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Sunlight provides energy for photosynthesis and is essential for
nearly all life on earth. However, too much or too little light or
rapidly fluctuating light conditions cause stress to plants. Rapid
changes in the amount of light are perceived as a change in the
reduced/oxidized (redox) state of photosynthetic electron trans-
port components in chloroplasts. However, how this generates
a signal that is relayed to changes in nuclear gene expression is
not well understood. We modified redox state in the reference
plant, Arabidopsis thaliana, using either excess light or low light
plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-
benzoquinone), a well-known inhibitor of photosynthetic electron
transport. Modification of redox state caused a change in expres-
sion of a common set of about 750 genes, many of which are
known stress-responsive genes. Among the most highly enriched
promoter elements in the induced gene set were heat-shock ele-
ments (HSEs), known motifs that change gene expression in re-
sponse to high temperature in many systems. We show that HSEs
from the promoter of the ASCORBATE PEROXIDASE 2 (APX2) gene
were necessary and sufficient for APX2 expression in conditions of
excess light, or under low light plus the herbicide. We tested APX2
expression phenotypes in overexpression and loss-of-function
mutants of 15 Arabidopsis A-type heat-shock transcription factors
(HSFs), and identified HSFA1D, HSFA2, and HSFA3 as key factors
regulating APX2 expression in diverse stress conditions. Excess
light regulates both the subcellular location of HSFA1D and its
biochemical properties, making it a key early component of the
excess light stress network of plants.

Photosynthesis is the process by which light is converted to
chemical energy; yet, despite its critical and central role for

the sustenance of life, photosynthetic performance of plants is
not optimal. Under light intensities of higher than optimal
growth (termed excess light or EL), light energy absorption in-
creases linearly as light intensity increases. However, carbon as-
similation becomes saturated at a certain light intensity, termed
the light saturation point. Thus, in EL, most of the absorbed light
energy is not used for carbon metabolism. Instead, the EL energy
causes damage to proteins involved in photosynthesis, a process
called photoinhibition (1–3).
Plants have evolved multiple ways to sense and respond to EL

(4). Photoreceptors, such as cryptochrome, sense light directly
and lead to changes in nuclear gene expression and chloroplast
avoidance responses. Excess light energy can also be dissipated
as heat via nonphotochemical quenching, thereby avoiding
damage to the photosynthetic apparatus. In addition to inacti-
vating photosynthesis (3), it has been reported that EL brings
about accumulation of a number of metabolic intermediates in
plastids that act as signals of EL stress (5–7). Finally, EL causes
the accumulation of multiple reactive oxygen species, including,
singlet oxygen (1O2), hydrogen peroxide (H2O2), and superoxide
anion (O2

-) (8) in plastids, which are neutralized by reactive
oxygen species detoxifying enzymes and by the synthesis of
antioxidant molecules, such as carotenoids, ascorbic acid, and
tocopherol (1).

Several studies have provided evidence for a role of photo-
synthetic electron transport (PET) components as sensors of EL
and regulators of nuclear gene expression (9, 10). A stress-
response gene encoding ASCORBATE PEROXIDASE 2 (APX2)
is controlled by the reduced/oxidized (redox) state of the plas-
toquionone (PQ) pool in Arabidopsis (11, 12). The expression of
APX2 is significantly induced by the reduced PQ pool that is
generated by either EL or low light (LL) plus DBMIB (2,5-
dibromo-3-methyl-6-isopropyl-p-benzoquinone), a herbicide that
blocks electron transport between the PQ pool and the cyto-
chrome b6f complex (11, 13, 14). EL-driven APX2 expression
requires H2O2 and functional PET (11, 13).
The molecular mechanism by which the PQ redox state trig-

gers the induction of APX2 is unknown, although clues to some
possible mechanisms have been reported. Despite APX2’s fast
and very strong induction upon exposure to EL (11), genetic
screens have identified only constitutive APX2 expression
mutants, but no mutants affected specifically in EL-driven APX2
induction have been found (15, 16). There is evidence linking
APX2 induction by EL to the zinc-finger transcription factor
ZAT10, to the plant hormone abscisic acid, and to 3′-phos-
phoadenosine 5′-phosphate, a phosphonucleotide (PAP) (5, 17,
18); however, a signal transduction pathway linking gene ex-
pression in the nucleus to redox of the PQ pool remains elusive.
Here, we took advantage of reporters of EL-induced gene

