r and so is a constant complex number for a

given wave number k and source radius R. In typical applica-

tions the nth mode response would be equalized, and there-

fore the phase of H0n kRð Þ may be ignored. The constant

inþ1=2 may also be ignored, by the same argument.

The sound field of the nth phase mode is therefore, for

distances r � 1= 2kð Þ, of the general form

pE;n r;/; kð Þ ¼ cnei n/�krð Þ; r > R; (7)

where cn is a constant, and the phase of the nth mode field

varies with radius r and azimuth /, as

Un r;/ð Þ ¼ n/� kr: (8)

The phase is zero for r ¼ n/=k, which is the definition of an

Archimedes spiral.12 Hence the wave front where the phase

is zero is of the form of an Archimedes spiral. More

precisely, the spatial component of the sound field produced

by the nth phase mode has n loci along which the phase is

zero. These are given by the condition n/� kr þ l2p ¼ 0

for l 2 0; n� 1½ � and define Archimedes spirals ~rl /ð Þ
¼ xl /ð Þ;ð yl /ð ÞÞ with x and y coordinates

xl /ð Þ ¼ n/
k

cos /þ l2p
n

� �
; (9)

yl /ð Þ ¼ n/
k

sin /þ l2p
n

� �
: (10)

The gradient of the curve with respect to / is the tangent to

the wave front, ~s
l
¼ x0l /ð Þ; y0l /ð Þ
� �

; and the normal,

~gl /ð Þ ¼ �y0l /ð Þ; x0l /ð Þ
� �

, is then the negative of the direc-

tion of propagation, with components

gxl /ð Þ¼�n

k
/cos /þ l2p=nð Þþ sin /þ l2p=nð Þð Þ; (11)

gyl /ð Þ ¼ n

k
cos /þ l2p=nð Þ � / sin /þ l2p=nð Þð Þ: (12)

For a given field position (x,y), the normal to the wave front

points towards the source position of a monopole which
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would produce the same wave front. For simplicity a point

on the x axis is assumed. The normal vector at zero phase on

the x axis, for positive x values, occurs for /þ l2p=n ¼ v2p,

for integers v. The normal is, for these cases,

~g xð Þ ¼ �x;
n

k

� �
: (13)

Hence, for positive x values the wave fronts from the nth

mode appear to originate from a point on the y axis equal to

yn ¼
n

k
: (14)

Note that the distance relative to the wavelength, k, is a

constant,

yn

k
¼ n

2p
: (15)

The corresponding angle of the nth source from the x axis is

an ¼ tan�1 n

kx

� �
: (16)

In general, for a field position at angle /0 the equivalent

source position is

xn /0ð Þ; yn /0ð Þð Þ

¼ � n

k
cos /0 þ p=2ð Þ; n

k
sin /0 þ p=2ð Þ

� �
; (17)

which is rotated 90� from the field angle and is at a distance

n/k from the center of the source. This behavior is shown in

Figs. 1 and 2, where the real part of the first and second order

modes for a source of radius R¼ 0.25 m are shown. Figure 1

shows the field due to a first order source. The normals to the

spiral wave fronts are drawn for three values of x. The equiv-

alent source distance from the origin is yn¼ 0.108 m, shown

as a circle in Fig. 1. The normals all converge on the

equivalent source position. The equivalent source positions

for sources on the negative x axis are at yn¼�0.108 m,

showing that the equivalent source position depends on the

field position.

Figure 2 shows the field for a second order source. The

apparent source distance is a larger value of yn¼ 0.216 m,

slightly less than the source radius R. The three normals

again converge on the equivalent source position.

Equation (14) suggests that at low frequencies the

source position distances from the center of the loudspeaker

are greater than the radius R. While this is true, the magni-

tudes of the source is given by the magnitude of Eq. (4).

