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Abstract. The gradient echo memory (GEM) technique is a promising
candidate for real devices due to its demonstrated performance, but to date
high performance experiments can only be described numerically. In this
paper we derive a model for GEM as a cascade of infinite interconnected
harmonic oscillators. We take a quantum input–output approach to analyse this
system, describing the read and write processes of GEM each as a linear-
time-invariant process. We provide an analytical solution to the problem in
terms of transfer functions which describe the memory behaviour for arbitrary
inputs and operating regimes. This allows us to go beyond previous works and
analyse the storage quality in the regimes of high optical depth and memory-
bandwidth comparable to input bandwidth, exactly the regime of high-efficiency
experiments.
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1. Introduction

The creation of complex optical networks for quantum information is highly desirable for
applications in secure communication and computing. In order to design these networks, not
only high performance components will be required but highly accurate models of them. One of
the most critical such components of is quantum memory. A theoretical model of the memories
within a network will be necessary both to optimize individual devices and to compensate for
remaining imperfections when many are chained together.

A quantum memory for light is a device that takes quantum information encoded onto
an input pulse of light and maps it temporarily to a stationary, highly isolated medium. The
information can be recalled as another pulse of light on-demand at a later time. The study
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of quantum memory is a highly active field (see e.g. [1] and references therein). Practical
implementation is complicated however by the competing requirements of weak decohering
interactions with the environment but strong coupling to the desired light mode. Significant
progress has been made by using large ensembles of identical atoms or ions each with a weak
optical transition to get around this problem. While the interaction of a single absorber to both
light and the environment is weak, the strength of coherent interaction with light scales with the
number of absorbers squared [2].

A number memory of techniques using this ensemble approach have been investigated.
Electromagnetically induced transparency has been the basis of many early investigations
and demonstrations [3], while photon-echo type techniques such as controlled-reversible
inhomogeneous broadening [4] and gradient echo memory (GEM) [5, 6], atomic frequency
comb [7] and others [8–10] have received more recent attention. Techniques for producing
quantum states within ensembles have also been explored [11, 12]. Stand-out demonstrations
include storage of quantum states [13–17] and seconds long coherent storage [18] using
electromagnetically induced transparency, highly efficient and non-conditional quantum storage
with GEM [19–21], the delay of high-bandwidth entangled states with atomic frequency
comb [22, 23], and the creation and storage of telecommunications wavelength photons in an
optical lattice [24].

The technique known as GEM, or alternatively as a ‘longitudinal’ variant of controlled-
reversible inhomogeneous broadening, is particularly promising for use in large scale networks.
It has so far been the only technique demonstrated to perform as a quantum memory without
requiring post-selection. It is also well suited to long-term storage on spin states [25, 26] and
includes the ability to perform basic processing in-memory [27].

In addition to experimental studies, GEM has received significant theoretical attention.
These efforts involved solving the Maxwell–Bloch equations in the linear, and slowly varying
envelope approximations. Analytical and numerical studies performed in this area include the
discussion of the basic principles of quantum memories [10, 28], multi-mode capacity [29, 30]
and spectro-temporal mode distortions when the memory is optically thick [28, 29, 31]. Further
generalizations to strong input fields and Raman transitons have also been considered [10, 26].

However, as yet, no exact solution has been shown for the behaviour of the basic memory,
except in the limit where the memory bandwidth is much larger than that of the incoming pulse.
This a significant impediment to the analysis of quantum memories, since, ideally, one should
aim to maximize the memory performance by storing as much as possible within the memory
bandwidth, i.e. two working in the regime where memory and input bandwidths are comparable.

In this paper we present a fully quantum mechanical description of the GEM based
on a quantum input–output model [32]. The input and output channels provide a means for
transmitting quantum states between network components [32–35], making our model suitable
to be integrated into the design of more complex quantum networks. We provide an analytical
solution for this model which is valid in all bandwidth and storage time regimes. This enables
the investigation of the temporal distortions on the retrieved pulse which has been found to limit
the memory fidelity in numerical studies [29, 31].

The paper is organized as follows. In section 2, we describe the model and its connections
with previous GEM descriptions. We also derive the dynamical equations and discuss their
formal solution. In section 3, we describe the write and read stages of the memory operation,
present the full analytical solution in the time domain, and investigate the memory performance.
Section 4 discusses the memory operation in different regimes and approximations. A frequency
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Figure 1. A cascade of cavities is used to represent the quantum memory.
Light enters at left, passes through each cavity in term and then exits at right.
A representation of the continuum GEM input–output model is shown at the
bottom of the figure.

domain analysis is presented in section 5, providing a complementary perspective and further
insight into the memory operation. We finally conclude with discussions and perspectives in
section 6.

2. A network of oscillators as a model for a gradient echo quantum memory

Physically we may think of a GEM as a section of a material through which light is passed as
shown in figure 1 (bottom). Incoming light, containing the quantum state to be stored, enters at
the left and interacts with an ensemble of two-level atoms distributed within the material [6].
As a result of this interaction, the state of the light is stored in the medium. During this writing
process a field gradient is applied to the material, producing a spatially selective storage of the
different frequency components of the input signal. To read out the data, the gradient is reversed
and the light emerges at the right.

In our model, the material is divided into slices (much smaller than the total memory
length), each containing a large number of two-level atoms. We further consider the weak
atomic excitation limit, a common regime in most experiments with GEM. This assumption
allows us to replace the atomic operator algebra by that of harmonic oscillator operators [36],
and hence to model each slice of material as a cavity. The full memory is modelled as a cascade
network of cavities (oscillators) as the one shown in figure 1. In this section we will present an
input–output model as a continuum limit of the cascade network and derive the corresponding
dynamical equations in section 2.2. These are shown to be the quantum operator equations that
lead to the Maxwell–Bloch equations in [28] and therefore our full quantum model represents
faithfully the dynamics of GEM in the weak atomic excitation regime.

2.1. Derivation of the model

We consider a series of cavities connected as a cascade network as shown in figure 1. The
cavities, described by the annihilation operators ak , are coupled to the bosonic field b in such
a way that the output of the cavity k is the input of cavity k + 1. There are N cavities each one
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with a slightly larger resonant frequency than the last due to the linear gradient applied. The
kth cavity has resonant frequency ξk = η(2k/N − 1). Thus the lowest frequency of the cavities
is −η and the highest is η. The input field bin(t) enters the system from the left, and, after
interacting with the cavities, eventually emerges on the right side of the network as the output
field bout(t).

To establish the relation between the input and output fields we will use the approach
developed in [35] that describes the interconnection between Markovian open quantum systems
forming a network. Each individual element of the network is described by the triple G =

(S, L , H), where S is a unitary corresponding to photon scattering (as in a phase shifter or
beam splitter, for example), L describes the coupling between the system and the bosonic
field, while H is the Hamiltonian of the system. In our model we have a set of elements
connected in series, which corresponds to a cascade quantum system as studied in quantum
optics [32, 33, 37]. In this case, each cavity is represented by the parameters

Gk = (I,
√

β ak, ξka†
k ak). (1)

Here, β is a dimensionless coupling constant between the cavities, while a†
k and ak are,

respectively, the creation and annihilation operators for the kth cavity which obey the
commutation relations [a j , a†

k ] = δ jk . The sign of the energy term ξka†
k ak depends on the sign

of the gradient and will be positive for the write stage, and negative for the read stage. We can
weave these cavities together using the series product [35]. Explicitly connecting two elements
G1 and G2 (with S1 = S2 = I ) results in a Markovian model with parameters

G1 F G2 =

(
I, L2 + L1, H1 + H2 +

1

2i

(
L†

2L1 − L†
1L2

))
. (2)

For a cascade of N elements, as shown in figure 1, we need to apply this rule N − 1 times to
obtain

G = G1 F G2 F · · · G i · · · F G N

=

I,
∑

k

Lk,
∑

k

Hk +
1

2i

N∑
j=2

j−1∑
k

(
L†

j Lk − L†
k L j

) .