expression and DBMIB to identify nuclear proteins specific to
a chloroplast-to-nucleus signaling process generated by signals
from the PQ pool. We determine that a reduced state of the PQ
pool changes the expression of about 750 nuclear genes, many of
which contain heat-shock elements (HSEs). A hierarchy of
interactions among a subset of heat-shock transcription factors
(HSFs)—HSFA1D, HSFA2, and HSFA3—is responsible for the
early gene-expression response of Arabidopsis to EL.

Results
Defining Stress Conditions. Recent studies have linked the accu-
mulation of a number of different metabolic intermediates with
EL stress, leading to the proposal that the accumulation of these
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intermediates is the initiating event for multiple stress signaling
pathways (5–7). Other articles have reported that a signal orig-
inates from PET, specifically the redox state of the PQ pool (11,
19, 20). To better define the nature of the signals related to the
PQ redox state, we treated plants with a number of different light
stresses, as well as with LL plus the herbicide DBMIB.
First, we assessed the effectiveness of our DBMIB treatment

in generating the PQ pool in a reduced state. Following in-
cubation of leaf discs in a DBMIB (24 μM) solution for 2 h under
LL conditions, chlorophyll fluorescence and APX2 transcript
levels were determined. As expected, the DBMIB treatment
increased the excitation pressure on PSII (1-qP) (21) (Fig. S1A)
and APX2 induction levels (Fig. S1B); in contrast, the 3-3,4-
dichlorophenyl-1,1-dimethylurea (DCMU) treatment under LL
did not induce APX2 expression (Fig. S1B), despite its effect on
increased 1-qP (Fig. S1A). These results confirmed that gener-
ation our conditions for reducing the PQ pool with DBMIB
worked as expected (11). However, both DBMIB and DCMU
treatments failed to generate H2O2 in leaf tissue, whereras “hot”
EL (hEL) treatment resulted in H2O2 generation (Fig. S1C).
We further explored APX2 expression by light, high temper-

ature, or both by exposing plant leaves to a range of EL con-
ditions: hEL, “filtered” EL (fEL), which was achieved by using
a mixture of water and ice layer (13, 22), and “cold” light (LED)
(Fig. 1A). Although all EL conditions significantly increased leaf
temperature, the effects of hEL on leaf temperature increases
were more drastic than those of fEL and LED (Fig. S1D). All EL
conditions up-regulated APX2 expression, although APX2 in-
duction levels were lower in fEL and LED (Fig. 1A). In addition,
it seems like APX2 induction is positively correlated with the
amount of H2O2 in leaves (Fig. S1E). Based on these observa-
tions, it is very likely that APX2 expression is regulated by both
light and high temperature in a synergistic way. In addition, it
seems like there is a heat-independent APX2 induction pathway.
For the rest of this report, all EL experiments described were
conducted using hEL and presented as EL.

EL Triggers Redox Stress and Changes the Expression of Hundreds of
Genes. To understand the effect of the reduced PQ pool on global
nuclear gene expression, we harvested mRNA from Arabidopsis
leaf tissue treated with EL (for 30 min or 2 h), or LL plus
DBMIB (for 30 min or 2 h), and generated expression profiles
using ATH1 microarrays. We found ∼1,250 genes up-regulated