These are shown in Fig. 3.1 The magnitudes roll-off below

the “activation” frequency given by kR¼ n, or

fn ¼
nc

2pR
; (18)

shown as circles in Fig. 3. Since n¼ kR defines the activation

frequency, and n¼ ynk defines the lateral source position, the

nth source distance yn equals the loudspeaker radius at the

mode activation frequency. For frequencies lower than fn,

the source distance is greater than R, but the magnitude of

the response rapidly reduces, particularly for higher orders.

Hence, it is not physically possible to position a source at

large distances from the loudspeaker that also produces sig-

nificant sound pressure. The mode activation frequency was

217 Hz in Fig. 1 and the equivalent monopole source posi-

tion is y¼ 0.1 m, nearly half the speaker radius. In Fig. 2 the

activation frequency is 433 Hz which is close to the source

frequency, and the source position is 0.22 m, near the edge

of the loudspeaker.

Applying the analysis above to a surround sound sys-

tem, it can be said that a higher order loudspeaker at a dis-

tance rL from the origin, and at angle /l, producing 2Nþ 1

modes, behaves as a line array of 2Nþ 1 monopole sources

at radii rL with distances from the speaker center, tangent to

the speaker radius, given byFIG. 1. Sound field for R¼ 0.25, n¼ 1 at 500 Hz, y1¼ 0.1 m.

FIG. 2. Sound field for R¼ 0.25 m, n¼ 2 at 500 Hz, y2¼ 0.22 m.
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yn ¼
n

k
; n 2 �N;N½ � (19)

and source angles given by

/l;n ¼ /l þ tan�1 n

krL

� �
; n 2 �N : N½ �; (20)

where the magnitudes of each source reduce for distances

greater than the source radius, i.e., below the corresponding

activation frequency.

C. 3D higher order sources

It will now be shown that 3D higher order sources dis-

play the same equivalent monopole source positions as 2D

sources.

The solution to the wave equation in spherical coordi-

nates r; h;/ð Þ for a region r > r0 exterior to any sound sour-

ces is10

pE r; h;/; kð Þ ¼
X1
n¼0

Xn

m¼�n

Bm
n kð Þhn krð ÞYm

n h;/ð Þ; (21)

where hn(x) is the spherical Hankel function of the second

kind,10 and the spherical harmonics are defined as13

Ym
n h;/ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ

4p
n� jmjð Þ!
nþ jmjð Þ!

s
Pn
jmj cos hð Þeim/; (22)

where Pn
m �ð Þ is the associated Legendre function.10

Consider a sphere of radius R vibrating with surface

velocity

v hs;/s; tð Þ ¼ eixt
X1
n¼0

Xn

m¼�n

am
n Ym

n hs;/sð Þ: (23)

Following the same procedure as for the 2D case, it may be

shown that the exterior field has the general form14–18

pE r;h;/ð Þ¼ iqc
X1
n¼0

Xn

m¼�n

am
n

h0n kað Þ
hn krð ÞYm

n h;/ð Þ; r	 a:

(24)

The (n,m)th mode then has the form

pE;n;m r; h;/ð Þ ¼ cm
n

hn krð Þ
h0n kRð Þ

Ym
n h;/ð Þ; r 	 r0; (25)

where cm
n is a constant. The spherical Hankel function has

the form11

hn krð Þ ¼ inþ1e�ikr

kr

Xn

q¼0

1

q!

nþ qð Þ!
n� qð Þ!

�i

2kr

� �q

: (26)

For 2kr � 1 the sound pressure is approximated by

pE;n;m r;h;/ð Þ¼ cm
n inþ1 Ym

n h;0ð Þ
kh0n kRð Þ

e�ikr

r
eim/; r	 r0: (27)

Hence, as for the 2D case, the constant phase may be

ignored, and the sound field for a given h produces loci of

constant phase which are Archimedes spirals.

In the 2D case, where the reproduced field is in the (x,y)

plane, and for the sectorial modes where n¼ |m|, the

responses in elevation are of the form sin hð Þjmj, which pro-

duce a single lobe at h ¼ p=2, in the (x,y) plane. In this case

the equivalent source position seen at a position in the (x,y)

plane is given by Eq. (17). However, for field positions at

other values of h the amplitude of the source reduces,

suggesting that the equivalent source must have a non-zero

FIG. 3. Mode responses for R¼ 0.25 m.