=

I, i
∑

k

√
βak, ±

∑
k

ξka†
k ak +

β

2i

N∑
j=2

j−1∑
k

(
a†

j ak − a†
k a j

) . (3)

We now take the continuous limit corresponding to N → ∞ such that ξi → ξ ∈ (−η, η).
In this limit the system is described by

G =

(
I,
∫ η

−η

dξ i
√

βa(ξ), ±

∫ η

−η

dξ ξa†(ξ)a(ξ)

+
1

2i

∫ η

−η

dξ

∫ η

−η

dξ ′ β
(
a†(ξ)a(ξ ′) − a†(ξ ′)a(ξ)

))
, (4)

where a(ξ) is the continuous version of the annihilation operator satisfying the commutation
relation [a(ξ), a†(ξ ′)] = δ(ξ − ξ ′), and we assumed an equal coupling constant β for all
the cavities. The parameter η describes the endpoints of the detuning interval ξ ∈ [−η, η]
corresponding to the GEM model in figure 1. Since there is a one-to-one correspondence
between the position z and the detuning ξ , throughout the paper we will refer to ξ as detuning
or spatial variable.
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2.2. Dynamics: quantum Langevin equations

The quantum Langevin equation for an arbitrary operator X in an input–output model is given
by [32]

∂t X = −i[X, H ] +D∗[L]X + b†
in(t)[X, L] − [X, L†]bin(t), (5)

where D∗[L]X =
1
2(L†[X, L] − [X, L†]L) and bin(t) is the input light field. The output field is

given by
bout(t) = L(t) dt + bin(t). (6)

Using the parameters equation (4) for the GEM model in equation (5) one can
straightforwardly write the equation for X = a(ξ) as

∂ta(ξ, t) = ∓iξa(ξ, t) − β

∫ ξ

−η

dξ ′ a(ξ ′, t) + i
√

β bin(t). (7)

The corresponding output equation is

bout(t) = i
√

β

∫ η

−η

dξ ′ a(ξ ′, t) + bin(t). (8)

Now, if we define the operator

b(ξ, t) = i
√

β

∫ ξ

−η

dξ ′a(ξ ′, t) + bin(t), (9)

we can write the dynamical equations for the GEM model in the form

∂ta(ξ, t) = ∓ iξa(ξ, t) + i
√

βb(ξ, t), (10)

∂ξb(ξ, t) = i
√

βa(ξ, t). (11)

The input and output operators now act as boundary conditions for the equation (11), specifically
bin(t) = b(−η, t) and bout(t) = b(η, t).

The dynamical equations (10) and (11) are fully quantum mechanical equations relating
the input and output field operators to the internal mode operators. These equations have similar
form to the Maxwell–Bloch equations for GEM, equations (3) and (4) in [28]. Note that with
minor changes we can also model other memory schemes such as the one based on rephasing
amplified spontaneous emission, for example.

2.3. Formal solution of the gradient echo memory equations

In order to understand the functioning of a quantum memory, we need to analyse the output of
the memory in response to an arbitrary input signal. This is a familiar scenario in many areas of
engineering such as control theory and signal processing, where the common approach is to use
the concept of linear time-invariant (LTI) systems [38]. Even though the memory as a whole
does not fit in this category (because of the change of gradient), the individual write and read
stages of the memory do. If we think of a(ξ, t) as a vector of infinite dimension, a(t), then the
memory equations (7) and (8) can be expressed into the LTI form

ȧ(t) = Aa(t) + Bbin(t), (12)

bout(t) = Ca(t) + Dbin(t). (13)
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The linear operators (infinite ‘matrices’) A, B, C and D act on a vector v as [Mv](ξ) =∫ η

−η
dξ ′M(ξ, ξ ′)v(ξ ′), and are given in component form by Aξ,ξ ′ = ∓iξδ(ξ − ξ ′) + β2(ξ − ξ ′),

Bξ,1 = i
√

β, C1,ξ = i
√

β, and D1,1 = 1, with 2(·) being the Heaviside step function. The
operators A, B and C satisfy the identities

A + A† + C†C = 0, (14)

B = −C†. (15)

The general solution for the quantum mechanical operators a(t) and bout(t) can be obtained
by formally integrating the LTI equations (12) and (13) (with D = 1):

a(t) = eAta(0) +
∫ t

0
eA(t−r)Bbin(r)dr, (16)

bout(t) = C eAta(0) +
∫ t

0
C eA(t−r)Bbin(r)dr + bin(t). (17)

Explicit expressions for these fundamental transfer relations will be given in sections 3.2 and 3.3
in the time domain, and in sections 5.1 and 5.2 for the frequency domain.

2.4. Energy balance

The quantum mechanical GEM equations (12) and (13) (or (16) and (17) in integrated form)
contain important physical information regarding energy flows and energy storage in the
quantum memory. The energy (quanta) balance equations presented in this section will be used
in subsequent sections to help us understand the operation of the quantum memory.

The GEM number operator

n(t) =

∫ η

−η

a†(ξ, t)a(ξ, t) dξ = a†(t)a(t) (18)

describes the number of quanta stored within the memory at time t , and is related to the input
and output field number operators

3in(t) =

∫ t

0
b†

in(r)bin(r) dr and 3out(t) =

∫ t

0
b†

out(r)bout(r) dr, (19)

respectively, by the energy balance identity

3out(t) + n(t) = 3in(t) + n(0). (20)

The operators 3in(t) and 3out(t) count, respectively, the number of incoming and outgoing
quanta up to time t . The operator (Heisenberg picture) equation (20), which can be derived
using stochastic calculus [32], says that at any time t > 0 the sum of the total incoming quanta
and the initial quanta must be equal to the amount of quanta that has flowed out plus the quanta
that have been stored.
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2.5. Quantum states

Since the purpose of a quantum memory is to store and retrieve quantum information, in this
section we discuss precisely what this means and explain how the Heisenberg picture GEM
equations (12) and (13) (or (16) and (17)) may be used to understand the quantum memory
operation.

The dynamical evolution of the GEM system and field is governed by a unitary U (t)
[32, 39], so that, for example, a(ξ, t) = U †(t)a(ξ, 0)U (t). The state of the system and field
is given by the Schrödinger picture evolution

|9(t)〉 = U (t)|9GEM〉 ⊗ |9field〉, (21)

where |9GEM〉 is the initial GEM state and |9field〉 is the field state. This shows that the GEM
system and field are in a joint state |9(t)〉 at time t , and the reduced states for either the GEM
system or the field may be obtained by the appropriate partial traces.

It is often easier to consider moments rather than states. For instance, if the GEM system
is initially in the vacuum state |9GEM〉 = |0〉 and if the input field is in a coherent state
|9field〉 = |βin〉 (where βin(·) is a complex function of time), then moments may easily be
evaluated. The means α(t) = 〈a(t)〉, βin(t) = 〈bin(t)〉 and βout(t) = 〈bout(t)〉 are related by the
envelope equations

α(t) =

∫ t

0
eA(t−r)Bβin(r) dr, (22)

βout(t) =

∫ t

0
C eA(t−r)Bβin(r)dr +βin(t), (23)

while the mean GEM photon number n̄(t) = 〈n(t)〉 is related to the mean field intensities
3̄in(t) = 〈3in(t)〉 and 3̄out(t) = 〈3out(t)〉 by

3̄out(t) + n̄(t) = 3̄in(t) (24)

using (20). The terms in equation (24) may be expressed in terms of α(t), βin(t) and βout(t) as
follows: ∫ t

0
|βout(r)|2 dr + |α(t)|2 =

∫ t

0
|βin(r)|2 dr. (25)

In particular, note that the mean internal stored energy at time t is given by

n̄(t) = |α(t)|2 =

∫ η

−η

|α(ξ, t)|2 dξ. (26)

As another example, suppose instead that the field is initially in a single photon
state |9field〉 =

∫
∞

0 βin(r)b†
in(r) dr |0field〉, where βin(·) is a wavepacket pulse shape satisfying∫

∞

0 |βin(r)|2 dr = 1. Then the energy balance equation (25) continues to hold, with α(t) and
βout(t) again given by equations (22) and (23), respectively. In this single photon driving case,
however, the envelopes α(t) and βout(t) are no longer the mean values—the means are instead
zero.