and ∼1,300 genes down-regulated by either treatment at either
time point compared with before treatment, with 331 genes
commonly up-regulated and 426 genes down-regulated by both
treatments (Fig. 1B). Among the top genes up-regulated by both
DBMIB and EL were genes encoding several heat-shock factors
and small heat-shock proteins (some induced up to several
thousand-fold), as well as APX2, expected from previous studies
(Dataset S1) (13). Of the ∼20 heat-shock factor protein family
members, 10 are significantly (P < 0.01) up-regulated in at least
one condition, and at least 30 heat-shock proteins are also sig-
nificantly induced (Dataset S1). Gene Ontology term-enrich-
ment analysis revealed nearly 20 processes overrepresented (P <
0.01 using the hypergeometric test) among the core up-regulated
gene set, including response to heat, response to high light intensity,
and response to oxidative stress, consistent with the treatments
applied (Dataset S2). Inspection of promoter sequences (defined
as the 500-bp upstream from the predicted ATG) from the 331
commonly up-regulated genes revealed that a high proportion of
genes contained at least one of four variants of the known HSEs
(e.g., GAAnnTTC) (Fig. S1F). Genes down-regulated by EL and
DBMIB include many biosynthetic enzymes, cytochrome P450
enzymes, and transcription factors (Dataset S1), although the
magnitude of change of down-regulated genes is smaller than for
up-regulated transcripts. Gene Ontology enrichment for this gene
set indicates a high overrepresentation for metabolic enzymes,
especially those involved in glucosinolate biosynthesis (Dataset
S2). In summary, ∼750 genes are significantly altered by PQ
redox state, which most notably induces expression of APX2 and
heat-shock factors, indicating a strong redox stress response by
EL and DBMIB.
In addition to HSEs, we mined the predicted promoters of up-

regulated genes for other previously known and novel over-
represented motifs using the ELEMENT algorithm (23) (Fig.
S1F). Among genes up-regulated by 30 min of EL, we found
a number of known light-regulatory elements, including the G-
box (CACGTG) (24), and a GCCAC motif previously identified
as overrepresented in light-induced promoters (SORLIPs) (25).
We also found an ACGT motif (26), a CCGAC motif (27), and
an ATCCAAT motif (28) (Fig. S1F).

APX2 Induction by EL or DBMIB Does Not Require New Protein Synthesis.
About 50% of the genes induced by either EL or DBMIB were
common to both conditions, but induction by EL appeared to be
faster than in DBMIB. In agreement with previous reports (11,
13), APX2 induction was seen within 5 min of exposure to EL,
achieved peak levels after 1 h of exposure to EL, and then de-
creased (Fig. S2A). Although APX2 mRNA levels also increased
in the presence of DBMIB, the induction profile was different as
the fold-change was smaller than that with EL (Fig. S2 A and B).
Furthermore, APX2 mRNA levels never peaked during the 2 h
of DBMIB treatment (Fig. S2B), indicating that the effects of
DBMIB were slower than those of EL (11). The rapid induction
kinetics of APX2 by EL or DBMIB led us to test whether new
protein synthesis is required for APX2 induction. Leaf tissue was
pretreated with 200 μM cycloheximide (CHX) for 30 min, then
exposed to EL for 2 h, and APX2 mRNA accumulation was
determined (Fig. S2A). APX2 induction was observed in the
presence of CHX for the first hour of EL treatment. After 2 h of
EL, APX2 transcript levels were higher in the presence of CHX
than in the absence of CHX (Fig. S2A). One explanation for this
observation is that an unidentified factor, synthesized under EL,
might negatively regulate EL-driven APX2 induction. By a pre-
treatment with CHX followed by 2 h of DBMIB treatment, we
did not see an effect of CHX on APX2 induction (Fig. S2B). As
a positive control for the CHX treatment, we generated a trans-
genic line, A2P, in which LUCIFERASE (LUC) gene expression
is under the control of the APX2 gene promoter [A2PAPX2(-1507)]
(Fig. 2A). After 2 h of EL treatment, we observed about a 15-fold
change in relative luciferase units (RLU) (Fig. S2C) in the ab-
sence of CHX, whereas in the presence of CHX, there was no
change in RLU, indicating that the CHX treatment effectively
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Fig. 1. EL and DBMIB change expression levels of nuclear genes including
APX2. (A) APX2 transcript abundance under LL, LED, fEL, and hEL. Plants
were exposed to the EL treatments for 1 h. Light qualities have a total of
∼1,000 μmol photons m−2·s−1. hEL was filtered using a 2-cm height column
of water and ice mixture in a clear perspex tray to generate fEL. For LED
treatments, only the EL exposed tissue was harvested. Average values of
fold-change relative to LL were from three biological replicates. Error bars
represent SD. (B) The number of genes up- and down-regulated by EL and
DBMIB treatment. The areas are proportional to the number of genes in
each category.
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inhibited synthesis of the LUC protein (Fig. S2C). Therefore, we
conclude that EL or DBMIB induced APX2 expression in the
absence of new protein synthesis.

