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[1] Ideally, a seasonal streamflow forecasting system would ingest skilful climate forecasts
and propagate these through calibrated hydrological models initialized with observed
catchment conditions. At global scale, practical problems exist in each of these aspects. For
the first time, we analyzed theoretical and actual skill in bimonthly streamflow forecasts from
a global ensemble streamflow prediction (ESP) system. Forecasts were generated six times
per year for 1979–2008 by an initialized hydrological model and an ensemble of 1� resolution
daily climate estimates for the preceding 30 years. A post-ESP conditional sampling method
was applied to 2.6% of forecasts, based on predictive relationships between precipitation and
1 of 21 climate indices prior to the forecast date. Theoretical skill was assessed against a
reference run with historic forcing. Actual skill was assessed against streamflow records for
6192 small (<10,000 km2) catchments worldwide. The results show that initial catchment
conditions provide the main source of skill. Post-ESP sampling enhanced skill in equatorial
South America and Southeast Asia, particularly in terms of tercile probability skill, due to the
persistence and influence of the El Ni~no Southern Oscillation. Actual skill was on average
54% of theoretical skill but considerably more for selected regions and times of year. The
realized fraction of the theoretical skill probably depended primarily on the quality of
precipitation estimates. Forecast skill could be predicted as the product of theoretical skill and
historic model performance. Increases in seasonal forecast skill are likely to require
improvement in the observation of precipitation and initial hydrological conditions.

Citation: van Dijk, A. I. J. M., J. L. Pe~na-Arancibia, E. F. Wood, J. Sheffield, and H. E. Beck (2013), Global analysis of seasonal
streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide, Water Resour.
Res., 49, 2729–2746, doi:10.1002/wrcr.20251.

1. Introduction

1.1. Background

[2] Seasonal streamflow forecasts for months to seasons
ahead have many potential uses, even though their skill is
inherently limited by the chaotic nature of the atmosphere.
Their main use at present is to assist in planning the opera-

tion of water reservoirs for hydropower, agricultural and
urban water supply, flood mitigation, and environmental
flows [Cherry et al., 2005; Hamlet et al., 2002; Pagano et
al., 2004]. Forecasts of the likelihood of above- or below-
average streamflow levels can also help river water users,
environmental water managers, and floodplain commun-
ities in decision making, as well as national or international
organizations involved in water trading, policy making,
regulation, and aid and emergency response [Chiew et al.,
2003; Pappenberger et al., 2011; Ritchie et al., 2004; San-
karasubramanian and Lall, 2003]. The skill of seasonal
forecasts is derived from knowledge of the state of the cli-
mate system and of catchment conditions before the fore-
cast period. The state of the climate system, in particular,
the pattern of ocean currents and corresponding sea surface
temperatures, can provide a basis for forecasting future cli-
mate state [Palmer and Anderson, 1994]. The predictive
value can be exploited using coupled general circulation
models (GCMs) or statistical methods based on the state of
the climate system (e.g., sea surface temperature and pres-
sure fields). The state of the catchment, in particular, the
amount of water stored in the snowpack, soil, and ground-
water water system, contributes skill where (some of) this
stored water will be released from the catchment or
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influences catchment response to precipitation during the
forecast period [Bierkens and van Beek, 2009; Koster et
al., 2010].

[3] Seasonal forecasts are currently being issued rou-
tinely in several regions. Forecasts of spring streamflow
have been issued for several decades in the western United
States and Canada based on empirical regression relation-
ships with snow depth observations [Gobena and Gan,
2010; Pagano et al., 2004]. Since 2010, the Australian Bu-
reau of Meteorology issues monthly experimental probabil-
istic streamflow forecasts for several stations in southeast
Australia derived using Bayesian methods and trained on
indices of climate state (e.g., El Ni~no Southern Oscillation
(ENSO)) and antecedent precipitation and streamflow
[Wang et al., 2009]. Dynamic (i.e., hydrological model-
based) forecasting methods have also been developed. In
particular, the ensemble streamflow prediction (ESP) sys-
tem uses antecedent meteorological observations to initial-
ize a hydrological model which is run in forward mode
using an ensemble of sampled historic climate time series
[Day, 1985; Franz et al., 2003]. At present, seasonal
streamflow forecasts—statistical or dynamic—are not
available in most other parts of the world.

[4] Seasonal precipitation forecasts from coupled GCMs
are routinely issued by several centers [e.g., Saha et al.,
2006; Weisheimer et al., 2009] and can be propagated
through hydrological models to obtain seasonal streamflow
forecasts with global coverage. This is not yet done on an
operational basis, for several possible reasons. First, the
current generation of precipitation forecasts rapidly loses
skill beyond the first 2 weeks [Lavers et al., 2009; Yuan et
al., 2011], which is to a considerable extent a fundamental
constraint caused by the chaotic evolution of the atmos-
phere [Westra and Sharma, 2010; Feng et al., 2011].
Moreover, GCM forecasts are issued at a resolution that is
too coarse for most hydrological applications, and the fore-
casts, of precipitation in particular, are prone to biases.
This requires investment in developing bias correction and
downscaling methods [Gobena and Gan, 2010; Luo and
Wood, 2008] that may or may not be justified by the added
skill in forecasts. There are alternative approaches to GCM
downscaling that can still exploit climate state observations
to condition seasonal hydrological forecasts to some
degree. These include ‘‘pre-ESP’’ methods by which the
ensemble of historical time series of meteorological data
propagated through the hydrological model is selected
from years with similar prior observed or forecasted cli-
mate indices, or are adjusted based on forecasted tempera-
ture and precipitation [Bierkens and van Beek, 2009;
Hamlet and Lettenmaier, 1999; Werner et al., 2004].
‘‘Post-ESP’’ methods follow a similar logic but sample
from the ensemble hydrological forecast traces or assign
weightings based on climate indices or climate forecasts
from GCMs or statistical methods [Werner et al., 2004;
Wilks, 2008]. Post-ESP sampling methods have been found
similarly or more successful than pre-ESP methods and
computationally more efficient [Gobena and Gan, 2010;
Werner et al., 2004]. Apart from the skill derived from the
predicted climate state, seasonal forecast skill is also
derived from knowing the initial catchment state. In fact,
several recent analyses have demonstrated that this is likely
to be the more important contributor to overall skill, at least

for regions with winter snow accumulation [Bierkens and
van Beek, 2009; Wood and Lettenmaier, 2006]. This sug-
gests that for at least some environments, it may be possi-
ble to produce seasonal forecasts with useful skill in the
absence of skilful climate forecasts.

[5] Further impediments to seasonal hydrological fore-
casting over very large areas are the availability (quantity,
quality, and accessibility) of catchment state observations
and the accuracy of hydrological models (to estimate initial
states in the absence of observations and to forecast their
evolution over the forecast period). It is commonly
assumed that a hydrological model with carefully cali-
brated parameters is a prerequisite to produce useable
streamflow forecasts [Shi et al., 2008]. This assumption
appears well-supported when it comes to short-term fore-
casting, where catchment response time and streamflow
retention can have a large impact on the storm hydrograph
and thereby on forecast skill. However, several authors
questioned the assumption that thorough calibration is a
prerequisite to derive seasonal forecasts, for a number of
reasons [Bohn et al., 2010; Koster et al., 2010; Shi et al.,
2008]. First, at seasonal time scales forecast skill is mostly
limited to total streamflow, and therefore, the timing or
magnitude of daily streamflow patterns is less important.
Second, the interest is often not in absolute forecasts but in
the probabilities of streamflow relative to past conditions,
e.g., expressed in tercile or above/below median probabil-
ities. Third, postforecast bias correction may be able to
compensate suboptimal model calibration [Shi et al., 2008].
Avoiding catchment-specific model parameter calibration
is attractive, as it is an important obstacle to the generation
of forecasts over large areas and many catchments. By con-
trast, bias correction methods are typically computationally
inexpensive.