Activation frequencies shown as circles.
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aperture in z. For non-sectorial modes, the response in eleva-

tion is more complex with peaks and nulls governed by the

associated Legendre function Pjmjn cos hð Þ. Such responses

can be produced by a line array of monopoles with suitable

weightings.

In summary, for reproduction in the (x,y) plane the

equivalent monopole source position is the same as for the

2D case, but in general a monopole array in z, positioned in

the (x,y) plane according to Eq. (17), and implementing a

polar response in elevation equal to an associated Legendre

function, provides a more accurate description.

In general, the spherical harmonic description of a

source is equivalent to a multipole expansion.10 The model

described here is an alternative that is simpler for modeling

reproduction in the 2D case, and which produces a different

equivalent source position for each field position.

III. COMPARISON OF HIGHER ORDER SOURCES
WITH EQUIVALENT LINE ARRAYS

The previous section has shown that for 2D reproduc-

tion, an Nth order source is equivalent to 2Nþ 1 monopole

sources with frequency-dependent source positions and mag-

nitudes. Therefore a circular array of higher order sources is

similar to a circular array of line arrays of 2Nþ 1 sources.

Along the radial line from the origin to each higher order

source, the corresponding equivalent monopole sources

appear to be positioned tangential to the circle and centered

at the higher order source position. Therefore, in free-field

conditions, and for field positions that are not too close to

the loudspeakers, the sound reproduction performance of an

array of L higher order sources should be similar to that of a

circular array of L sources, each consisting of a line array of

2Nþ 1 monopoles. However, since the position of the equiv-

alent monopoles varies with field position, the sound fields

produced by the two arrays will differ for field positions

close to the loudspeakers. Furthermore, for positions exterior

to the array, the positions of the sources for higher order

speakers close to the field position will be reversed, while

those from the far side of the array will have the same posi-

tions. Hence, the exterior field produced by a higher order

array will differ from that of a fixed array of line arrays.

To investigate this, numerical simulations of 2D sound

reproduction using both higher order sources and line arrays

of monopoles are carried out. A brief outline of the method

for determining the higher order source weightings is given

here. Further details are given in Ref. 1.

A. Array of higher order sources

The desired sound field is a 2D interior sound field

which has the general expansion10

pI r;/; kð Þ ¼
X1

m¼�1
Jm krð ÞAm kð Þeim/; (28)

where Jm �ð Þ is the mth cylindrical Bessel function and Am kð Þ
is the mth sound field expansion coefficient. The expansion

may be limited to order

M ¼ ekr

2
; (29)

where e¼ exp(1)¼ 2.718, for a given k and r.19,20

The interior field is approximated using L Nth order sour-

ces at radius rL and positioned at equally spaced angles

/l ¼ l2p=L; l 2 0; L� 1½ �. The interior sound field, for

r < rL, due to the nth mode of radiation of the lth higher order

source is represented using the cylindrical addition theorem11

pn;l r;/; rL/l; kð Þ ¼ Hn kr0ð Þeinvl

¼
X1

m¼�1
Jm krð ÞHmþn krLð Þeim /�/lð Þ;

(30)

where the angle vl is defined in Fig. 4. The sum of all

L 2N þ 1ð Þ fields of the form of Eq. (4), weighted by com-

plex amplitudes wn;l, then has the form

p̂I r;/;kð Þ¼
X1

m¼�1
Jm krð Þeim/

�
XL

l¼1

XN

n¼�N

wn;l
Hmþn krLð Þ
H0n kRð Þ

e�im/l

" #
; r< rL :

(31)

Equating this approximated field to Eq. (28) produces the

mode matching equations

XN

n¼�N

Hnþm krLð Þ
H0n kRð Þ

XL

l¼1

wn;le
�im/l ¼ Am; m 2 �M;M½ �:

(32)

This equation may be written in matrix form

Hw ¼ a; (33)

where H is a 2Mþ 1 by (2Nþ 1)L matrix, w is a (2Nþ 1)L
by one vector of weights, and a is a 2Mþ 1 vector of interior

coefficients.