Heat-Shock Transcription Elements Are Necessary and Sufficient for
APX2 Gene Induction by DBMIB. Previously reported genetic
screens failed to identify positive regulators of APX2 gene ex-
pression (15, 16), suggesting that these regulators may be re-
dundantly encoded in the Arabidopsis genome. In addition, the
rapid kinetics of the response, its independence of new protein
synthesis, and the preponderance of HSEs predicted in the
promoters of up-regulated genes was reminiscent of the response
to heat shock in many organisms. To remove any effect of heat
on APX2 expression (29) and to investigate a heat-independent
APX2 induction mechanism, we decided to use DBMIB under
LL in a temperature-controlled growth chamber. Under this
condition, we were able to observe strong APX2 induction
(Fig. S2B).
To identify cis-acting elements responsible for APX2 induction

by DBMIB, we generated a series of transcriptional fusion
constructs made with various lengths of the APX2 promoter re-
gion fused to the LUC gene (Fig. 2A). Almost all transgenic lines
containing the A2P construct, which encompasses the 1,507 bp
upstream from the APX2 start codon (Fig. 2A), showed an in-
crease in LUC activity after DBMIB treatment. Several lines had
greater than 10-fold LUC induction by DBMIB (Fig. 2B). The
A2P3 construct, containing 346 bp upstream of the APX2 start
site (Fig. 2A), also showed strong induction by DBMIB, although
the levels of LUC activity were not as high as those from the A2P
construct (Fig. 2B). LUC in the A2P1 and A2P2 constructs,
which contained 203 bp and 281 bp upstream of the APX2 ATG,
respectively (Fig. 2A), did not respond to DBMIB treatment
(Fig. 2B), indicating that the 65-bp region from −282 to −346
was necessary for DBMIB-induced APX2 induction (Fig. 2A).
Deletion of this region (−282 to −346) in the A2P4 construct
resulted in transgenic plants (49/50 T1 lines) with little to no
LUC activity (Fig. 2A), indicating that the 65-bp region from
−282 to −346 is necessary for DBMIB-induced APX2 induction
(Fig. 2B).

We scanned the interval between −282 and −346 of the APX2
promoter for known cis-acting elements, and found two HSEs in
tail-to-tail arrangement (tTTCtgGAAg: HSE2 in Fig. 2A). These
same elements have been reported to be responsible for heat-
induced APX2 expression in a tobacco leaf protoplast transient
expression assay (29), and the elements are known to be the
minimally required sequence for active HSF binding (30). There
are also HSEs in head-to-head arrangement, another functional
type (30), adjacent to the start codon (aGAAgcTTCa: HSE1 in
Fig. 2A); however, HSE1 does not appear to be necessary for
APX2 induction by DBMIB (Fig. 2B).
To investigate whether the 65-bp interval containing HSE2 is

sufficient for DBMIB-driven APX2 expression, we generated
transgenic plants (HS294), in which LUC expression is under the
control of the 35S cauliflower mosaic virus (35S) minimal pro-
moter (Fig. 2A). None of the HS294-containing plants showed an
increase in LUC activity after exposure to DBMIB (Fig. 2B).
However, when two copies of the 65-bp interval were placed in
front of the 35S minimal promoter and LUC fusion [(I + II) × 2]
(Fig. 2A), 63% (31 of 49) of T1 transgenic plants showed LUC
induction by DBMIB (Fig. 2B). We further subdivided the 65-bp
region into two fragments: I (29 bp) and II (36 bp) (Fig. 2A).
When three copies of fragment I encompassing HSE2 (I × 3)
were attached to the 35S minimal promoter and translationally
fused to LUC (Fig. 2A), about half (26 of 54) of the transgenic
plants (T1) showed DBMIB-induced LUC induction, and the
highest induction ratios in I × 3 were greater than those of two
copies of the 65-bp interval [(I+II) × 2] (Fig. 2B). Three copies
of fragment II (II × 3), lacking HSE2 (Fig. 2A), failed to show
any DBMIB-induced LUC expression in the 64 T1 plants tested
(Fig. 2B). Taking these data together, we conclude that a 29-bp
element containing HSE2 is both necessary and sufficient to
induce gene expression after short DBMIB treatments (Fig. 2B).