1.2. Objective

[6] In this study, we evaluate the theoretical and actual
skill of a global ensemble streamflow forecasting system.
In particular, we wanted to determine (1) whether a compa-
ratively simple global ESP system that uses a computation-
ally efficient post-ESP sampling scheme can provide
bimonthly streamflow forecasts with useful skill for at least
some regions and seasons and (2) where and when initial
conditions and climate forecasts are most likely to lead to
useful forecast skill. To our knowledge this is the first time
that a global hydrological forecasting system has been
developed or evaluated against a large number of small
catchments worldwide.

[7] To address these objectives, we performed a retro-
spective global forecasting experiment using an ESP sys-
tem with post-ESP sampling. The steps involved in the
analysis are illustrated in Figure 2. Briefly, we used gridded
meteorological forcing data for the period 1948–2008
[Sheffield et al., 2006] and a global hydrological model (the
World Wide Water Resources Assessment (W3RA) model,
based on the Australian Water Resources Assessment
(AWRA) model) [Van Dijk, 2010b]. Post-ESP sampling
was only done where this was likely to increase skill, based
on historic correlations between bimonthly precipitation
and 1 out of 21 readily available climate mode indices.
Forecasts were generated over a 30 year period (1979–
2008), we assume that the skill observed in these
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retrospective experiments is a good guide to forecast skill
in the (near) future and for readability use the term forecast
where retrospective forecast or ‘‘hind-cast’’ might be more
accurate. A model run using historical forcing was used as
a reference to determine theoretical (or potential) forecast
skill. We compared forecast performance with and without
post-ESP sampling to estimate the contribution of climate
predictability to forecast skill. Finally, we compared theo-
retical forecast skill to actual skill as measured against
streamflow records from several thousand catchments
worldwide.

2. Material

2.1. Meteorological Data

[8] Global daily 1� resolution meteorological forcing
data for 1948–2008 were available from Princeton Univer-
sity (http://hydrology.princeton.edu). The data sets used
included precipitation, downwelling short-wave radiation,
and minimum and maximum daily temperature and air
pressure. Essentially, these data sets were produced by
downscaling observation-based products to finer resolution
and shorter time steps using the National Center of Envi-
ronmental Prediction-National Center for Atmospheric
Research reanalysis product and statistical downscaling
methods. This ensures that the resulting data have no bias
with respect to best available quality observation-based
products. Full details on the blending method can be found
in Sheffield et al. [2006].

2.2. Hydrological Model Structure

[9] The modeling framework used in the experiment is
the W3RA system and is based on the landscape hydrology
component model of the AWRA system (AWRA-L version
1.0) [Van Dijk, 2010b; Van Dijk and Renzullo, 2011; Van
Dijk et al., 2012a]. AWRA-L can be considered a hybrid
between a simplified grid-based land surface model and a
nonspatial (or so-called ‘‘lumped’’) catchment model
applied to individual grid cells. The model was designed to
be parsimonious rather than detailed, to support its use
where there are few on-ground observations to force and
constrain it, as is typical for Australia. Where possible,
process equations were selected from the literature and
through comparison against observations. The meteorologi-
cal inputs are gridded daily total precipitation, incoming
short-wave radiation, and minimum and maximum temper-
ature, which are converted to daytime effective values [cf.
McVicar and Jupp, 1999]. Full technical details about the
algorithms and default parameters can be found in the
model technical documentation [Van Dijk, 2010b; http://
eos.csiro.au/awra/]. In summary, the configuration consid-
ers two hydrological response units (HRUs): deep-rooted
tall vegetation (‘‘forest’’) and shallow-rooted short vegeta-
tion (‘‘herbaceous’’), each of which occupies a fraction of
each grid cell. Vertical processes are described for each
HRU individually: (1) the net radiation balance, including
incoming and outgoing short-wave and long-wave radiation
[Brutsaert, 1975] and ground heat flux [Bastiaanssen et al.,
1998]; (2) partitioning of precipitation between intercep-
tion evaporation and net precipitation [Van Dijk and
Bruijnzeel, 2001], and the partitioning of net precipitation
between infiltration, infiltration excess surface runoff, and

saturation excess runoff [Van Dijk, 2010a]; (3) the water
balance of three unsaturated soil layers (topsoil, shallow
and deep soil layer) including infiltration, drainage (using
equations derived from multilayer simulation studies) [see
Peeters et al., 2013], root water uptake (using a linear ramp
function) [Shuttleworth, 1992], and soil water evaporation;
(4) transpiration, as the lesser of maximum root water
uptake and optimum transpiration rate, estimated using the
Penman-Monteith equation [Monteith, 1965] with aerody-
namic conductance estimated from wind speed [Thom,
1975] and maximum canopy conductance estimated from
model leaf area and remotely sensed greenness [cf. Yebra
et al., 2013]; (5) groundwater, surface water, and soil evap-
oration as a linear function of available energy (and for un-
saturated soil, relative water content) [Mutziger et al.,
2005]; (6) vegetation canopy dynamics (leaf biomass, can-
opy cover, leaf area index, and maximum canopy conduct-
ance) that adjust to balance actual and maximum
transpiration with a degree of inertia corresponding to veg-
etation type. In addition, the following integrated catch-
ment processes are described for each grid cell : (7)
groundwater dynamics, including recharge from deep
drainage, capillary rise (estimated with a linear diffusion
equation), evaporation from groundwater saturated areas,
and discharge (estimated with a linear reservoir model)
[Pe~na-Arancibia et al., 2010; Van Dijk, 2009]; and (8) sur-
face water body dynamics, including inflows from runoff
and discharge, open water evaporation, and catchment
water yield (estimated using a catchment-scale linear rout-
ing model) [Van Dijk, 2010a].

[10] For the original model version 0.5 [Van Dijk,
2010b], prior estimates of all HRU and catchment parame-
ters were derived from the literature or data analysis. For
version 1.0, 7 of the 34 parameters for each HRU and 2
catchment parameters were calibrated. The parameters
included effective soil parameters determining hydraulic
conductivity, water holding capacity and soil evaporation;
relating remotely sensed greenness to maximum canopy
conductance; and relating groundwater recession and satu-
rated area to catchment characteristics. They were cali-
brated to optimize agreement with streamflow records from
160 small Australian catchments [Viney et al., 2012].

[11] Some modifications of the AWRA-L version 1.0
model were needed for this application. Global data sets
were used to configure the model, including tree cover
fraction maps [Hansen et al., 2003], an albedo climatology
derived from Moderate Resolution Imaging Spectroradiom-
eter white-sky albedo [Moody et al., 2005] (http://modis-
atmos.gsfc.nasa.gov/ALBEDO/) and a wind speed clima-
tology (1983–1993) from NASA (http://eosweb.larc.nasa.
gov/sse/). Australia experiences most major climate types
(i.e., seasonal, arid, and humid; tropical, temperate, and
cool), but significantly snowpack-affected catchments are
few, and the model version used did not have a snow hy-
drology algorithm. Alternative approaches to including
these processes were considered, varying from relatively
simple conceptual approaches based on the temperature
index or degree day concept [e.g., Lindström et al., 1997;
Anderson, 1996] to complex schemes based on explicit
description of the energy balance of multiple snow layers
[e.g., Cherkauer and Lettenmaier, 1999]. Previous assess-
ments suggest that the increased complexity does not
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always lead to improved performance and makes greater
demands on input data and calibration [Ferguson, 1999].
Therefore, in agreement with the overall parsimonious
modeling philosophy, the simple but widely tested snow
model used in HBV96 [Bergström, 1995; Lindström et al.,
1997] was implemented.