We see therefore that the infinite matrix quantities eAt B, C eAt B, (and also C eAt for
including initial condition terms) determine the moments of the GEM model (system and field
operators). In the forthcoming sections we will focus on obtaining and analysing these functions
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for the write and read stages of the memory. In order to do so, we find it convenient to define
β(ξ, t) = i

√
β
∫ ξ

−η
dξ ′α(ξ ′, t) +βin(t) (as in equation (9)), and write the envelope equations in

the form

∂tα(ξ, t) = ∓ iξα(ξ, t) + i
√

ββ(ξ, t), (27)

∂ξβ(ξ, t) = i
√

βα(ξ, t). (28)

3. Quantum memory operation: exact analysis in the time domain

3.1. Stages of operation

The operation of a quantum memory is usually described in two stages: a write stage where
information contained in the input light is mapped to the internal degrees of the memory,
and a read stage where the information is retrieved to produce the output signal. Figure 2
shows a schematic of these two stages. In the write phase the gradient is on until t = T and
an input pulse βin

write with width εt is stored as atomic excitation in the memory (αout
write). In

this stage, the memory has no excitations to start with (α(ξ, 0) = 0, vacuum internal state in
figure 2(b), andβout

write represents the light that passes straight through the memory, corresponding
to inefficiencies in the process. At the end of this phase at time t = T , the gradient is flipped
and the memory outputs until t = 2T a time reversed version of the input pulse. In the read
stage, the excitation is initially stored in the memory as αin

read = αout
write and is output as a light

field βout
read. There is no incoming light field during this phase (vacuum input in figure 2(c)) and

any excitation remaining in the memory (αout
read) corresponds to inefficiencies in the read stage.

3.2. Write stage transfer equations

For the write stage, we set the gradient to a negative value, so that the ‘matrix’ A in the GEM
model, section 2.3, is given by

Aξ,ξ ′ = −iξδ(ξ − ξ ′) + β2(ξ − ξ ′). (29)

During the write stage, there is no initial excitation stored in the memory and in response to the
driving input, we employ the envelope equations corresponding to (22) and (23) in the form

αout
write(ξ) =

∫ T

0
hwrite(ξ, T − r)βin(r) dr, (30)

βout
write(t) =

∫ t

0
gwrite(t − r)βin(r) dr, (31)

where we have used the initial condition α(ξ, 0) = 0, the definition αout
write(ξ) = α(ξ, T ), and

included the dependence on the detuning variable ξ explicitly. The solutions for the impulse
responses hwrite and gwrite, derived in detail in appendix A.1, are given by

hwrite(ξ, t) = [eAt B]ξ,1 = i
√

β e−iξ t L (−iβ, it (ξ + η)) , (32a)

gwrite(t) = C eAt B + δ(t) = −2βη e−iηt
1 F1 (1 + iβ, 2, 2iηt) + δ(t), (32b)
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Figure 2. Write and read stages. (a) Typical time domain envelope waveforms,
showing the input signal and the final output signal, which appears reversed in
time and subject to distortion. (b), (c) Illustration of the gradients applied in each
stage, as well as a representation of the initialization and inputs for each stage.

where L(n, x) is a Laguerre function and 1 F1(a, b, x) is a Kummer confluent hypergeometric
function as defined in appendix B. Equations (32a) and (32b) are the main analytical expressions
for the write phase in the time domain and contains all the necessary ingredients to obtain the
storage behaviour of the memory in any operating regime and for any input field.

3.3. Read stage transfer equations

For the read stage, we change the gradient from the positive value used in the write stage to a
negative value. The ‘matrix’ A in the GEM model, section 2.3, is given by

Aξ,ξ ′ = +iξδ(ξ − ξ ′) + β2(ξ − ξ ′). (33)

In the scenario depicted in figure 2, we assume that the read stage occurs on an interval
T < t < 2T after the write stage. The initial condition for the read stage is then given by the
value of the atomic excitation at the end of the write process (t = T ). In this case, the envelope
equations (22) and (23) can be solved as

α(t) = eA(t−T )αin
read, (34)

β(t) = C eA(t−T )αin
read, (35)

where αin
read = αout

write and βin
read = 0. Write βout

read(t) = β(t) for T < t < 2T and, on setting t = 2T ,
write αout

read(ξ) = α(ξ, 2T ). These output quantities may be expressed as follows:

αout
read(ξ) =

∫ ξ

−η

hread(ξ − ξ ′)αin
read(ξ

′) dξ ′, (36)
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βout
read(t) =

∫ η

−η

gread(ξ
′, t − T )αin

read(ξ
′) dξ ′, (37)

where T < t < 2T , and

hread(ξ) = − Tβe−iT ξ
1 F1 (1 + iβ, 2, iT ξ) + δ(ξ), (38)

gread(ξ, t ′) = i
√

β eiξ t ′ L
(
−iβ, i t ′(η − ξ)

)
(39)

for t ′ > 0. For details on how these solutions were derived see appendix A.2.
Note the symmetry between these results and the ones obtained in the write stage. The

stored excitation as well as the memory output are both given in terms of the impulse responses
containing the Laguerre functions while the inefficiency terms, i.e. the light that is not stored and
the excitation that remains in the memory after the recall, are both governed by the responses
with the hypergeometric function.

3.4. Adjusting the time variable

As shown in figure 2(a), the output of the GEM after the write and read stages is reversed in
time and subject to distortion. In order to assess the quality of the GEM, it is helpful if we adjust
the time variable so that the input and output signals can more easily be compared. In addition,
the analysis to follow will be simpler if time and frequency are put on similar footings.

To this end we set τ = T/2 and for the write stage we shift time to the left by τ units,
i.e. we define β̆in(t) = βin(t + τ) and ᾰ(ξ, t) = α(ξ, t + τ ) for −τ 6 t 6 τ . Then αout

write(ξ) =

ᾰ(ξ, τ ). Next, define β̆out(t) = βout(−t + 2T − τ). Finally dropping the ·̆ notation, the write
stage equations (30) and (31) become

αout
write(ξ) =

∫ τ

−τ

hwrite(ξ, τ − r)βin(r) dr, (40)

βout
write(t) =

∫ t

−τ

gwrite(t − r)βin(r) dr, (41)

while the read equation (37) becomes

βout
read(t) =

∫ η

−η

gread(ξ
′, −t + τ)αin

read(ξ
′) dξ ′. (42)

All signals βin, βout
write and βout

read are understood to be defined on the time interval [−τ, τ ]. In
particular, βin(t) and βout

read(t) are directly comparable for t ∈ [−τ, τ ].

3.5. Memory performance from the exact solution

With the solutions for the write and read stage at hand, we are now in a position to investigate the
overall performance of the memory. The simple energy balance relations discussed in section 2.4
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suggest a measure of efficiency comparing input and output energies. For the write stage, we
have ∫ τ

−τ

|βout
write(t)|

2 dt +
∫ η

−η

|αout
write(ξ)|2 dξ =

∫ τ

−τ

|βin
write(t)|

2 dt, (43)

where

E store
write =

∫ η

−η

|αout
write(ξ)|2 dξ (44)

is the energy stored within the memory, and

E in
write =

∫ τ

−τ

|βin
write(t)|

2 dt (45)

is the energy input to the memory during the write stage. For the read stage we have∫ τ

−τ

|βout
read(t)|

2 dt +
∫ η

−η

|αout
read(ξ)|2 dξ =

∫ η

−η

|αin
read(ξ)|2 dξ, (46)

where

Eout
read =

∫ τ

−τ

|βout
read(t)|

2 dt (47)

is the energy output from the memory during the read stage. Since αin
read = αout

write, we may
combine these expressions to give∫ τ

−τ

|βout
read(t)|

2 dt =

∫ τ

−τ

|βin
write(t)|

2 dt − `, (48)

where the total write–read loss is defined by

` =

∫ τ

−τ

|βout
write(t)|

2 dt +
∫ η

−η

|αout
read(ξ)|2 dξ. (49)

The efficiency is defined by

E =

∫
∞

−∞
|βout

read(t)|
2 dt∫

∞

−∞
|βin

write(t)|
2 dt

, (50)

where we have allowed for an extension of the range of integration if necessary. In view of
the non-negative loss `, we have that E 6 1, and so a quantum memory with E as close to 1 as
possible is desirable, since this corresponds to high energy transfer through the memory.

Efficiency is primarily a statement about the total energy stored and retrieved by the
memory. However, for a high-performance quantum memory, not only the intensity but also
the phase of the input signal must be reconstructed accurately. To quantify how well the phase
information is reproduced, we use the overlap between the βout

read(t) and βin
write(t) defined as

O =
|
∫

∞

−∞
(βout

read(t))
∗βin

write(t) dt |2∫
∞

−∞
|βout

read(t)|
2 dt

∫
∞

−∞
|βin

write(t)|
2 dt

. (51)

The overlap lies strictly in the interval 06O 6 1 and when O = 1 we can be

certain that βout
read(t)/

√∫
∞

−∞
|βout

read(t
′)|2 dt ′ = βin

write(t)/
√∫

∞

−∞
|βin

write(t
′)|2 dt ′, assuming βout

read(t),

βin
write(t) ∈ L2. Overlap is in some sense independent of efficiency as a signal can have O = 1
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but E 6= 1 and vice versa. A quantum memory can only be considered perfect when both O = 1
and E = 1 in which case we can prove βout

read(t) = βin
write(t) (up to an absolute phase factor).