FIG. 4. Geometry for addition theorem.
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It has been shown that solutions to Eq. (32) are more ro-

bust if the number of modes is limited so that 2M þ 1


 L 2N þ 1ð Þ. Setting 2M þ 1 ¼ wL 2N þ 1ð Þ where w < 1,

and using Eq. (29) with r¼ rL, the approximate spatial

Nyquist frequency of the array is found to be1

fN ¼
c wL 2N þ 1ð Þ � 1
� �

e2prL
: (34)

The weights may then be determined from Eq. (33) as

w ¼ HH HHH þ rI½ ��1
a; (35)

where I is the 2Mþ 1 by 2Mþ 1 identity matrix. For r¼ 0

this is the minimum energy solution and r can be used to

reduce the weight solutions for cases where H has small sin-

gular values. In the simulations to be presented below, r was

set to a fraction e¼ 1e – 4 of the squared maximum singular

value of H.

B. Array of line arrays

Each higher order source at angle /l is equivalent to

2Nþ 1 monopoles at angles given by Eq. (20). A circular

array of L(2Nþ 1) monopoles with each array of 2Nþ 1

monopoles centered at /l and with the monopole angles

given by Eq. (20) is therefore equivalent to the higher order

source array. It will be assumed, for simplicity, that all

monopoles are at the radius rL, so that each line array has a

small amount of curvature. The sound field produced by

each monopole source has the form of Eq. (4) with n¼ 0.

For correct reproduction the sound field produced by the

sum of the fields produced by all L(2Nþ 1) monopoles,

weighted by complex amplitudes qn,l must equal Eq. (28).

Each monopole sound field is given by Eq. (4) for n¼ 0 and

b0¼ 1 and can be expressed at an arbitrary source position

using the cylindrical addition theorem.11 The resulting mode

matching equations are

Hm krLð Þ
H00 kRð Þ

XN

n¼�N

XL

l¼1

qn;le
�im/l;n ¼Am; m2 �M;M½ �: (36)

This can be put in matrix form

Gq ¼ a; (37)

where G is a 2Mþ 1 by (2Nþ 1)L matrix and q is a

(2Nþ 1)L by one vector of weights.

The solution is then

q ¼ GH GGH þ dI½ ��1
a; (38)

where d is set to e¼ 1e – 4 times the maximum squared sin-

gular value of G. Since the array of line sources has the

same number of equivalent sources, the spatial Nyquist fre-

quency of the array will be the same as Eq. (34).

C. Simulations

The desired sound field is that produced by a monopole

source with sound field coefficients

Am kð Þ ¼ Hm krsð Þe�im/s : (39)

L¼ 15 higher order sources are used, each of radius

R¼ 0.25 m, as in Ref. 1. The activation frequencies for

orders 1, 2, and 3 are 216, 433, and 649 Hz, respectively.

Simulations are carried out for the second order case, N¼ 2,

for which the spatial Nyquist frequency, with b¼ 0.75, is

367 Hz.

Sound reproduction is possible over a region rmax is pos-

sible if the number of loudspeaker sources exceeds the num-

ber of modes that are active within that region. From

Eq. (29), the radius of accurate reproduction is then1

rmax fð Þ ¼ c wL N þ 1=2ð Þ � 1=2ð Þ
epf

: (40)

The error in the reproduced field is defined here as

e r;/; kð Þ ¼ jp̂I r;/; kð Þ � pI r;/; kð Þj
jpI 0; kð Þj ; (41)

where p̂I r;/; kð Þ is the sound field produced by the (higher-

order or line-array) loudspeaker array and pI 0; kð Þ is the

sound pressure due to the desired monopole source at the ori-

gin. The error was approximately constant within rmax and

so the accuracy will be quantified by the error within rmax

in dB.