2.3. Prior Evaluation of the Model

[12] AWRA-L is used operationally in the production of
water balance information by the Australian Bureau of Me-
teorology and has been extensively evaluated in that con-
text [Band, 2012; Frost et al., 2012; Stenson et al., 2012].
AWRA-L has been shown to reproduce observed stream-
flow with accuracy commensurate to or better than
achieved by other rainfall-runoff models using a similar
calibration approach [Zhang et al., 2011; Viney et al.,
2012; Van Dijk et al., 2012a]. Model simulations also com-
pared favorably with other methods when evaluated against
in situ observations of soil moisture (I. Dharssi, Bureau of
Meteorology; personal communication) and evapotranspi-
ration measured at flux towers [Van Dijk and Warren,
2010; King et al., 2012]. Model predictions for Australia
have been evaluated against remotely sensed time series of
total terrestrial water storage [Van Dijk et al., 2011; Tre-
goning et al., 2012; Forootan et al., 2012; Van Dijk et al.,
2013], surface soil wetness [Van Dijk and Warren, 2010;
Doubkova et al., 2012], vegetation greenness [Van Dijk
and Warren, 2010; Van Dijk et al., 2013], and vegetation
cover fraction, leaf area, and surface albedo [Van Dijk and
Warren, 2010]. The model has also been used in drought
analysis [Van Dijk et al., 2013] and in examining the statis-
tical detectability of land cover impacts on streamflow
[Van Dijk et al., 2012b].

[13] The global implementation described (W3RA) is
used in the experimental Asia-Pacific Water Monitor
(http://eos.csiro.au/apwm/) but has not yet been evaluated
globally with the same scrutiny as its Australian counterpart
[Pe~na-Arancibia et al., 2011]. Because of the addition of the
snow algorithm, the Australia-focused calibration, and the
different model inputs, we performed additional model eval-
uation experiments as part of this study (section 3.2).

2.4. Climate Indices

[14] Climate index time series were required for the
post-ESP analog sampling. Monthly time series of 21 cli-
mate indices were obtained from a range of internet sources
(Table 1). The key requirements were that they were read-
ily available as long time series and updated with low la-
tency, so that they could be used in an operational system.
No prior judgment about the suitability of each individual
index was imposed. Some indices represent the same phe-
nomenon and therefore are likely to be strongly correlated.
This was not considered a problem, as only the single best
performing index was selected for each grid cell � forecast
period combination. The likelihood of high correlations
occurring by chance was accounted for in the interpretation
(see section 3.2). Some of the time series had one or a few
years missing. In these cases, the monthly index values
were replaced with the average for that month in the years
with data available.

2.5. Streamflow Observations

[15] Streamflow observations for bimonthly or shorter
integration periods were required for the years 1979–2008.
Streamflow data were from the US Geological Survey,
Australian state agencies through the Water Information

Table 1. Climate Indices Used in Regression Analysis, Earliest Availabilitya and Source for Data Used in the Analysis

Code Description and Reference Since Source

Nino3.4 El Ni~no Southern Oscillation index 3.4 [Kaplan et al.,
1998]

1900 http://climexp.knmi.nl/data/inino5.dat

SOI Southern Oscillation Index, stand Tahiti-stand Darwin
[Troup, 1965]

1900a http://www.cpc.ncep.noaa.gov/data/indices/

IOD Indian Ocean Dipole mode index calculated from the
Indian Ocean sea surface temperature gradient [Saji
et al., 1999]

1871 http://www.jamstec.go.jp/frcgc/research/d1/iod/

PC-NAO Principle-Component-based NAO index [Hurrell and
Deser, 2009]

1865 http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html

S-NAO Station-Based NAO index [Hurrell and Deser, 2009] 1899 http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html
NAO, EA, WP,

EP/NP, PNA,
EA/WR, SCA,
TNH, POL, PT

Standardized Northern Hemisphere Teleconnection
indices, including North Atlantic Oscillation (NAO),
East Atlantic Pattern (EA), West Pacific Pattern
(WP), East Pacific/North Pacific Pattern (EP/NP),
Pacific/North American Pattern (PNA), East Atlantic/
West Russia Pattern (EA/WR), Scandinavia Pattern
(SCA), Tropical/Northern Hemisphere Pattern
(TNH), Polar/Eurasia Pattern (POL), Pacific Transi-
tion Pattern (PT)

1950 http://www.cpc.ncep.noaa.gov/data/teledoc/
teleintro.shtml

NP North Pacific index [Trenberth and Hurrell, 1994] 1899 http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html
PDO Pacific Decadal Oscillation index [Zhang et al., 1997] 1900 http://jisao.washington.edu/pdo/PDO.latest
SAM Southern Hemisphere Annular Mode index [Nan and Li,

2003]
1948a http://www.lasg.ac.cn/staff/ljp/data-NAM-SAM-NAO/

SAM-AAO.htm
STRI, STRL Mean Southern Hemisphere Subtropical Ridge Intensity

(STRI) and Location (STRL) [Drosdowsky, 2005]
1900 B. Timbal, Australian Bureau of Meteorology, personal

communication
FSS Full Sun Sunspot number 1900 http://solarscience.msfc.nasa.gov/greenwch/

sunspot_area.txt

aSome years are missing.
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Research and Development Alliance (WIRADA), the
French Ministry of Environment, and a range of additional
sources through the Global Runoff Data Centre (GRDC).
Ideally, the catchments should be ‘‘unimpeded,’’ that is,
without significant impoundments or extractive water use.
This was confirmed for data from France, Australia, and
the United States by others (the latter as a result of the
Model Parameter Estimation Experiment) and for northern
Eurasia and selected catchments in the humid tropics by us.
Some of the catchments may well have experienced some
form of land use change; we did not screen for this.

[16] The W3RA grid-based forecasts produced should be
considered applicable to catchments of sizes up to around
the size of a grid cell (�10,000 km2) but not for rivers drain-
ing much larger regions. This is partly because the model
has a lumped representation of river routing within but not
beyond grid cells, although streamflow integrated over a
bimonthly period might not be affected too much by the
streamflow timing implications of this. More importantly,
however, the model does not represent river hydrological
processes in large river systems such as regulation, reservoir
operation, diversion and extraction, and floodplain storage
and loss dynamics. Forecasts in large river systems are likely
to benefit from representation of these processes as well as
initialization with measured system storage and streamflow
(i.e., ‘‘water already in the system’’). In the AWRA system
these processes are represented in another component model
(AWRA-R) [Van Dijk et al., 2012a], but W3RA lacks this
capability at a global scale. For that reason, only streamflow
data for catchments smaller than 10,000 km2 were used
here. For each forecast period, data for each year and station
were considered valid if both months had estimates based on
daily records that were more than 70% complete. Skill met-
rics were calculated for stations with 10 or more valid years
in the period 1979–2008. This produced a total of 36,636
station records for the six annual forecast dates, originating
from 6192 stations of which 3330 were confirmed unim-
peded. The remaining 2862 stations could not be confirmed
to be unimpeded; however, they are mainly in humid
regions and other regions where a major impact of regula-
tion on local catchment streamflow is less likely (Figure 1;
see section 5).