Thus maximizing both the efficiency, E , and overlap, O, is key to creating a high performance
quantum memory.

We now use the exact transfer equations to analyse the efficiency and overlap for the GEM.
The results are shown in figure 3. We assumed an initial Gaussian input pulse described by the
variances στ and ση in time and frequency, respectively. The memory performance will depend
on how well this input pulse fits the memory characteristics. For this reason, the important
quantities to be considered are the ratios between the memory bandwidth η and ση, and the
writing time τ and στ . In figure 3(a) we plot the efficiency as a function of these ratios.
Figures 3(c), (e) and (d) show cross-sections of figures 3(a) and (b) for fixed values of τ , η and
the product τη, respectively. We see that the more the pulse fits in the memory bandwidth and
storage time, the more efficient the memory becomes. This is consistent with previous analysis
of GEM in the broadband limit [28]. What is important to note here is that our analytical solution
allows us to probe the inefficiencies of the memory in regions of parameters previously only
accessible through numerical simulations.

The efficiency is not the only measure that must be maximized, overlap is important as
well. The overlap, depicted in figure 3(b), is consistently lower than the efficiency. It only gets
close to one for very large bandwidths and storage times and typically lags behind the efficiency.
This demonstrates that the memory has caused a phase mismatch between the input and output
pulse.

We emphasize at this point that, although it is important to maximize both overlap and
efficiency, a low overlap is typically much easier to correct for than a low efficiency. To correct
for a low efficiency the output signal would need to be amplified, if performed deterministically
this process would irreversibly introduce extra noise into the signal. A low overlap on the other
hand is due to a mismatch of phase. As long as this phase mismatch can be characterized
accurately it can be corrected for deterministically without the addition of any extra noise to
the system.

Characterization of this phase mismatch can be achieved using the analytic solution we
have provided. At the moment this phase mismatch looks like it could depend on precisely
what input signal was received. This would make correcting it very difficult if not impossible.
Fortunately we will find that in many relevant limits the phase change by the GEM is
independent of the input signal. Making it much easier to correct for.

4. Quantum memory operation: approximate analysis in the time domain

Even though our exact analytical solutions allowed us to give a complete picture of the memory
performance as shown in figure 3, at first they look too complicated to provide any insight about
the physics underlying GEM. In this section, however, we will revisit our solutions for the write
and read stages to show that they can be used to understand the basic principles of quantum
memories, their limitations, the different working regimes and the approximations behind them.

4.1. Basic assumptions

Now we will consider that the input pulse is limited in both time and frequency such that

βin
write(t) ≈ 0 when t< − ετ or t>ετ (52)
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Figure 3. Performance of the GEM under two different measures: (a) efficiency
and (b) overlap. The data was produced by calculating βout

read(t) directly from
equations (37) and (30), (32a) with β = 2 and a Gaussian initial condition
for the input field (βin

write(t) = Aπ−1/4exp(−t2/2σ 2
τ )). The horizontal axes show

the storage time and frequency bandwidth normalized with respect to the
variances of the input pulse in time (στ ) and in frequency (ση = 1/στ ). The
semi-transparent planes in (a) and (b) correspond to the cross-sections presented
in (c)–(e). In (c), τ/στ is kept fixed and η/ση is increased, in (d) η/ση and
τ/στ are scaled at the same rate and in (e) η/ση is kept fixed and τ/στ is
increased. The efficiency saturates to its maximum value once η/ση > εη/ση ≈ 3
or τ/στ > ετ/στ ≈ 3, agreeing with the prediction that efficiency will be very
close to (1 − e−2πβ)2 when the signal fits within the time and frequency window
of the memory (see section 4). The overlap, on the other hand, lags behind
considerably if the memory operates outside the broadband and long storage
time limits.
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and

β̃in
write(ω) ≈ 0 when ω< − εη or ω>εη. (53)

We will also make the assumption

|(τ − ετ )(η − εη)| � 1 (54)

which allows us to approximate the Laguerre functions, as detailed in appendix C, to obtain, for
the write stage,

αout
write(ξ) = χ(β)

∫ τ

−τ

dt e−iξ(τ−t)−iβ ln(τ−t)(η+ξ)βin
write(t). (55)

Here χ(β) = i
√

β e−πβ/2

0(1−iβ)
and therefore

|χ(β)|2 =
1 − e−2πβ

2π
. (56)

Looking closely to equation (55), we can see that the term e−iξ(τ−t), that would correspond
to a Fourier transform, is accompanied by a logarithm term that produces a nonlinear time
and frequency dependent phase shift. This factor complicates the analysis but is also the key
signature that our solution goes beyond the broadband approximation.

For the read stage, under assumption (54) we can approximate the solution as

βout
read(t) = χ(β)

∫ η

−η

dξ eiξ(τ−t)−iβ ln(τ−t)(η−ξ)αin
read(ξ). (57)

We see again the logarithm term alongside a Fourier-like term. This time, however, we also have
the memory bandwidth governing how close to a Fourier transform this term actually is.

4.2. Efficiency

We now use the approximations introduced in the previous section to estimate the efficiency
E . To begin the analysis, let us look at the total excitation stored in the material, E store

write defined
by (44). This is given by

E store
write = |χ(β)|2

∫ η

−η

dξ

∫ τ

−τ

dt ′

∫ τ

−τ

dt e−iξ(t ′−t)−iβ ln
(

(τ−t ′)
(τ−t)

)
βin

write(t
′)∗βin

write(t). (58)

In view of assumptions (52) and (53) we can extend the limits in the integrals to infinity to
obtain

E store
write ≈ (1 − e−2πβ)E in

write. (59)

In this approximation, the effect of the phase factor is simply to add a windowing effect:
the memory absorbs in the window of the time it was stored, attenuated by the factor 2π |χ(β)|2.

Next, the total output energy is given by

Eout
read =

∫
∞

−∞

dt ′
|βout

read(t
′)|2 ≈

∫ τ

−τ

dt ′
|βout

read(t
′)|2

= |χ(β)|2
∫ τ

−τ

dt ′

∫ η

−η

dξ ′

∫ η

−η

dξ ei(τ−t ′)(ξ ′
−ξ)−iβ ln

(
(η−ξ ′)
(η−ξ)

)
αin

read
†
(ξ)αin

read(ξ
′)

= 2π |χ(β)|2
∫ η

−η

dξ |αin
read(ξ)|2

= 2π |χ(β)|2 E store
write, (60)
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where in the first line we assumed that the output signal fits within the writing time window,
equation (52). Note that we do not necessarily assume that the input signal is stored in a much
larger time than its width in time. We see that the excitation of the system will come out with
the same attenuation factor as before. Now, If we use assumption (53) that the input and output
pulses fit within the bandwidth of the memory we find

Eout
read ≈ (1 − e−2πβ)2 E in

write. (61)

Consequently we find that the efficiency is given approximately by

E ≈ (1 − e−2πβ)2. (62)

We should emphasize that this is only valid when the input and output pulses fit well within the
bandwidth of the system. Otherwise, the system will filter out parts of the input pulse that lie
outside its bandwidth (this is discussed further in section 5.1 below).

4.3. Long write limit

We now make the stronger assumption that the write time is much larger than the pulse width

τ � ετ . (63)

This assumption will allow us to understand the operation of the GEM in the long write regime.

4.3.1. Write stage. Under the long write assumption (63) we can approximate the logarithm
by ln(τ − t) ≈ ln τ and write the our solution (55) as

αout
write(ξ) = χ(β)

∫ τ

−τ

dt ′ e−iξ(τ−t ′)−iβ ln τ(η+ξ)βin
write(t

′). (64)

Since τ � ετ , we can extend the limits of the integral to infinity and obtain

αout
write(ξ) = χ(β) e−iξτ−iβ ln τ(η+ξ)β̂in

write(−ξ), (65)

where

β̂in
write(ξ) =

∫
∞

−∞

e−iξrβin
write(r) dr (66)

is the Fourier transform of the input. Thus we can see that the excitation in the medium will have
the shape of the Fourier transform of the input pulse within the memory bandwidth. Note again
that −η < ξ < η so frequencies outside of this bandwidth will of course simply pass through
the memory in the long term.