The first simulation is for reproduction at 250 Hz, well

below the spatial Nyquist frequency. This frequency is also

below the activation frequency of the second order modes

(433 Hz). The array geometries are shown in Fig. 5. Because

the source frequency is below the second order activation

frequency, the second order source locations are outside the

speaker radius, and the second order mode response is about

�7 dB in Fig. 3. The effective radius of the line array from

Eq. (14) is y2 ¼ 2=k ¼ 0:43 m and so the width is 0.86 m,

FIG. 5. Higher order and line arrays for 250 Hz and N¼ 2.
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although the 7 dB reduction may result in slightly lower per-

formance than an actual line array of monopoles because the

loudspeaker weight solutions must compensate for this

reduction.

The line array and higher order fields are shown in

Figs. 6 and 7 for a source radius of 5 m and a worst-case

source angle of 12�, halfway between speakers. The higher

order array mode matrix H has a condition number of 49.6

and the line array matrix G condition number is 20.3. The

maximum radius of reproduction from Eq. (40) is 4.4 m

which exceeds the loudspeaker radius and so the field is

accurate for all regions inside the loudspeaker array. The

line array produces an error of around �30 dB and the higher

order speakers produce approximately �15 dB. This reduc-

tion in accuracy is due to the higher condition number of the

matrix H, which is probably due to the equivalent monopole

sources of the second order phase modes lying outside the

speaker radius, with a lower excitation magnitude.

The line arrays produce a continuous locus of wave

fronts which is similar to those produced by a regular array

of monopoles (see, for example, Figs. 2 and 5 in Ref. 21).

The array approximates a single layer potential whose exte-

rior field is equivalently produced by the scattering of the

desired field from a pressure release surface at the

boundary.22

The higher order array produces a lower exterior field

for angles near the source angle. This occurs because, as

explained above, the higher order apparent source positions

are reversed for exterior points. In Fig. 7 the far-field polar

response of each higher order source is superimposed on

each source, and the two higher-order sources closest to the

desired source angle demonstrate a cardioid-like radiation

pattern, confirming that the exterior radiation is lower than

the interior.

The second simulation is for a source frequency of

800 Hz, which is above the second order activation fre-

quency (433 Hz), but is also well above the spatial Nyquist

frequency (367 Hz). The array geometries are shown in

Fig. 8. The line array sources are at radii of 0.068 and

0.135 m and are now well within the radius of the higher

order sources.

The reproduced fields are shown in Figs. 9 and 10. The

maximum radius from Eq. (40) is 1.37 m, shown as a dashed

line in Figs. 9 and 10. This appears to be slightly conserva-

tive as the wave field is accurate out to about 1.6 m. The con-

dition numbers of H and G are 101 and 115, respectively,

which are closer to each other than for the 250 Hz simula-

tions. Both solutions are less robust than for the 250 Hz case

and the line array and higher order arrays are unable to

control the sound field through the entire region inside the

arrays. The mean error for radii less than 1.4 m is around

�10 dB for both plots.

FIG. 6. Line array sound field for a frequency of 250 Hz and five sources

per array.

FIG. 7. Higher order sound field for a frequency of 250 Hz and N¼ 2.

FIG. 8. Higher order and line arrays for 800 Hz and N¼ 2.
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The two reproduced fields within the arrays are

remarkably similar, showing that the monopole array is

equivalent to the higher order source for interior sound

field reproduction. There are, however, differences

between the interior fields for radii close to the loud-

speaker radius rL, where the higher order apparent source

positions start to differ significantly from the assumed line

array source positions.

The exterior wave fields are more similar than in the

previous case, since both arrays are producing spatial alias-

ing effects, but the higher order array amplitudes are slightly

greater, and the interference is more complicated for angles

close to the source angle. Generally, the exterior field with

the higher order sources tends to demonstrate greater

fluctuations, and this is believed to be due to the fact that the

source positions are reversed for exterior field positions, and

so while the sum of these sources produces the desired field

near the origin, the larger phase differences with distance

above the spatial Nyquist frequency produce greater fluctua-

tions outside the array.