3. Methods

3.1. Overall Approach

[17] Before the forecasting experiment, we assessed the
adequacy of the W3RA model structure and configuration
for the experiment by comparing its performance in
explaining observed streamflow records to that of peer
models (section 3.2). The steps in our forecast analysis are
illustrated in Figure 2, briefly summarized here, and subse-
quently described in greater detail in the following sections.
First, a regression analysis was carried out to determine
suitable climate predictor variables for use in the post-ESP
sampling scheme (described in section 3.3). Second, we
produced probabilistic forecasts for the period 1979–2008
(section 3.4; the core of the forecasting system is shown as
the shaded boxes in Figure 2). Third, we retrospectively
measured the theoretical forecast skill against the synthetic
streamflow estimates produced by the reference model run
with historic forcing, and the actual forecast skill against
observed streamflow records for the 6192 catchments (sec-
tion 3.5).

3.2. Evaluation of the Forecast Model
Against Peer Models

[18] Retrospective streamflow estimates from W3RA for
the period 1979–2008 were compared to records for 6192
small catchments (cf. section 2.5). We compared perform-
ance to that of four hydrological models (CLM, Mosaic,
NOAH, and VIC) implemented in the Global Land Data
Assimilation System (GLDAS) [Rodell et al., 2004], on the
basis that GLDAS simulations have been extensively eval-
uated and widely published (see http://ldas.gsfc.nasa.gov/
gldas/GLDASpublications.php) and therefore can be
deemed an acceptable benchmark. However, because
model performance is the combined result of model code,
parameter values, and forcing data, any conclusions are
only strictly valid for these specific model configurations.
The forcing data are different between GLDAS and
W3RA, and the model forcing, code version, and parameter
values of the GLDAS models may differ from those used in
other published studies. Technical details on the GLDAS
model configurations are provided on the NASA Land Data

Figure 1. (a) Distribution of the number of stations per 1� grid cell for which streamflow records were
suitable for analysis and (b) distribution of suitable catchments that were confirmed to be unimpeded
(red) and those unconfirmed (blue).
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Assimilation Systems web site (http://ldas.gsfc.nasa.gov/
gldas/index.php); the data used here are global 1� resolu-
tion monthly estimates of surface and subsurface runoff
rate (downloaded in June 2012 from http://disc.sci.gsfc.nasa.
gov/hydrology/data-holdings; data code ‘‘GLDAS_<model
name>_10M’’). The two streamflow components were
summed and converted to mm d�1.

[19] All streamflow stations with more than 10 years of
data between 1979 and 2008 were considered for use in
this analysis. Most of the streamflow records were reported
in m3 s�1, which were converted to mm d�1 using reported
catchment areas. For a number of stations, the average
streamflow exceeded average precipitation for the corre-
sponding period. Within limits this may be explained by
precipitation spatial variability and estimation error, but
where mean streamflow exceeded precipitation by more
than 2.5 times these were considered likely to have errors
in the reported streamflow units or catchment area and
were excluded from the analysis.

[20] The agreement between estimated and observed
streamflow was calculated for each of the models and com-
pared in terms of mean streamflow and relative bias across
stations, as well as the distribution of the parametric (Pear-
son’s r) and ranked (nonparametric) correlation coefficient
(Spearman’s �) between modeled and observed monthly
streamflow for all stations.

3.3. Climate Predictor Variable
Selection and Post-ESP Sampling Strategy

[21] The post-ESP sampling method used here reflects
methods used in the current generation of ESP systems
[e.g., Werner et al., 2004] but considers a larger set of cli-

mate indices. We used regression analysis to determine
which of the individual 21 available climate indices (if
any) should be used to condition the post-ESP sampling
scheme. The squared correlation coefficient (r2) was calcu-
lated between each of the 21 available climate indices
(Table 1) reported in the month prior to the forecast period,
and precipitation for the 2 month forecasting period. This
analysis was performed separately for each grid cell and
forecast period for 1950–2008, for which data were avail-
able for all indices (N¼ 59). It is noted that the period used
to develop the post-ESP scheme includes the forecasting
period. This was necessary to obtain a statistically mean-
ingful sample but can potentially lead to overestimation of
skill enhancements. Conversely, the nature and strength of
predictive relationships can vary over time, and therefore,
analyzing relationships over the entire 59 year period can
lead to underestimation of skill enhancements. These cav-
eats need to be considered in interpreting the results.

[22] The post-ESP sampling procedure consist of reducing
the full ensemble of forecasts based on historic analogues to
some smaller number that represents those years during
which the climate index value (i.e., prior to the date of fore-
cast) was closest to the current index value (i.e., prior to the
actual forecast time). In other words, a subset of historical
forcing years is selected for which the rainfall predictor had
a similar value. Because of the large number of grid cell �
period combinations on one hand, and the limited temporal
sample size for each of them (N¼ 59) on the other, statisti-
cally seemingly significant r2 values will be calculated by
chance (see section 4.1). Furthermore, even where a predic-
tor index is appropriately selected, sampling too few ensem-
ble members can lead to loss of forecast skill and reliability,

Figure 2. Diagram illustrating the forecasting experiment (shaded shapes) and the associated analyses
(clear shapes) carried out as part of this study.
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for example, because of outliers. The two choices interact,
since a high r2 value can justify sampling a smaller subset of
ensemble members. We performed preliminary trials to
assess the influence of different choices of correlation
threshold and sample size on forecast skill. On this basis, we
conservatively chose a correlation threshold of r2¼ 0.20 and
where this threshold was exceeded sampled 10 out of the 30
member forecast ensemble.

3.4. Forecasting System

[23] Forecasts of global bimonthly streamflow were gen-
erated for the period 1979–2008. The forecasting method
has four steps (Figure 2):

[24] (i) Initial spin-up. The hydrological model was ini-
tialized with default states, and the full 61 years of forcing
data (1948–2008) were used to spin up initial states. This
long spin-up was applied because some initial states (e.g.,
deep soil water and ground water in arid regions) required
some decades to reach dynamic equilibrium.

[25] (ii) Final spin-up. Using the states reached at the end
of 2008, the model was rerun from 1948 to the forecast date.

[26] (iii) Ensemble forecast. An ensemble of analog forc-
ing time series for the 2 month forecast period was derived
from the 30 years prior to the forecast year. Each ensemble
member was propagated through the hydrological model,
starting with the initial model states reached under step (2).

[27] (iv) Ensemble sampling. If, for the grid cell and fore-
cast period considered, climate indices for the preceding
month had useful predictive skill, post-ESP sampling was
applied.

[28] Forecasts were generated for six dates (the first of
January, March, May, July, September, and November)
and over a 30 year period (1979–2008), creating a total of
180 forecast ensembles for each grid cell. The following
example further illustrates the procedure: consider a fore-
cast on 1 March 1979 for a grid cell where Nino3.4 has use-
ful predictive value (i.e., correlation between February
Nino3.4 values and March-April precipitation exceeds
r2> 0.20). At step (2) the final spin-up was run with forcing
for the period 1 January 1948 to 28 February 1979. At step
(3) the model was run with the 1 March to 30 April forcing
for each of the 30 years prior to the forecast year (1949–
1978). At step (4) the 10 years were identified for the pe-
riod 1949–1978 for which February Nino34 values were
numerically closest to the Nino3.4 value for February
1979. The resulting 10 total streamflow forecasts for
March-April make up the forecast ensemble. For grid cells
where none of the climate indices showed r2 greater than
0.20, forcing data for all of the 30 preceding years (1949–
1978) were used. As a result, for some grid cells and fore-
cast periods the final forecast ensemble had 10 members;
for the remainder it had 30 members.