Equation (65) shows that the Fourier transform of the input is subject to attenuation and
phase distortion. The attenuation (magnitude) is given by the constant factor

M long write
write = |χ(β)| =

√
1 − e−2πβ

2π
(67)

which is consistent with the energy transfer relation (59). The phase distortion is a logarithmic
function of the spatial variable ξ :

φ
long write
write (ξ) = −ξτ − β ln τ(η + ξ). (68)

Figure 4 shows the full transfer function as a function of the write time determined from the
exact solution (32a). For large write times, the magnitude and phase of the transfer approach
the approximate values given by equations (67) and (68).
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a) b)

Figure 4. An example of the exact solution of the GEM during write stage
approaching the approximate transfer function with attenuation (67) (a) and
phase distortion (68) (b). The transfunction interpretation of what is stored and
read from the memory is only appropriate in approximate limits so a direct
comparison with the exact solution is not technically possible. However we can
still gain a great deal of intuition by examining what is stored in the memory,
αin

write, given an delta function input pulse, βin
write(t) = δ(t). As the time stored

becomes longer, αin
write will approach the transfer functions: as the transform of a

δ(t) function is flat, our output is essentially the transfer functions times 1. We
can see that both the absolute value of αin

write (a) and the argument of αin
write (b)

approach the expected approximated values in the long time limit. Note that in
(b) we subtracted a constant phase across the frequencies, ητ , to both the exact
and approximate limits to make the detail in the plots clearer.

4.3.2. Read stage. The read phase in the limit of long storage times is given by

βout
read(t) = χ(β)

∫ η

−η

dξ eiξ(τ−t)−iβ ln τ(η−ξ)αin
read(ξ). (69)

We saw in the write stage that even though the excitation in the memory was simply related to
the Fourier transform of the input pulse, because the system will only absorb frequencies within
its bandwidth, the output pulse will not necessarily recreate the input pulse perfectly in time. To
analyse the output pulse, let us look at it in Fourier space. For −η < ξ < η, we have

β̂out
read(ξ) = 2πχ(β)

∫ η

−η

dξ ′δ(ξ ′ + ξ) eiτξ ′
−iβ ln τ(η−ξ)αin

read(ξ
′)

= 2πχ(β) eiτξ−iβ ln τ(η−ξ)αin
read(−ξ). (70)

This equation displays the attenuation and phase distortion during the read phase. Explicitly, the
attenuation (magnitude) of the read transfer is given by

M long write
read = 2π

√
1 − e−2πβ

2π
(71)

and the corresponding phase is

φ
long write
read (ξ) = τξ − β ln τ(η − ξ). (72)

This result is essentially the same as for the write stage, with just with a change of signs in the
ξ terms in the phase response corresponding to the gradient flip.
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Note that these results apply for −η < ξ < η, the detuning range of the GEM. Within this
range, equation (70) says that in Fourier ξ -space, the output equals the internal storage up to
attenuation and phase distortion factors. If we were to define ξ outside the spatial range of
the GEM, then equation (70) would give β̃out

read(ξ) = 0, corresponding to a window effect in the
Fourier domain.

4.3.3. The whole memory process: write and read stages combined. We can now combine
both stages and analyse the full memory cycle. The total attenuation and phase distortion may
be obtained by combining the contributions from the write and read stages:

M long write
write–read = M long write

write M long write
read

= 2π |χ(β)|2 = 1 − e−2πβ (73)

and

φ
long write
write–read(ξ) = φ

long write
write (ξ) + φ

long write
read (ξ)

= − 2β ln τ(η + ξ)(η − ξ). (74)

This can be seen from (70) and (65)

β̂out
read(ξ) = χ(β) eiξ(τ−t)−iβ ln τ(η−ξ)α̂in

read(−ξ)

= χ(β)2 eiξ(τ−t)−iβ ln τ(η−ξ) e−iξτ−iβ ln τ(η+ξ)β̂in
write(ξ) (75)

= 2πχ(β)2 e−i2β ln τ(η+ξ)(η−ξ)β̂in
write(−ξ).

This equation is valid only between −η < ξ < η, outside this region β̂out
read(ξ) = 0. The output

emerging from the write–read cycle in the freqency domain approximately equals the input up
to attenuation and phase distortion factors. In the time domain the input and output fields may
not necessarily match well.

To investigate the validity of these approximations, we look again at the exact solution. We
have shown that in the limit of long storage time the power spectrum of the output field is the
same as in the input field within the bandwidth of the memory. Both the efficiency and overlap
have stronger requirements than just this to achieve a value of 1, so neither are good indicators
of the approximations we have applied in this chapter being valid. So we now introduce a new
measure, the frequency domain shape overlap (FDSO),

Oω =
|
∫

∞

−∞
dω|β̂out

read(ω) ‖ β̂in
write(ω) ‖

2∫
∞

−∞
dω|β̂out

read(ω)|2
∫

∞

−∞
dω|β̂in

write(ω)|2
, (76)

This measures how well the shape of the power spectra of the input and output fields match. It is
easy to show that when we replace our approximate solution, equation (75), into equation (76)
we get Oω = 1. Figure 5(a) shows Oω calculated from the exact solution as a function of the
writing time and bandwidth for the same set of parameters of figure 3. The growth of the FDSO
in figure 5(e) confirms that the results we have derived in this section are valid in the long
storage time limit.

4.4. Broadband limit

In order to study the behaviour of a broadband memory, in place of assumption (63) we now
assume

η � εη, (77)
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Figure 5. Time domain shape overlap (TDSO) (a) and FDSO for the same set of
parameters of figure 3. The cross-sections in (c)–(e) also show the efficiency and
overlap curves from figure 3 for comparison. The TDSO improves very quickly
in the broadband limit, essentially matching the efficiency when η/ση > εη/

ση ≈ 3. Its dual, the FDSO, does not improve much the in broadband limit and
only benefits from long storage times as shown in (g). In fact in this limit it
actually improves beyond the TDSO. Ultimately the overlap is not maximized
unless both the TDSO and FDSO are both high, this only occurs in (f) when both
τ/στ and η/ση are increased. Even though we have taken special care to ensure
that the time and frequency domain are treated on an equal footing we see a clear
asymmetry in the behaviour of the measures this is investigated in more detail in
section 4.6.

which says that memory bandwidth is much larger than the width in frequency of input pulse.
This is an important limit that will allow us to show how our general solution reduces to results
previously investigated in the literature [28].
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Under assumption (77) the equations for the envelopes become

αout
write(ξ) = χ(β)

∫ τ

−τ

dt e−iξ(τ−t)−iβ ln(τ−t)ηβin
write(t), (78)

βout
read(t) = χ(β)

∫ η

−η

dξ eiξ(τ−t)−iβ ln(τ−t)ηαin
read(ξ). (79)

These are in agreement with the analysis performed by Longdell et al [28]. Note the similarity
between these equations and (64) and (69). In our analysis we can clearly see that the long
writing time approximation and the broadband one act as the dual of one another. This will be
further emphasized as we look at the read and write stages.

4.4.1. Write stage. Because we are assuming the broadband limit but not necessarily the long
writing time limit, it turns out that what is stored is not the Fourier transform of the input. This is
due to the t dependent logarithmic term in equation (78). Nevertheless, we may take the inverse
Fourier transform

ᾰout
write(t) =

1

2π

∫
∞

−∞

eiξ tαout
write(ξ) dξ (80)

to find that the overlap of the input pulse is of a high quality. Explicitly,

ᾰout
write(t) = χ(β)

∫
∞

−∞

dξ

∫ τ

−τ

dt ′ e−iξ(τ−t ′−t)−iβ ln(τ−t ′)ηβin
write(t

′)

= 2πχ(β)

∫ τ

−τ

dt ′δ(τ − t ′
− t) e−iβ ln(τ−t ′)ηβin

write(t
′) (81)

=

{
2πχ(β) e−iβ ln tηβin

write(τ − t), −τ<t<τ,

0, t< − τ or t>τ
.

Consequently for −τ < t < τ the transfer to the internal storage has attenuation (magnitude)

Mbroadband
write = 2π |χ(β)| =

√
1 − e−2πβ (82)

and phase

φbroadband
write = −β ln tη. (83)

We see again the attenuation factor and a windowing effect similar to what we saw before. This
time there is a window with regard to the input pulse time, rather than a frequency filter.