Finally the sound field produced at 800 Hz by an array

of L(2Nþ 1)¼ 75 equally spaced monopoles is shown in

Fig. 11, to allow comparison with the equivalent higher

order source array in Fig. 9. The mode matrix G has a

reduced condition number of 1.1 and the sound field demon-

strates correspondingly less interference, and while the area

of accurate reconstruction is similar to that of Fig. 9, the ac-

curacy of reconstruction is better, with a mean error below

�40 dB.

IV. CONCLUSIONS

This paper has shown that a higher order loudspeaker

produces phase modes with lines of constant phase that

approach an Archimedes spiral. As a result, each mode

appears to originate from a different source position, and

hence an Nth order source can be viewed as 2Nþ 1 mono-

pole sources, where the source positions depend on the

wavelength, the phase mode order and the field position.

Hence, while a higher order source has a physical radius R,

it behaves in practice as if it had an aperture governed by the

highest order it can radiate at a given frequency, which is

frequency dependent. In practice the effective aperture tends

to oscillate about 2R since the aperture width of the equiva-

lent monopole sources at a given order reduces with fre-

quency, but at higher frequencies higher orders can be

radiated to increase the aperture back to 2R.

Simulations have shown that an array of sources, each

of which consists of a line array with sources that match the

apparent phase mode source positions, produces an interior

field very similar to the higher order source field. However,

FIG. 9. Line array sound field for a frequency of 800 Hz and five sources

per array.

FIG. 10. Higher order array sound field for a frequency of 800 Hz and

N¼ 2.

FIG. 11. Sound field for a regular array of L(2Nþ 1)¼ 75 monopoles at a

frequency of 800 Hz.
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since the higher order source positions vary with field posi-

tion, the field close to the loudspeakers, and the exterior

sound fields, differ. For frequencies below the spatial

Nyquist frequency, the higher order sources tend to produce

a lower exterior sound field “upstream” of the direction of

propagation, i.e. for angles near the source angle. However,

above the spatial Nyquist frequency the higher order array

can produce larger amplitudes because the equivalent source

positions reverse for exterior field points.

For the reproduction of interior sound fields in free-field

conditions, where the room is acoustically treated to reduce

wall reflections, a set of L rectangular loudspeakers, each of

which is frontally mounted with a single woofer and a line

array of 2Nþ 1 tweeters will produce similar performance to

L higher order sources constructed using a circular array of

(typically more than 2Nþ 1) drivers. Such line array devices

have been developed for commercial application using wave

field synthesis. The results presented here suggest that a reg-

ular array of monopole speakers will outperform a higher

order array or a non-regular array of monopoles with the

same number of sources. However, such arrays require a

large number of loudspeaker units which is often

impractical.

Higher order sources are able to create equivalent source

positions that lie slightly outside the speaker radius, at a

reduced but still useful amplitude. The solutions in such

cases are not as well-conditioned, but it is thought that the

outer sources make some useful contribution to the repro-

duced field.

The line array equivalent source model gives some

insight into the derivation of the spatial Nyquist frequency.

If the higher order equivalent sources formed a regular array,

the spatial Nyquist frequency would be well-defined and

equal to 2Nþ 1 times the monopole case. However, the

equivalent source positions of the higher-order sources

reduce with increasing frequency and it is difficult to accu-

rately determine the Nyquist frequency. The result in

Eq. (32) gives an approximate value derived from a consid-

eration of the modal dimensionality of the sound field, and

which requires an empirical factor b< 1. Currently no better

derivation is known to the authors.

While the equivalent source position radii reduce as the

frequency rises, the radii relative to the wavelength are con-

stant. This gives an alternative interpretation of the fact that

higher order sources can generate frequency-independent

polar responses.

Finally, for sound reproduction in reverberant rooms

using calibration and reverberation-cancellation, higher

order speakers offer advantages over loudspeaker units

containing a line array, because they can rotate the radiated

response to any angle.
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