3.5. Skill Assessment

[29] We compared all forecasts against the corresponding
reference model streamflow estimates (Figure 2). The mod-
eled reference was generated by using the same initial state
as estimated for the forecast date, but running it subse-
quently with the historic climate estimates for the actual
forecast period. The primary skill metric used for each grid
cell and forecast period was the ranked correlation coeffi-
cient (Spearman’s �) between the ensemble median and ref-

erence estimate, as well as the parametric correlation
coefficient (Pearson’s r) between the median forecast and
the reference. Two probabilistic skill metrics were also cal-
culated: the Ranked Probability Skill Score (RPSS) [Wilks,
1995] and the revised Linear Error in Probability Space
score (LEPS) [Potts et al., 1996]. The RPSS was chosen for
its familiarity among the US seasonal streamflow forecast-
ing community and was applied following Franz et al.
[2003] (i.e., using 10%, 30%, 70%, and 90% nonexceedance
probability thresholds). The LEPS was calculated because
of its slightly different characteristics and use in the meteor-
ological community. For all metrics, the 30 year streamflow
climatology shows a skill score of zero and a perfect forecast
a score of one. It will be shown further on that the different
skill metrics are all highly correlated. For some grid cell �
period combinations, theoretical skill was very high, even
though the mean and variance in model streamflow were
extremely small. This occurred particularly in arid regions
and can be considered a modeling artifact that creates a mis-
leadingly high estimate of theoretical skill. To avoid this,
the calculated skill for grid cell � forecast period combina-
tions with an interannual standard deviation in period-aver-
age streamflow less than 0.01 mm d�1 was set to zero.

[30] To summarize forecast skill over the six forecast
periods, the simple mean and maximum were calculated
for each skill metric, as well as the weighted average value,
with weightings based on the variance in reference stream-
flow estimates. For example, the variance-weighted aver-
age ranked correlation (�̂) is given by

�̂ ¼
X6

i¼1

� var yð Þ½ �i=
X6

i¼1

var yð Þ½ �i; ð1Þ

where [var(y)]i represents the variance of streamflow in the
model-estimated reference streamflow for forecasting pe-
riod i (N¼ 30). This procedure was followed for �, LEPS,
and RPSS. However, rather than calculating the variance-
weighted r, the fraction of overall variance in bimonthly
streamflow anomalies (i.e., streamflow minus climatology)
explained by the median forecast was calculated, which is
numerically equal to replacing � in equation (1) with r2.
The contribution of climate indices to theoretical skill was
calculated as the difference in skill with and without post-
ESP sampling, respectively. The � score was chosen to
compare theoretical skill to the actual skill of the forecasts,
as it was considered likely to be least sensitive to the rela-
tively small number of (not necessarily contiguous) years
of record available for some stations (N varied from 10 to
30 years). The same calculations were carried out as for
theoretical skill, but this time using recorded streamflow.
As a measure of (retrospective) model performance, the
� and r values between the model-estimated reference
streamflow and recorded streamflow for each forecast
period were also calculated.

4. Results

4.1. Evaluation of the Forecast Model
Against Peer Models

[31] The cumulative distribution of the relative bias
between mean modeled and observed streamflow for the
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W3RA and the four GLDAS models is shown in Figure 3a
for the global streamflow data set. A linear regression of
the form y¼ ax (where y is the observed and x the model-
estimated mean catchment streamflow) produced values for
the slope a of 1.43 for W3RA (r2¼ 0.60), compared to 1.28
for CLM (r2¼ 0.51), 1.77 for Mosaic (r2¼ 0.37), 1.56 for
NOAH (r2¼ 0.56), and 1.77 for VIC (r2¼ 0.49; scatter
plots provided in the supporting information). W3RA esti-
mates were within 650% of the recorded values for 48%
of catchments. This fraction was higher for CLM (57%)
and lower for VIC (37%), NOAH (47%), and Mosaic
(30%).

[32] In terms of parametric r for monthly flows, the per-
formance of W3RA was near identical to that of CLM and
better than that of the other three models (Figure 3b). In
terms of ranked � for monthly flows, W3RA performed less
than CLM, similar to NOAH, and slightly better than VIC
and Mosaic (Figure 3c). In terms of �̂ (cf. equation (1))
W3RA performed better than any of the GLDAS models
(Figure 3d; median 54% versus 37%–49%).

[33] To better understand in what environments W3RA
performs significantly better or worse than the benchmark
set by the best of the four GLDAS models, �̂ values for
individual catchments were mapped to a global grid

(assigning the average �̂ value where a grid cell had more
than one catchment within it). Of all grid cells with at least
one catchment (N¼ 2722), W3RA showed the best �̂ per-
formance for 41% of cells, CLM for 26%, VIC for 18%,
NOAH for 11%, and Mosaic for 4% (Figure 4a). W3RA
performance is particularly good in cool and temperate
regions but appears worse than that of VIC in the drier cen-
tral regions of the United States and Canada.

4.2. Precipitation Predictor Variables

[34] The fractions of grid cell � period combinations
showing correlation (r2) greater than 0.20, 0.30, and 0.40
are shown in Figure 5a. The frequency by which these r2

threshold would be expected to be reached by random
chance can be estimated via the two-tailed significance test
as 2.7 � 10�4, 4 � 10�6, and <1 � 10�7, respectively.

[35] Several indices show greater frequencies of exceed-
ance than these expected values. The most powerful predic-
tor variables at this time scale were those describing the
ENSO (Nino3.4 and SOI) and the Indian Ocean Dipole
(IOD; Figures 6a and 6b). The spatial correlation patterns
associated with these two modes are shown in Figures 6a
and 6b. Less powerful predictors were some of the Pacific
Ocean indices (PDO, EP/NP, and WP), Southern

Figure 3. Cumulative distribution functions for (a) relative bias between modeled and observed
streamflow, (b) parametric correlation coefficient (Pearson’s r) for monthly streamflow, (c) ranked corre-
lation coefficient (Spearman’s �) for monthly streamflow, and (d) box plots showing the 5th, 25th, 50th,
75th, and 95th percentiles of variance-weighted average �̂ for bimonthly streamflow.
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Hemisphere Subtropical Ridge indices (STRlat and
STRint), and sunspot numbers. The number of forecasts for
which r2> 0.20 for each index is shown in Figure 5b, and
the spatial distribution of the number of forecasts for which
post-ESP sampling was applied is shown in Figure 6c.

[36] On average, this was the case for only 2.6% of fore-
casts. The highest overall correlations and the largest num-
ber of months with post-ESP sampling were for parts of
Indonesia and the Philippines and the north of South Amer-
ica and were associated with ENSO. Climate indices also
appeared to potentially add skill in eastern Australia, east
Africa, and Uruguay and surrounding regions, associated
with ENSO and IOD.

4.3. Theoretical Skill

[37] There was strong relative agreement between the
four skill metrics, with linear regression equations of
r¼ 0.98� (r2¼ 0.90), RPSS¼ 0.70�2 (r2¼ 0.92), and LEP-
S¼ 0.67�2 (r2¼ 0.83). The � scores for individual forecast
periods are shown in Figure 7; maps for the other metrics
are provided in the supporting information.

[38] Significance level maps would potentially be
misleading [cf. Mason, 2008], but the � corresponding to
different significance levels may be considered in interpre-
tation: �> 0.24 for p¼ 0.1, �> 0.30 for p¼ 0.05, and
�> 0.42 for p¼ 0.01 (one-tailed test, N¼ 30). Theoretical
skill is generally significant in cold, temperate, and humid
tropical zones and in seasonally wet regions during and
after the wet season. Skill was insignificant for arid regions
and in seasonally wet regions during the dry season. The

highest skills (�> 0.8) were found for the winter and snow-
melt period in cold regions, the transition from wet to dry
season in seasonally wet regions, and the Indonesian
region. The global distribution of summary metrics of over-
all theoretical skill over the six periods is also similar for
all metrics and shows the greatest mean theoretical skill for
boreal regions and the tropical monsoon regions (Figure 8).