4.4.2. Read stage. Much like in the previous sections, we look at the attenuation and phase
distortion. Under the broadband assumption we have

βout
read(t) = χ(β) e−iβ ln(τ−t)ηᾰin

read(τ − t) (84)

and so the attenuation and phase are given by

Mbroadband
read = |χ(β)| =

√
1 − e−2πβ

2π
(85)

and

φbroadband
read (ξ) = −β ln(τ − t)η. (86)

These relations are valid inside the time window −τ < t < τ . We see that only the light input
within the writing window will be stored and retrieved.
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4.4.3. The whole memory process: write and read stages combined. We can now combine
both stages and analyse the full memory cycle under the broadband assumption (77). Indeed, it
follows immediately from equations (81) and (84) that

βout
read(t) = 2πχ(β)2 e−i2β ln(τ−t)ηβin

write(t). (87)

The total attenuation and phase distortion are given by

Mbroadband
write–read = 2π |χ(β)|2 = 1 − e−2πβ (88)

and

φbroadband
write–read(t) = −2β ln(τ − t)η. (89)

We see that the output signal is identical to the input field up to the phase factor. The phase
factor means that the same may not necessarily be true in the frequency domain. We see that
the long time limit approximation and broadband approximation are the dual of one another. In
the long storage time domain limit the power spectrum of input signal is accurately reproduced
in the output signal within the bandwidth of the memory. In the broadband case the opposite
occurs, instead the intensity over time is reproduced accurately within the storage time window
of the memory.

We again use the exact solutions to investigate this approximation. We have shown that the
intensity of the output field over time will perfectly match the intensity of the input field, up to
an attenuation factor. Both the efficiency and overlap have stronger requirements than just this
to achieve a value of 1, so neither are good indicators of the approximations we have applied in
this section being valid. So we introduce a new measure the TDSO,

Ot =
|
∫

∞

−∞
dt |β̂out

read(t) ‖ β̂in
write(t) ‖

2∫
∞

−∞
dt |β̂out

read(t)|
2
∫

∞

−∞
dt |β̂in

write(t)|
2
, (90)

which gives a measure of how correct we get the shape of the output beam in the time
domain. It is easy to show that when we replace our approximated solution, equation (87), into
equation (90) we get Ot = 1. The behaviour of the TDSO obtained from the analytical solution
can be seen in figure 5(b) and the corresponding cross-sections in figures 5(c)–(e). The result
in figure 5(c) shows a complementary behaviour of the TDSO as compared to FDSO: as we
approach the broadband limit, the shape of the output signal improves but only does so in the
time domain.

4.5. Broadband and long storage time approximations

Now we will consider the limit underlying most of the intuitive understanding of GEM described
in the literature in terms of Fourier transform. If we consider both the long writing time and
broadband limits, the time domain transfer functions reduce to

αout
write(ξ) = χ(β) e−iβ ln τη

∫
∞

−∞

dt e−iξ(τ−t)βin
write(t), (91)

βout
read(t) = χ(β) e−iβ ln τη

∫
∞

−∞

dξ eiξ(τ−t)αin
read(ξ), (92)

where we have taken the limits to infinity as the input pulse will be well within the input time
and bandwidth of the memory. We can see in this limit the read and write transforms become
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true Fourier transforms up to attenuation and phase factors. Indeed, combining these expressions
we see that

βout
read(t) = 2πχ(β)2 e−i2β ln τηβin

write(t). (93)

The total attenuation and phase distortion assuming both long write and broadband assumptions
are given by

M long, broad
write–read = 2π |χ(β)|2 = 1 − e−2πβ (94)

and

φ
long, broad
write–read (t) = −2β ln τη. (95)

As the phase factor is just a function of system parameters it can be easily cancelled out
at the end with a phase plate. Assuming this is implemented we find that the overlap of the
input and output pulses of the quantum memory will approach 100% as shown in figure 5(d).
In this plot η/ση and τ/στ are increased at the same rate and when large enough, all the overlap
measures approach the efficiency curve.

4.6. Broadband versus long storage time

Even though their derivations were nearly identical and they were considered as dual
approximations, the broadband and long storage time approximations show quite distinct
convergences. Indeed, the plots in figure 5 show that the shape overlap in the time domain
increases extremely rapidly compared to the frequency domain.

Comparing equations (64) and (69) with (78) and (79), we see that the only important
difference between them is the phase distortion factor. While the time has a (τ − t) factor in
both equations frequency has a (η − ξ) then (η + ξ). If we examine the full transfer from the
input field to the output field we get

βout
read(t) = χ2(β)

∫ η

−η

dξ

∫ τ

−τ

dt ′ e−iξ(t ′−t)−iβ ln(τ 2
−(t+t ′)τ+t t ′)−iβ ln(η2/4−ξ2)βin

write(t). (96)

We note that the phase distortion is of a different order in each term. The time factor is of the
order ετ/τ while the frequency one is of the order (εη/η)2. This means that the broad band
approximation converges much quicker than the long time approximation.

However this effect can be reduced if the signal is put through the memory twice, a strategy
already recognized in [28, 40] as a way to improve the overlap. As we have flipped the transfer
functions on the first pass, a second pass will lead to

βout
read(t) = χ4(β)

∫ η

−η

dξ1

∫ η

−η

dξ2

∫ τ

−τ

dt1

∫ τ

−τ

dt2β
in
write(t2)

×e−iξ1(t1−t)−iξ2(t2−t1)−iβ ln(τ−t1)2(τ+t2)2(η−ξ1)
2(η+ξ2)

2
, (97)

where now the time and frequency terms are of the same order. We can see the effect that this
has on the overlap in figure 6. Here, in contrast to figure 5(d), the overlap, efficiency,TDSO and
FDSO all increase at almost the same rate, making the long time and broadband approximations
truly equivalent.
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Figure 6. Performance of a double pass through the memory using four different
measures: efficiency, overlap, TDSO and FDSO. The data was produced by
calculating βout

read(t) using the exact solutions (section 3) twice, with the same
parameters as in figure 3, and η/ση and τ/στ increasing at the same rate. All
the performance measures now improve at the same rate, with the overlap now
saturating as quickly as the efficiency. Contrast this to figure 5(d) where the
overlap lags behind the efficiency, and there is also an asymmetry between the
improvement rate of the TDSO and FDSO.

5. Quantum memory operation: analysis in the frequency domain

The analyses we have used so far to help understand the operation of the GEM have been largely
based on time domain studies of the transfer integral operator kernels hwrite(ξ, t), gwrite(ξ),
hread(ξ) and gread(ξ, t) governing the write and read stages. While the Fourier transform was used
to explain GEM operation using approximations, in this section we complement that analysis
by examining further the transfer functions in the Laplace or complex frequency domain. In this
manner we are able to plot Bode diagrams for the magnitude and phase of the transfers and
thereby gain additional insights into GEM operation by making clear the correlation between
the spatial and frequency variables, and by explicitly representing the phase distortion.

The Laplace transform of a function f (t) is defined by

f̃ (s) =

∫ t

0−

f (t) e−st dt, (98)

where s = σ + iω is a complex variable, a generalized frequency. We consider the Laplace
transform, and denote by Hwrite(ξ, s), Gwrite(s), Hread(ξ, s) and Gread(ξ, s) the Laplace
transforms of hwrite(ξ, t), gwrite(ξ, t), hread(ξ, t) and gread(ξ, t) respectively, in the time variable
t .

5.1. Write stage

As explained in appendix A.1, the write stage transfer functions in the s-domain are given by

Hwrite(ξ, s) =
i
√

β

s + iξ
exp

(
−β

∫ ξ

−η

dx

s + ix

)
(99)

New Journal of Physics 15 (2013) 085020 (http://www.njp.org/)

http://www.njp.org/


24

and

Gwrite(s) = exp

(
−β

∫ η

−η

dx

s + ix

)
. (100)

It is perhaps simplest to start with the transfer function Gwrite(s), which is responsible for
the loss in the write stage and relates the input field to the output field as

β̃out
write(s) = Gwrite(s)β̃

in
write(s). (101)

The time shift does not appear explicitly in equation (101) due to time invariance of the GEM
during the write stage (section 3.4).