Dynamics of APX2 Induction by HSFs Under Stress Conditions. The
inverted repeats of HSEs, such as HSE2, are bound by HSFs
(30), thus making HSFs the primary candidates mediating APX2
up-regulation in response to EL. In Arabidopsis, there are 21
HSFs (31): 15 type A, 5 type B, and 1 type C, characterized by
their domain architectures. Because only type A HSFs contain
transcriptional activation domains (31), and because it was
reported that overexpression of HSFA2 and HSFA3 could induce
APX2 expression in the absence of stress (32–34), we focused on
type A HSFs as possible regulators of APX2 expression.
Constructs expressing each individual type A HSF under the

control of the 2 × 35S promoter were introduced into wild-type
plants. We collected leaf tissue from T1 plants, and monitored
APX2 transcript levels using real-time RT-PCR (Fig. S3A). Be-
sides HSFA2 and HSFA3 overexpression, HSFA1B, HSFA1D,
HSFA4A, and HSFA6B overexpression induced APX2 (fold-
change >10) compared with transgenic control plants harboring
only the binary vector or wild-type Col-0 (Fig. S3A). Because
knockout mutant lines of HSFA1D, HSFA2, and HSFA3 were
available in the same genetic background from the SALK
T-DNA collection, we focused on these three HSFs. The over-
expression of HSFA1D, HSFA2, and HSFA3 were confirmed in
the next generation (Fig. S3B). There was a hierarchy of APX2
expressions levels with HSFA1D > HSFA2 > HSFA3 (Fig. 3A).
We checked whether HSFA1D, HSFA2, and HSFA3 genes

were up-regulated in EL. HSFA1D mRNA was detectable in LL,
but its levels remained low after exposure to EL for 1 h (Fig. 3B
and Fig. S3C); moreover, between 1- and 2-h treatment, no
further increase was observed (Fig. 3B). mRNA levels of both
HSFA2 and HSFA3 were low in LL, but dramatically increased in
response to EL (Fig. 3B and Fig. S3C). A time-course of HSFA2
mRNA levels in EL revealed an induction pattern that is very
similar to that of APX2 (Fig. 3B, and Figs. S2A and S3C). In
contrast, HSFA3 mRNA levels increased continuously during 2 h
of EL treatment (Fig. 3B and Fig. S3C). The EL-driven in-
duction patterns of HSFA1D, HSFA2, and HSFA3 were similar
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to those elicited by a combined treatment of moderate light
stress and heat stress (32).
The similarity of induction kinetics in EL between APX2 and

HSFA2 prompted us to test whether EL-driven HSFA2 induction
required new protein synthesis. We determined the induction
levels of HSFA1D, HSFA2, and HSFA3 by EL in the presence of
CHX and compared induction levels to LL samples (Fig. 3B).
Both HSFA1D and HSFA2 were induced in the presence of
CHX; they accumulated to even higher levels in CHX. In con-
trast, the induction of HSFA3 was completely abolished by the
CHX treatment (Fig. 3B). Thus, the induction of HSFA1D and
HSFA2 by EL does not require new protein synthesis, whereas
new protein synthesis is required for HSFA3 induction by EL.
We obtained homozygous T-DNA insertion lines from the

SALK collection for HSFA1D (SALK_022404), HSFA2 (SALK_
008978), and HSFA3 (SALK_011107). After backcrossing at least
twice, we confirmed the absence of HSFA1D, HSFA2, and HSFA3
transcripts in the T-DNA insertion mutants by semiquantitative
RT-PCR (Fig. S3D). The mutants were used to test whether
HSFA1D is required for EL-driven HSFA2 and HSFA3 in-
duction, and whether HSFA2 or both HSFA1D and HSFA2 are
essential for HSFA3 induction by EL (Fig. S3 E–G). In an
hsfa1d-null mutant, HSFA2 and HSFA3mRNA accumulated in a
similar manner to wild-type. Induction of HSFA3 by EL was even
faster in hsfa1d than wild-type (Fig. S3E). Similarly, we observed
no difference from wild-type in EL-driven HSFA3 induction
levels in either the hsfa2 or hsfa1d hsfa2 double mutant (Fig. S3 F
and G).
Homozygous null-mutants were exposed to EL and the levels

of APX2 expression were quantified. Although both hsfa1d and
hsfa2 mutant plants exhibited a reduction of APX2 transcript
accumulation in response to EL, (Fig. 4A, Left), there was still
a significant increase in APX2 RNA after EL treatment. More-
over, after 1 h of EL, APX2 induction in an hsfa3-null mutant
was indistinguishable from wild-type.
To better understand the individual contributions of HSFA1D,