[39] The contribution of post-ESP sampling to theoreti-
cal skill was generally small (Figure 9). All skill metrics
were enhanced in equatorial Asia (Indonesia, the Philip-
pines) and South America (parts of Colombia, northeast
Brazil, the Guyanas), the pampas region (Uruguay and cen-
tral Argentina), and a smaller region around Mumbai,
India. For some metrics and dates, there appear to be mean-
ingful contributions for eastern Australia, East Africa,
southwest United States, and Spain (Figure 9b). Contribu-
tions in other regions are much less, and in some cases the
reduction of the forecast ensemble led to an apparent dete-
rioration in theoretical skill. For the forecasts with post-
ESP sampling, median � increased from 0.68 to 0.71 (me-
dian increase þ0.02). Median r increased from 0.67 to 0.71
(median increase þ0.02). The median probabilistic skill
scores increased slightly more: from 0.23 to 0.26 (median
increase þ0.01) for RPSS and from 0.25 to 0.31 (median
increase þ0.04) for LEPS. Hence consideration of climate
appears to have a slightly more beneficial effect on proba-
bilistic forecast skill (þ11%–26%) than on deterministic
forecast skill (þ4%–6%).

4.4. Actual Forecast Skill

[40] The spatial distribution of actual skill and retrospec-
tive model performance given the estimated historic forc-
ing (both estimated from �) show some clear spatial
patterns (Figure 10). The following observations can be
made:

[41] (i) The highest actual forecast skill (�> 0.4) was
calculated for stations in the northwestern and southeastern
United States, the Upper Mississippi basin, western France,
northwest Russia and south-central Siberia, northern South
America, and southeast Australia (Figure 10a). These
regions show typical theoretical skill levels of �> 0.5 (Fig-
ure 10b) of which more than 70% was realized (Figure
10c). This coincides with relatively high retrospective
model performance (�> 0.7; Figure 10d).

[42] (ii) Low actual forecast skill (�< 0.4) despite high
theoretical skill (�> 0.8) occurred in the more humid parts of
Canada, Scandinavia, the Alps, and remaining parts of north-
ern Russia (Figures 10a and 10b), where the fraction of real-
ized skill was correspondingly low (<30%; Figure 10c).

[43] (iii) The spatial pattern in the fraction of realized
skill (Figure 10c) qualitatively agrees with the spatial pat-
tern in retrospective model performance, that is, the agree-
ment between the reference model estimates and actual
observed streamflow (Figure 10d).

[44] (iv) Dry regions (e.g., in central north America,
Siberia, the Middle East, inland Australia, and Southern
Africa) sometimes show actual skill that exceeds theoreti-
cal skill (Figure 10c), even though model performance is
poor (�< 0.4; Figure 10d). Because theoretical skill is very
low, the actual skill is still very low in these cases however,
with a few isolated, possibly coincidental exceptions (e.g.,
in Israel and Saudi Arabia; Figures 10a and 10b).

Figure 4. Maps showing (a) the best performing model (in
terms of �̂) for each grid cell with streamflow data (dark
blue, W3RA; aqua, CLM; bright green, Mosaic; orange,
VIC; red, NOAH) and (b) the difference in performance (�̂)
between W3RA and the best among the four GLDAS mod-
els for each grid cell.
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[45] (v) Regions with low realized skill levels (<30%)
occur in all humid and subhumid climate zones. This
includes regions with both relatively low theoretical skill
(�< 0.5; e.g., southern Brazil, southern Africa, and Ire-
land) and relatively high theoretical skill (Amazonia,
Southeast Asia, Canadian Rocky Mountains, eastern Can-
ada, Scandinavia, central Europe, and Britain; Figures 10b
and 10c). Generally, these patterns again agree with pat-
terns in retrospective model performance (Figure 10d).

[46] The overall relationship between theoretical and
actual skill, and between retrospective performance and real-
ized skill, is shown in Figures 11a and 11b, respectively.

[47] Actual skill increases with theoretical skill, but the
fraction of theoretical skill that is realized decreases with
increasing theoretical skill (Figure 11a). Average actual
skill slightly exceeds theoretical skill for very low skill val-
ues. It falls away rapidly for very high theoretical skill val-
ues; the associated stations are at polar latitudes (Canada
and Scandinavia) and in the humid tropics (Colombia,
Amazonia, and Borneo). The median theoretical and actual
forecast skill (�) across all stations and forecast periods
were 0.54 (intersextile range, ISR 0.23–0.80) and 0.30 (ISR
0.01–0.54), respectively. The median ratio between them
(the fraction of theoretical skill realized) was 0.58 (ISR
0.03–1.21). The median realized skill was higher when
only using the catchments confirmed to be unimpeded
(0.71, ISR 0.24–1.34) when compared to catchments not
confirmed to be unimpeded (0.40, ISR �0.17–0.93; Figure
11a). There are probably other reasons underlying this dif-
ference, however (see section 5). On average, there is a
strong and near-proportional relationship between retro-
spective model performance and realized skill (Figure
11b). Median model performance (�) was 0.52 (ISR 0.24–
0.74) but slightly greater for catchments confirmed to be
unimpeded (0.62, ISR 0.36–0.78) and lower for uncon-
firmed catchments (0.42, ISR 0.15–0.64).

5. Discussion

5.1. Forecast Model Performance
Compared to Peer Models

[48] Overall, W3RA appears to perform similarly
well or perhaps slightly better than the four GLDAS

models. It was not possible to determine whether the
observed performance differences were due to the dif-
ferent hydrological model (version) or forcing data [cf.
Zaitchik et al., 2010]. A comparative evaluation of
W3RA and the four GLDAS models against the global
streamflow records showed some regions where the
W3RA forecast system could be improved; in particu-
lar, the dry interior of the United States and Canada,
where VIC performed better. This may be because of
better quality forcing for the GLDAS models or
because the VIC model was originally developed and
calibrated for these types of environments; for example,
the degree day approach used in W3RA may not
describe the melting of thin snowpacks on open plains
well. Further research is needed to determine the main
cause and whether it is best addressed by adjusting
(calibrating) model parameters or by improving model
structure. Arguably, a diverse multimodel, multiforcing
ensemble system is a preferable approach to dealing
with deficiencies in individual forcing data and models
[cf. Zaitchik et al., 2010] but would obviously be more
challenging to implement and maintain.

5.2. Theoretical Skill

[49] Our results suggest considerable skill in seasonal
forecasts, in theory, for many parts of the world for at least
some time of the year. We found the greatest overall theo-
retical skill (Figures 7 and 9) under the following
circumstances:

[50] (1) Locations where snowpack accumulates during
part of the year [cf. Koster et al., 2010; Wood and Letten-
maier, 2006]. Such regions include the continental and bo-
real regions of North America and Eurasia but also the
Himalayan and Andean highlands. For some of these
regions, theoretical skill was high not only in the snowmelt
season but also during other seasons (Figure 7), presumably
due to the predictive value of soil wetness conditions.

[51] (2) Locations with a distinct wet and dry season. In
this case, estimates of water stored in the soil and ground-
water system provide initial conditions for predicting
streamflow during the transition months between the wet
and dry season. Such regions include the monsoon regions

Figure 5. (a) Frequency of exceedance of different r2 thresholds for the 21 climate mode indices tested
for each grid cell � forecast period combination; and (b) number of grid cell � forecast period combina-
tions for which each climate mode index was used in post-ESP sampling (see Table 1 for meaning of
acronyms).
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and seasonal subhumid regions of South America, Africa,
southern Asia, and northern Australia.

[52] (3) For catchments with precipitation patterns that
are strongly correlated to ENSO, the strength of this rela-
tionship appeared to provide a sufficiently strong basis for
seasonal forecasting. This was found, in particular, in the
equatorial zones of South America and Asia.