In engineering and elsewhere, the Bode diagram is a widely used graphical representation
of the frequency response of a transfer function. The frequency response concerns the behaviour
of Gwrite(s) when s = iω, as ω varies over a range of frequencies. For the transfer function Gwrite

we have

Gwrite(iω) = exp

(
iβ
∫ η

−η

dx

ω + x

)
. (102)

The magnitude MGwrite(iω) and phase φGwrite(iω) are defined by

Gwrite(iω) = MGwrite(iω) eiφGwrite (iω). (103)

These may be evaluated (appendix D) to be

MGwrite(iω) =

{
1 for ω > η or ω < −η,

exp(−βπ) for − η < ω < η
(104)

and

φGwrite(iω) = β ln

∣∣∣∣ ω + η

ω − η

∣∣∣∣ . (105)

The Bode diagram for Gwrite(s) is shown in figure 7, where the frequency window and
phase distortion can clearly be seen. Outside the frequency window, |ω| > η, all frequencies
pass through. However, within the window, |ω| < η, all frequencies are attenuated by a factor
e−βπ , consistent with the approximate analysis given in section 4. The attenuated modes must
therefore be mostly stored, and may be called approximate dark states. Note that for the output
light to be nearly dark there must be destructive interference between the internal and incoming
contributions, as required by the output equation (8).

We turn now to the transfer function Hwrite(ξ, s) that relates the input signal to the internal
modes

α̃(ξ, s) = Hwrite(ξ, s)β̃in
write(s). (106)

Here, ξ ∈ (−η, η) varies over the spatial range of the GEM. The transfer function Hwrite(ξ, s)
describes how the input is stored at detuning ξ . Evaluating at s = iω we have the frequency
response function

Hwrite(ξ, iω) =

√
β

ω + ξ
exp

(
iβ
∫ ξ

−η

dx

ω + x

)
(107)

= MHwrite(ξ, iω) eiφHwrite (ξ,iω), (108)
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ω

MGwrite

φGwrite

Figure 7. Bode diagram illustrating the frequency response (magnitude
MGwrite(iω) and phase φGwrite(iω)) for the transfer function Gwrite(s). The
magnitude plot clearly shows the frequency window −η < ξ < η (with η = 1
in the plots) within which the incoming modes are absorbed by the memory, and
outside of which the modes are passed through. The phase plot shows how the
phase of the input is distorted as the signal is either absorbed or passed through.

and the corresponding magnitude and phase are given by

MHwrite(ξ, iω) =


√

β

|ω + ξ |
for ω > η or ω < −ξ

√
β

|ω + ξ |
exp(−βπ) for − ξ < ω < η

(109)

and

φHwrite(ξ, iω) =

{
β ln |

ω+ξ

ω−η
| for ω > −ξ,

π + β ln |
ω+ξ

ω−η
| for ω < −ξ.

(110)

The Bode diagram for Hwrite(ξ, s) is shown in figures 8(a) and (b). The plots show the
magnitude and phase as a function of the spatial variable ξ and the frequency variable ω. The
‘ridge’ evident in the magnitude plot shows the correlation ξ ≈ −ω between these variables.
The correlation is not perfect, as the ridge has non-zero width, and this is due to the distortions
leading to the deviations from the ideal transforms.
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a)

b)

c)

d)

Figure 8. Bode diagram illustrating the frequency response for the transfer
functions Hwrite(ξ, s) (left) and Gread(ξ, s) (right), for the write and read
stages, respectively. The plots show the magnitude MHwrite(ξ, iω) (a) and phase
φHwrite(ξ, iω) (b) as a function of the spatial variable ξ and the frequency variable
ω. On the right, plots (c) and (d) show the corresponding functions for the read
phase. In both cases the ‘ridges’ indicate a correlation between the variables ξ

and ω.

With the input expressed in the s-domain, and the internal output in the time domain, we
have, using the inverse Laplace transform

αout
write(ξ) = α(ξ, τ ) (111)

=
1

2π i

∫ σ+i∞

σ−i∞
Hwrite(ξ, s ′)βin

write(s
′) es′τ ds ′ (112)

=
1

2π i

∫ σ+i∞

σ−i∞

i
√

β

s ′ + iξ
exp

(
−β

∫ ξ

−η

dx

s ′ + ix

)
βin

write(s
′) es′τ ds ′, (113)

where −τ < t < τ is the time interval for the write stage. This expression has the appearance
somewhat like a distorted Hilbert transform [41]. The ridge suggests that the dominant
contributions to this integral will involve β̃in

write(−iξ), consistent with the approximate
expression (65). Note that expression (113) depends only on the input signal within the time
window −τ < t < τ (causality).
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5.2. Read stage

The transfer function in the s-domain for internal stored information to the output during the
read stage is given by

Gread(ξ, s) =
i
√

β

s − iξ
exp

(
−β

∫ η

ξ

dx

s − ix

)
. (114)

The frequency response is given by

Gread(ξ, iω) = MGread(ξ, iω) eiφGread (ξ,iω) (115)

and the corresponding magnitude and phase are

MGread(ξ, iω) =


√

β

|ω − ξ |
for ω > η or ω < ξ,

√
β

|ω − ξ |
exp(−βπ) for ξ < ω < η

(116)

and

φGread(ξ, iω) =

{
β ln |

ω−η

ω−ξ
| for ω > ξ,

π + β ln |
ω−η

ω−ξ
| for ω < ξ.

(117)

The Bode diagram for Gread(ξ, s) is shown in figures 8 (c) and (d). Similar to the write
stage, we see a ‘ridge’ indicating the correlation ξ ≈ ω.

The output is given by

β̃out
read(s) =

∫ η

−η

Gread(ξ, −s)αin
read(ξ) dξ (118)

=

∫ η

−η

−i
√

β

s + iξ
exp

(
β

∫ η

ξ

dx

s + ix

)
αin

read(ξ) dξ. (119)

Note that the time shift does not appear explicitly in equation (119) due to time invariance of
the GEM during the read stage, and the minus sign in −s is due to the time reversal of the read
output (section 3.4). Setting s = iω we have

β̃out
read(iω) =

∫ η

−η

−
√

β

ω + ξ
exp

(
−β

∫ η

ξ

dx

ω + x

)
αin

read(ξ) dξ, (120)

and we see that the dominant contribution to the integral involves the term αin
read(−iω). This

is consistent with the approximate expression (70). As for the write stage, equation (113), we
recognize that the transformation appears somewhat like a distorted Hilbert transform.

6. Conclusions

We have presented and solved analytically a quantum input–output model for GEM which
makes no assumptions on the optical depth, memory bandwidth or storage times. The model was
shown to be equivalent to previous model of memories in the weak atomic excitation regime and
we demonstrated that our general solution reduces to previous results in the appropriate limits.
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Using this solution we investigated the memory fidelity in the regime of high optical depth
and finite bandwidth that maximizes efficiency in experiments. We obtained general expressions
for several measures of storage quality due to the nonlinear phase-shifts that occur when optical
depth is high. We also confirmed that storing a pulse twice may be used to largely undo this
shift.

The presented solution will be helpful as-is to understand and optimize high efficiency
memory experiments in the weak atomic excitation regime. The nonlinear phase-shift
investigated here has previously been identified as a major limiting factor for the practical use of
GEM [31]. Accurate predictions of this shift should aid general correction or accounting for it.
In the long term, our model is a starting point to investigate the designing of complex networks
containing GEM.

The presented solution should serve also as a building block to describing more complex
behaviour. It has previously been shown that manipulating the detuning gradient during
the output stage can be used to modify the output pulse [42]. Going further than this,
by incorporating a general detuning function (dependent on time and space) beyond a
simple gradient, it should be possible to model general transformations on a light pulse,
including correcting the nonlinear phase-shift using no external components. This would be
experimentally realizable by using complex electrode or solenoid arrangements. In this respect,
our analysis in terms of transfer functions is also helpful as it establishes a strong connection
with signal processing theory and, with it, the possibility of using the plethora of methods in the
field to manipulate the input signal via GEM. It is hoped that our approach will be accessible to
those in the signal processing field. Finally, as the model fully accounts for quantum mechanics
it will be useful for describing conditional measurements and storage of non-classical states.
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Appendix A. Deriving the analytic solution

In this appendix we derive four transfer functions of the following equations:

∂tα(ξ, t) = ∓ iξα(ξ, t) + i
√

ββ(ξ, t), (A.1)

∂ξβ(ξ, t) = i
√

βα(ξ, t), (A.2)

which are a repeat of equations (27) and (28). We can solve these equations using a variation of a
parameters method. These solutions can then be used to uniquely identify the transfer functions
in the time domain. We could have directly found the transfer functions from their LTI form,
however that involves the exponentiation of an infinite dimensional matrix which can get rather
technical.
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We will solve the system during a write then read phase each of which will go for a time
period of T . During the write phase we set the gradient to be positive while during the read
phase we set it to be negative.