HSFA2, and HSFA3 to APX2 expression, we exposed single- and
higher-order mutants of hsfa1d, hsfa2, and hsfa3 to three envi-
ronmental stresses: EL, heat (40 °C), or DBMIB (Fig. 4A). In
EL, the hsfa1d hsfa2 hsfa3 triple-mutant had drastically lower
APX2 induction levels compared with all other genotypes
(Fig. 4A). The role of HSFA1D, HSFA2, and HSFA3 in EL-
driven APX2 expression was also confirmed by the near elimi-
nation of LUC activity in the triple-mutant compared with wild-
type after 2 h of EL treatment (Fig. S3H).

In EL, the contribution of HSFA1D for APX2 expression is
greater than HSFA2, which is greater than HSFA3 (Fig. 4A,
Left). Although overall induction levels caused by heat were
lower than those caused by EL, HSFA1D was also the major
contributor to heat-induced APX2 expression (Fig. 4A, Center).
Under DBMIB treatment, HSFA1D again played the major role
in APX2 expression and the contribution of HSFA2 and HSFA3
for DBMIB-induced APX2 expression was marginal (Fig. 4A,
Right). In summary, HSFA1D is the major regulator of APX2
induction by multiple stresses, whereas the relative contribution
of HSFA2 and HSFA3 to APX2 gene expression varied with
the stress.
The contributions of the three HSFs to growth and develop-

ment were assessed by comparing the triple-mutant to wild-type
Col-0 in LL vs. EL (Fig. S4). Under a 12-h LL/12-h dark cycle, 3-
wk-old hsfa1d hsfa2 hsfa3 plants were smaller than wild-type
(Fig. S4A, LL) and flowered early (Fig. S4B). After 2 d of EL 12-
h/Dark 12-h, we observed that emergent leaves of hsfa1d hsfa2
hsfa3 were yellow; however, over time, older leaves appeared to
recover (Fig. S4A, EL).

Posttranslational Regulation of HSFA1D by EL. HSFA1D transcrip-
tion did not appear to be regulated by EL. Thus, we tested
whether this protein is regulated posttranscriptionally in re-
sponse to EL. The subcellular localization of HSFA1D under LL
and EL was determined using transgenic lines expressing
a HSFA1D-YFP-HA fusion protein in the A2PAPX2(-1507)/hsfa1d
hafa2 hsfa3 background. We isolated 12 transgenic lines har-
boring the HSFA1D-YFP-HA construct (Fig. S5A). Each line
had various amounts of the fusion protein, and the basal LUC
activities under LL were relatively proportional to the amount of
the fusion protein (Fig. S5 A and B). After exposure to 1 h of EL,
all transgenic lines showed increased APX2 expression as mea-
sured by LUC activities (EL1h/LL) (Fig. S5C) but untrans-
formed hsfa1d hsfa2 hsfa3 plants did not. These data indicate
that the HSFA1D-YFP-HA fusion protein is biologically func-
tional for EL-driven APX2 induction, and that HSFA1D could
functionally replace HSFA2 and HSFA3 in APX2 induction
under EL.
In transgenic line 24, in which basal LUC activity was similar