[53] (4) For catchments with high precipitation, includ-
ing the Amazonian and Indonesian regions. This may be
explained by the modeled delayed release of anomalously
high precipitation prior to the forecast date.

5.3. Contribution of Initial Climate State

[54] Post-ESP sampling was used for 2.6% of forecasts
only. Most of the climate indices tested appeared to
enhance theoretical skill for a few areas and periods,
although often only marginally so. The greatest skill
increases occurred in ENSO-affected regions in equatorial
South America and Southeast Asia. We cannot conclude
that the various other climate modes are not valuable for
seasonal forecasting, or that our postsampling procedure
provides an upper estimate of the current skill contribution
possible by considering climate modes. First, several indi-
ces showed minor contributions to overall skill but rela-
tively strong local correlation with precipitation (r2> 0.30)
for certain seasons (e.g., ENSO in the northern Caribbean
for January-February; IOD in southern China in Septem-
ber-October; PDO in northeast Australia and nearby Pacific
Islands from March-June; NAO in Spain in January-Febru-
ary; data not shown). Where these seasons did not show
high streamflow variance compared to other seasons, the
higher skill for that period (�) did not translate into higher
overall skill (�̂ ; cf. equation (1)).

[55] Second, our sampling method only considered one
climate index for each grid cell and forecast period,
whereas we found evidence that more than one index
showed theoretical skill in a small number of cases (e.g.,
Nino34 and IOD for western Indonesia, cf. Figures 6a and
6b). Considering this, the theoretical skill achieved for the
Indonesian region seems to bode well for the potential of
streamflow forecasting using methods that can consider
multiple indices in these areas [see, e.g., Hamlet and Let-
tenmaier, 1999].

[56] Third, we used a very simple post-ESP sampling pro-
cedure that made use of (average) climate indices observed
during the month prior to the forecast. Therefore, a strong
correlation between climate mode index and precipitation
will only enhance skill if there is persistence in the climate
mode, that is, if there is sufficiently strong autocorrelation
between the climate index anomaly in month i and the
anomalies in months iþ 1 and iþ 2, respectively. We calcu-
lated these correlations for each period and found that with 1
or 2 months lead time, persistence is only moderate to strong
(0.30< r2 <0.98) for Nino3.4, IOD, sunspot numbers, PDO
(all months for both lead times), SOI (9 months), and SAM
(10 and 6 months for 1 and 2 months lead time, respec-
tively). By comparison, the maximum autocorrelation
among NAO indices was r2¼ 0.15 (PC-NAO between Janu-
ary and February) and r2¼ 0.20 among any of the other
northern hemisphere indices (PNA for January-February).
The lack of persistence may explain why we were unable to
derive added skill from NAO indices, whereas Bierkens and
van Beek [2009] found small skill enhancements in some
parts of Europe (but deteriorations in other parts); those
authors used the NAO forecasts from Rodwell and Folland
[2002] which are not directly based on autocorrelation.

[57] Fourth, related to this, we did not use seasonal cli-
mate mode forecasts. In addition to NAO, these forecasts
are also available for ENSO [Van Oldenborgh et al., 2005].
At present, the skill of most statistical and dynamic meth-
ods appears commensurate and generally fairly low when it
comes to seasonal precipitation forecasts [Bierkens and van
Beek, 2009; Rodwell and Doblas-Reyes, 2006], but this
may change in future. Similarly, we did not examine

Figure 6. Total variance in bimonthly precipitation
anomalies explained by indices of (a) ENSO and (b) the In-
dian Ocean Dipole. (c) Number of months for which post-
ESP sampling was applied.
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alternative statistical approaches to seasonal climate fore-
casting. Methods developed to extract predictive value
from sea surface temperature or other predictor fields
include those based on canonical correlation analysis
[Barnston, 1994] and principal or independent component
analysis [Westra and Sharma, 2010; Westra et al., 2009] or
varimax rotation [Richman, 1986]. Any such forecasts
should be straightforward to trial in ESP sampling provided
they are routinely available with low latency.

[58] Finally, we did not use numerical weather prediction
(NWP) forecasts at all. Although NWP skill for precipita-
tion rapidly disappears after around 2 weeks [Yuan et al.,
2011], that still accounts for about one fifth of the 2 month
forecast period and therefore may still increase the skill of
cumulative streamflow forecasts. Further analysis is needed
to assess to what extent the contribution of climate

forecasts from NWP and climate mode forecasts can
enhance skill. However, the results of our analysis suggest
that for the majority of regions and periods, most of the
skill comes from knowing the initial state, at least at two
monthly time scales. This confirms results found for the
United States [Shukla and Lettenmaier, 2011] and Europe
[Bierkens and van Beek, 2009].

5.4. Actual Forecast Skill

[59] Actual forecast skill was measured against stream-
flow records from 6192 catchments worldwide. We found
that the realized skill was on average 54% of the theoretical
skill. We are aware of one other study where the degrada-
tion from theoretical to actual forecast skill was estimated,
although a direct comparison is not possible due to the dif-
ferent catchment size ranges, different lead times, and

Figure 7. Theoretical prediction skill for the (a–f) six forecast periods, calculated as the ranked corre-
lation (�) between forecast ensemble median and model-estimated reference streamflow.
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different environments involved. Bierkens and van Beek
[2009] analyzed the theoretical and actual skill of 6 month
winter and summer streamflow forecasts for 66 large Euro-
pean catchments (18,500–1,360,000 km2). They found an
average actual skill � of 0.31–0.34 for winter and 0.09–
0.17 for summer, representing around 50%–70% of theoret-
ical skill. Koster et al. [2010] performed a somewhat simi-
lar experiment but for 5 month forecasts of spring
streamflow for 17 catchments (1863–1,357,667 km2) in the
American west. The forecast showed actual skill in terms
of r2 of up to 0.5 (median 0.21). Koster et al. did not report
theoretical skill values, but for the modeled reference they
report that r2 against observed flows was 0.3–0.9 (median
0.73), which suggests a realized skill of around 30%.

[60] We found a strong, near-proportional relationship
between retrospective model performance and realized
skill. There are several a priori reasons why one would not
expect to realize theoretical skill. The forcing data have
limitations and errors. There are scaling errors between the
1� resolution and the smaller catchments used in verifica-
tion. The model structure is an imperfect representation of
catchment response. The model parameters may not be
optimally specified. The streamflow records have errors
themselves. Each of these factors can be expected to affect
both retrospective model performance and realized skill in
similar ways.

[61] Average model performance and realized skill were
greater for catchments that were confirmed to be unim-
peded than for catchments for which this was not (yet)

confirmed. This may have depressed overall realized skill
somewhat, particular for heavily developed catchments,
e.g., in Europe (outside France) and Japan. However, the
catchments are generally small (<10,000 km2), and there-
fore, the influence of large-scale water extraction,
impoundments, and regulation is likely to be less than that
downstream in large river systems. Other causes for the dif-
ferent statistics for the two data sources are feasible. In par-
ticular, we cannot exclude the possibility that the
‘‘unconfirmed’’ catchments outside Europe were mainly
located in regions where the model forcing data were of
lesser quality (cf. Figure 1b).