A.1. Write phase

During the write phase we will assume there is no excitation in the atoms initially, thus we can
set α(ξ, 0) = 0, although the operator is non zero, any expectation value taken will be zero, so
this it is sufficient to simply apply this.

We take the Laplace transform, as defined in equation (98), of (A.1) with regard the time
variable to find

sα̃(ξ, s) = −iξ α̃(ξ, s) + i
√

ββ̃(ξ, s), (A.3)

where we have set α̃(ξ, 0) = 0 during the write phase. We can rearrange (A.3) to find

α̃(ξ, s) =
i
√

β

s + iξ
β̃(ξ, s). (A.4)

Replacing equation (A.4) into (A.2)

∂ξ β̃(ξ, s) =
−β

s + iξ
β̃(ξ, s). (A.5)

We can solve equation (A.4) to find

β̃(ξ, s) = exp

(∫ ξ

−η

dξ ′
−β

s + iξ ′

)
β̃(−η, s)

=

(
s + iξ

s − iη

)iβ

β̃(−η, s). (A.6)

Lastly we can use a mathematical package such as Mathematica [43] and transform back to real
time to find

β(ξ, t) =

∫ t

0
dt ′

(
− (η + ξ)β e−iξ(t−t ′)

1 F1

(
1 + iβ, 2, i(ξ + η)(t − t ′)

)
+ δ(t − t ′)

)
β(−η, t ′).

(A.7)

This is our first solution for equations (A.1) and (A.2). Equation (A.7) gives us the evolution of
the outgoing light field during the write stage. In the main text this solution is presented as a
transfer function in equation (31) where we define βout

write(t) = β(η, t) and βin
write(t) = β(−η, t ′).

We can also find what quantum information is transferred on to the atoms. Replacing (A.6)
into (A.4) we find

α̃(ξ, s) =
i
√

β

s + iξ

(
s + iξ

s − iη

)iβ

β̃(−η, s). (A.8)

We can transform equation (A.8) back into the time domain and find

α(ξ, t) =

∫ t

0
dt ′i

√
β e−iξ(t−t ′)L

(
−iβ, i(t − t ′)(ξ + η)

)
β(−η, t ′). (A.9)

This is our second solution. Equation (A.9) gives us the final quantum state of the atoms after
the write stage. In the main text this solution is presented as a transfer function in equation (30)
where we define αout

write(ξ) = α(ξ, T ).
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A.2. Read phase

During the read phase we assume there is no light coming into the system so we set β(−η, t)
= 0. However, now we can no longer assume that there is no excitation left in the material so
we have αin

read(ξ) = α(ξ, T ). We again solve (A.1) and (A.2) with this boundary condition and
a change on the sign of the gradient.

Taking the Laplace transform of (A.1) and taking to account our changed boundary
conditions we find

sα̃(ξ, s) −α(ξ, T ) = iξ α̃(ξ, s) + i
√

ββ̃(ξ, s). (A.10)

We can rearrange (A.10) to get

α̃(ξ, s) =
α(ξ, T )

s − iξ
+

i
√

β

s − iξ
β̃(ξ, s). (A.11)

Replacing (A.11) into (A.2) we find

∂ξ β̃(ξ, s) =
i
√

βα(ξ, T )

s − iξ
−

β

s − iξ
β̃(ξ, s). (A.12)

Equation (A.12) is an inhomogeneous differential equation which we can solve to get

β̃(ξ, s) =

∫ ξ

−η

dξ ′
i
√

β

s − iξ ′
exp

(∫ ξ

ξ ′

dξ ′′
−β

s − iξ ′′

)
α(ξ ′, T )

=

∫ ξ

−η

dξ ′
i
√

β

s − iξ ′

(
s − iξ ′

s − iξ

)iβ

α(ξ ′, T ). (A.13)

Where we assumed β(−η, s) = 0. We can change equation (A.13) to the time domain to get the
solution

β(ξ, t) =

∫ ξ

−η

dξ ′i
√

β eiξ ′t L
(
−iβ, it (ξ − ξ ′)

)
α(ξ ′, T ). (A.14)

This is the third solution. Equation (A.14) gives us the evolution of the outgoing light field
during the read stage. In the main text it is presented as a transfer function in equation (35)
where βout

read(t) = β̃(η, t) and αin
read(ξ) = α(ξ ′, T ).

Finally we can find the total excitation left in the atoms by replacing (A.13) into (A.11) to
find

α̃(ξ, s) =
1

s − iξ

∫ ξ

−η

dξ ′

(
δ(ξ − ξ ′) +

−β

s − iξ ′

(
s − iξ ′

s − iξ

)iβ

α(ξ ′, T )

)
. (A.15)

We can equation (A.15) into the time domain to get

α(ξ, t) =

∫ ξ

−η

dξ ′

(
δ(ξ − ξ ′) − (t − T )β e−i(ξ−ξ ′)(t−T )

× 1 F1

(
1 + iβ, 2, i(t − T )(ξ − ξ ′)

) )
α(ξ ′, T ). (A.16)

This is the fourth and final solution. Equation (A.16) gives the final quantum state of the atoms
after the read stage. In the main text is presented as a transfer function in equation (34) where
αout

read(ξ) = α(ξ, 2T ).
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Appendix B. Analytic functions

Two analytic functions form part of the analytic solution presented in this paper which are
not commonly seen. We provide their definition in terms of power series for the interested
reader, in practice they can be calculated efficiently using mathematical packages such as
Mathematica [43]. We define first the Kummer confluent hypergeometric function [44]

1 F1(a, b, x) =

∞∑
k=0

a(n)zn

b(n)n!
, (B.1)

where a(n)
= a(a + 1)(a + 2) · · · (a + n − 1). This first arises while deriving the analytic solution

in equation (A.7) and is repeated in the main text in equation (32b). The other important function
is Laguerre function, which we define in terms of the Kummer confluent hypergeometric as

L(n, x) =
1 F1(−n, 1, x)

0(n + 1)
, (B.2)

where 0(n + 1) is the Gamma function. This first arises when deriving the analytic solution in
equation (A.9) and is repeated in the main text in equation (32a). When n is integer and x is real
this power series generates the well known Laguerre polynomials, however in this paper both n
and x are always purely imaginary.

Appendix C. Complex Laguerre function approximation

The transformation kernel for writing the quantum information of the light onto the atomic
states (and vice versa) is difficult to analyse in its exact form. Both the write and read
transfer functions, equations (32a) and (39) respectively, contain complex Laguerre functions
of the following form L(−iβ, i(τ − t)(η ± ξ)). Fortunately the form of these kernels simplifies
significantly in the physically relevant limit of the total time stored or the bandwidth being large.
More precisely if we define 1/x = (τ − t)(η ± ξ), we find the Taylor expansion of L(−iβ, i/x)

for |x | � 1 is

L(−iβ, i/x) ≈
e−πβ/2x iβ

0(1 − iβ)
+ O(|x |). (C.1)

Truncating to zeroth order and replacing in our definition for x we find

L(−iβ, i(τ − t)(η ± ξ)) ≈
e−πβ/2−iβ ln(τ−t)(η±ξ)

0(1 − iβ)
. (C.2)

This can be replaced into equations (32a) and (39) to get a much simpler transformation kernel.
This form makes salient what the memories efficiency is and where the phase distortion comes
from.

Appendix D. Magnitude and phase evaluation

Some care is required in evaluation of the magnitude and phase of the transfer functions, since
improper integrals and complex logarithms are involved.

We use a branch of the complex logarithm that includes the negative real line, so that,
for example, ln(−1) = iπ . The reason for this is that if we carry out the integration in (102)
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we obtain formally Log(
ω+η

ω−η
), and the ratio ω+η

ω−η
is negative in the range −η < ω < η. So

Log(
ω+η

ω−η
) = ln |

ω+η

ω−η
| + iπ for −η < ω < η. The magnitude and phase may also be evaluated

alternatively by an approximation involving σ + iω with σ small and positive.
The attenuation is rather interesting, since each oscillator Gk in the approximating network

of section 2 is all pass, meaning |Gk(iω) = 1 for all ω. What is happening is that the poles of
each cavity, which have strictly negative real parts, are moving in the limit to the imaginary axis,
resulting in a transfer function with a continuum of purely imaginary poles.
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