to that in wild-type, HSFA1D-YFP-HA localized mainly in the
cytoplasm (Fig. 5 A–C). In contrast, in transgenic line 14, which
overexpressed the fusion protein and had the highest basal
LUC activity in LL (Fig. S5 A and B), HSFA1D-YFP-HA was
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Fig. 3. Overexpression of HSFA1D, HSFA2, and HSFA3 could induce APX2
expression under LL. (A) Fold-changes of APX2 under LL in HSFA1D-, HSFA2-,
and HSFA3-overexpression lines, relative to wild-type Col-0 plants, were
determined. The average and SEs were calculated from real-time RT-PCR of
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changes of HSFA1D, HSFA2, and HSFA3 by the indicated time of EL were
determined using real-time RT-PCR. Fold-changes, relative to untreated LL
samples, in the presence of 200 μM CHX and in mock-treated (ethanol)
samples were displayed using filled and blank bars, respectively. Two bi-
ological and four technical replicates were tested to calculate the average
and SEs.
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localized both in the cytoplasm and the nucleus (Fig. S5D). After
30 min of EL treatment, signals were observed exclusively in the
nucleus in both lines (Fig. 5 D–F and Fig. S5E). Taken together,
these data show that nuclear accumulation of HSFA1D is cor-
related with EL-driven APX2 expression. In addition to nuclear
localization, activation of HSFA1D might be required to fully
induce APX2 gene expression under EL, because LUC activity
increased disproportionately in line 14 (Fig. S5C).
In mammals, disulfide bond formation between three HSF

monomers is important for its activity as a transcriptional regu-
lator, presumably because of stabilization of the trimer (35, 36).
To understand whether this function is conserved in Arabidopsis,
we tested the effects of disulfide bonding in EL-driven APX2
expression. HSFA1D contains two cysteine residues at amino
acid positions 153 and 357. These two cysteine residues were
mutated to serines and then a construct expressing the mutant
protein, hsfa1d C153S, C357S-YFP-HA (under the control of the
HSFA1D promoter) was introduced to hsfa1d hsfa2 hsfa3.
Four transgenic lines were isolated and their expression levels
were determined. Protein levels of hsfa1dC153S, C357S-YFP-HA were
comparable to thoseofHSFA1D-YFP-HAlines14and24 (Fig.S5F);
however,APX2 induction levels by EL in hsfa1dC153S, C357S-YFP-HA
lineswere significantly lower thanHSFA1D-YFP-HA(Fig. 4B and
Fig. S5G), indicating that disulfide bonding is critical for tran-
scriptional activity of HSFA1D for EL-driven APX2 expression.
Of note, Arabidopsis hsfa1dC153S, C357S-YFP-HA was still able to
localize to the nucleus (Fig. 5 G–I), in contrast to the cysteine-
to-serine mutant form of mammalian HSFs, which remain in the
cytoplasm (35). Taken together, these data show that nuclear
translocation of HSFA1D is coupled to its transcriptional activa-
tion in EL. These two processes then control the degree of APX2
induction.

Discussion
Our studies demonstrate a role for a subset of HSFs in rapid
changes in nuclear gene expression in response to a redox-
generated plastid stress signal. We have shown a role for three
Arabidopsis HSFs—HSFA1D, HSFA2 and HSFA3—regulating
APX2 expression in response to a change in redox generated by
either EL or DBMIB, although HSFA6B may also have a minor
role. HSFA1D plays a dominant role in the rapid response of
plants to EL stress. In EL, preexisting HSFA1D accumulates in
the nucleus, where it likely becomes activated by changes in
disulfide bonding. Although no new protein synthesis is required
for deployment of this rapid response, the response is likely to be
sustained through the transcriptional activation of genes for
HSFs and other transcription factors.
Multiple intracellular signaling pathways have been shown to

play a role in the genomic response of plants to stress. Re-
markably, these stress signals are almost always generated in
chloroplasts, a highly active metabolic compartment where oxy-
gen is generated during photosynthesis. Recent reports have
identified several metabolic intermediates or degradation prod-
ucts whose accumulation signals changes in nuclear gene ex-
pression during EL stress, including: β-cyclocitral, a breakdown
product of the carotenoid β-carotene (6); MEcPP, a precursor of
isoprenoids (7); and PAP (5). Although all of these stresses were
created after EL treatments of plants, it is not clear at this time
how to compare conditions from laboratory to laboratory. For
example, nuclear gene expression in response to β-cyclocitral
accumulation shares about 80% common genes with genes
whose expression is altered by the 1O2 signaling pathway (con-
ditions in which APX2 may play no role). Similarly, signaling by
MEcPP may be condition-specific. Contrary to the results of
Xiao et al. (7), our global expression studies indicated that HPL1
gene expression is down-regulated (Dataset S1), rather than up-
regulated. No obvious candidates exist for identification of the
activator of APX2 gene expression in response to nuclear accu-
mulation of PAP except for ZAT10, which is also up-regulated in
PAP overaccumulators, such as altered expression of apx2 8 (5). In
the case of PAP, nuclear localization of the phosphonucleotide
can regulate the activity of exoribonuclease, thereby directly al-
tering RNA pools; however, this is likely to indirectly affect
APX2 and as yet it is unclear whether this pathway intersects with
the HSF response.
Although there appears to be a number of signals that initiate