[62] The resolution and quality of the 1� forcing data and
precipitation in particular are likely factors for all stations.
Despite advances in precipitation reanalysis and satellite
remote sensing, the quality and resolution of global precipi-
tation data sets are still fundamentally limited by the den-
sity, quality, and availability of precipitation gauge
measurements. The catchments considered here are small
in comparison to the resolution of the forcing (median 899
km2, ISR 152–4049 km2). This was necessary, primarily
because we wanted to compare skill against catchments in
which streamflow is unaffected by downstream processes,
but it may also have introduced scaling errors. In a previous
analysis [Van Dijk and Warren, 2010], we found that the
correlation between estimated and recorded streamflow
increases as the data are aggregated over more than one
catchment: from a median r2¼ 0.5 for individual catch-
ments, to ca. r2¼ 0.7 for data aggregated over up to 100

Figure 8. Summary metrics of theoretical skill over the six forecast periods: (a) streamflow variance-
weighted ranked correlation (�), (b) the total variance in bimonthly streamflow explained, and stream-
flow variance-weighted (c) RPS and (d) LEPS skill.
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catchments. This was attributed not only to scale but also
the averaging out of streamflow data errors. Moreover, �
only improved very slightly and therefore seems more ro-
bust to scaling. We did not find a statistical relationship
between actual skill (�) and catchment size for the catch-
ments used in this study.

[63] The model version used here was also implemented
in the AWRA system [Viney et al., 2012] but using climate
forcing at a much higher spatial resolution (0.05�) and
based on a larger number of gauges available for Australia
[Jones et al., 2009]. This provides an opportunity to esti-
mate the influence of the global forcing data used. Meas-
ured in the exactly same way (i.e., using � for same

bimonthly periods and unimpeded catchments, N¼ 3515),
the continental model showed a median performance of
0.82 (ISR 0.57–0.93) and the global model used here a me-
dian performance of 0.63 (ISR 0.44–0.78). Therefore, the
resolution and perhaps quality of the global forcing data
appeared to contribute to at least half of the difference
between actual and perfect model performance, and hence
the unrealized forecast skill. The accuracy of the AWRA
estimates has been shown equivalent to other commonly
used catchment streamflow models with parameters esti-
mated a priori (in those cases from nearby catchments), but
about half of the remaining disagreement in monthly
streamflow can be removed through local calibration
against the actual streamflow record itself, at least in terms
of r2 [Viney et al., 2012; Zhang et al., 2011]. Therefore, the
lack of model calibration may be responsible for another
quarter or so of the unrealized forecast skill. The remaining
unrealized skill would be due to a combination of errors in
the high-resolution forcing data (the density of the Austra-
lian gauging network is highly variable), the model struc-
ture, and undetected but inevitable errors in the streamflow
records used.

[64] We speculate that the generally poor model per-
formance and realized skill in humid tropical regions are
also primarily due to the lack of precipitation gauges and
therefore poor quality of precipitation estimates in these
regions. Higher-quality and -resolution gridded precipita-
tion data are available for some, typically more densely
populated countries and therefore would seem likely to
allow enhanced forecast skill. To some extent, precipitation
estimates in poorly gauged regions can be improved using
remote sensing and NWP outputs [Ebert et al., 2007]. The
other meteorological variables are likely to be of second-
order importance and can arguably be derived with suffi-
cient accuracy from the available products, at least for most
locations.

[65] The main sensitivity of forecasts to climate data is
probably due to their influence on estimated initial hydrolog-
ical conditions, rather than due to the forcing data ensemble
for the forecast period. Better estimates of initial states can
also be achieved by assimilating more direct observations of
these. This includes ground-based observations (e.g., of
streamflow, snow depth, and groundwater level), but the
accessibility and latency of these data sources are likely to
be prohibitive at global scale, at least in an operational sense.
Remote sensing offers an alternative source of observations.
Total water storage estimates derived from missions like the
Gravity Recovery and Climate Experiment [Tapley et al.,
2004] provide a unique opportunity to observe initial catch-
ment state over large areas in a way that can be combined
with models [Van Dijk et al., 2011a]. Optical and passive
and active microwave remote sensing can also help to
improve model estimates of initial snow cover and shallow
soil moisture state [Andreadis and Lettenmaier, 2006; de
Jeu et al., 2008; Liu et al., 2012].

5.5. Prospects for a Global Seasonal Streamflow
Forecasting System

[66] We demonstrated that it is currently feasible to con-
struct a global system to forecast seasonal streamflow. The
resulting forecasts are likely to have lesser skill than fore-
casting systems that use purpose-calibrated models and

Figure 9. Contribution of climate indices to theoretical
skill, calculated as the difference between (a) the variance-
weighted the mean and (b) ranked correlation coefficient
and (c) LEPS skill for the case with (cf. Figure 8a) and
without ensemble sampling based on climate index,
respectively.
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Figure 10. (a) Actual forecast skill against observed streamflow, (b) theoretical forecast skill, (c) real-
ized fraction of theoretical skill (i.e., the ratio of actual over theoretical skill), and (d) retrospective
model performance against observed streamflow, given the estimated historic forcing. The metric used
in all cases is streamflow variance-weighted � (for grid cells with several stations the median � for all
stations is shown, cf. Figure 1).

Figure 11. (a) Relationship between theoretical and actual forecast skill based on ranked correlation,
showing slight differences in realized skill between stations in catchments confirmed (pluses) and uncon-
firmed (crosses) to be unimpeded (each symbol shows the median of 567–1221 station-forecast combina-
tions, ordered by theoretical forecast skill ; closed dots and dashed line show median and intersextile
range for all confirmed and unconfirmed stations combined). (b) Relationship between retrospective per-
formance and realized skill, expressed as the ratio of actual over theoretical forecast skill ; in both cases
based on flow variance-weighted average ranked correlation (each symbol shows the median of 1169 sta-
tion-forecast period combinations ordered by model performance; lines indicate the intersextile ranges).
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better observations of precipitation and initial catchment
conditions. However, where such systems are not available,
a large-scale system such as that presented here may still
provide useful streamflow forecasts for certain regions and
times of year.

[67] This study is only an initial assessment using one
possible system and configuration. For operational imple-
mentation of systems such as that presented here, the la-
tency of all data sources would be a critical issue.
Moreover, many alternative approaches and configurations
are possible. This can include alternative models and forc-
ing data or ensembles of these; assimilation of observed
initial conditions; and the use of weather forecasts and sea-
sonal climate predictions. Further improvements in actual
seasonal forecast skill may therefore be reasonably
expected. The streamflow observations and forecasts pro-
duced in this study may serve as a benchmark for future
(re)forecast experiments and are available for the Global
Energy and Water Cycle Experiment Hydrological Appli-
cations Project (GEWEX HAP) Seasonal Forecasting
working group activities.

6. Conclusions

[68] We estimated the theoretically achievable skill in
bimonthly average streamflow forecasting using an ESP
system with post-ESP sampling based on years with similar
climate state. Theoretical skill was compared to actual fore-
cast skill calculated for each of the forecast times at 6192
streamflow stations. The following conclusions are drawn:

[69] Significant theoretical skill in bimonthly forecasts is
largely due to initial conditions where and when streamflow
variations are dominated by snow melt and delayed release
of prior precipitation (e.g., in monsoonal regions).

[70] Modest skill is added by considering ENSO condi-
tions for equatorial regions in South America and Southeast
Asia, with somewhat more benefit for probabilistic
(þ11%–24%) than for deterministic median forecasts
(þ4%–6%).

[71] The actual skill was approximately 54% of the theo-
retical skill. We could attribute more than half of the unre-
alized skill to the quality and resolution of the global
precipitation data, another quarter to the lack of model cali-
bration, and the remainder to a combination of errors in
streamflow measurement and model structure.

[72] A global forecasting system would appear feasible.
Skill for any region and period can be estimated as the
product of theoretical skill and retrospective model
performance.

[73] Further increases in seasonal forecast skill are likely
to occur primarily from improvements in observing and
assimilating initial conditions (snow, soil, and groundwater
storage), but currently available weather forecasts and sea-
sonal climate predictions may also enhance skill in some
cases.
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