EL stress signaling pathways, the transcription factors that rap-
idly regulate expression of hundreds of nuclear genes are mostly
unknown. Previous studies reported that during heat stress,
HSFA2 binds to the HSE2 element involved in APX2 induction
by EL (29). In addition to heat, we showed that APX2 was in-
duced by the reduced PQ pool in the absence of heat stress.
APX2 induction by LED (Fig. 1A), fEL (Fig. 1A), and LL plus
DBMIB (Figs. S1B and S2B) reflects that there are at least
two pathways for APX2 expression: heat-dependent and heat-
independent pathways.
It is also possible that these conditions generate a shared

secondary signal that is transduced to the nucleus to regulate
APX2 gene expression. A good candidate for this molecule is
H2O2, which is generated during both heat and EL stress con-
ditions (8, 37) (Fig. S1 C and E). However, the relationship
between reduced PQ pool and H2O2 generation needs additional
investigation because we could not—nor would we expect to—
observe significant differences in the amount of H2O2 by our
DBMIB treatment (Fig. S1C), although the DBMIB treatment
could induce APX2 expression (Figs. S1B and S2B).
A model of the signaling network would predict that in con-

ditions of fluctuating light intensity or prolonged high-intensity
light, the PQ pool becomes reduced, and generates unidentified
signaling molecules in chloroplasts (Fig. S6). The extent to which
the different chloroplast signals (PAP, β-cycocitral, MEcPP)
function in this HSF-mediated APX2 expression in parallel or
independent pathways remains to be investigated. Indeed, given
that there are substantial differences in the relative induction of

Fig. 5. Translocation of HSFA1D from cytoplasm to the nucleus under EL.
(A–C) Cytoplasmic localization of yellow fluorescence signals from the
HSFA1D-YFP-HA fusion proteins in a LL condition. (D–I) After 30 min of EL
treatment, the fluorescence signals from HSFA1D-YFP-HA were detected in
the nucleus (D–F), and the fluorescence signals from hsfa1dC153S, C357S-YFP-
HA (G–I) localized in cytoplasm and in the nucleus, with much higher signals
in the nucleus (G–I). The merged images (C, F, and I) were generated by
overlaying yellow fluorescence signal images (A, D, and G) and chlorophyll
fluorescence images (B, E, and H) together. (Scale bars, 10 μm.)
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APX2 under different experimental conditions (Fig. 1A), it is
possible that multiple pathways function in its regulation. The
unidentified molecule in this PQ-mediated pathway possibly
facilitates HSFA1D movement to the nucleus. Disulfide bond
formation among HSFA1Ds activates the HSF transcription
complex to regulate genes such as APX2 and HSFA2. HSFA2
together with HSFA1D further increases APX2 transcription. If
the EL condition is prolonged, newly synthesized unknown
protein factors may induce expression of HSFA3 and other
transcription factors, which in turn play a role in induction or
repression of hundreds of nuclear genes involved in growth and
metabolism. This transcription program may then protect the
plant from numerous environmental stresses.
In conclusion, the identification of the gene networks involved

in plants’ responses to stress is an area of considerable interest to
plant biotechnologists. Our nascent studies identifying elements
within the common set of EL and DBMIB up-regulated pro-
moters indicate a convergence of plant responses to light and
other abiotic stresses, including cold, dehydration, and heat at
the level of transcriptional regulation, and may help to decipher
this complex genetic program.

Materials and Methods
See Dataset S3 for a list of primers used in this study.

Plant Growth Conditions and Stress Treatments. Arabidopsis plants were
grown on a Linsmaier and Skoog medum (Caisson Laboratories) in growth
chambers, or SALK Institute greenhouse number 3 (22 °C) for 3 to ∼4 wk

before collection for the LUC assay or RNA extraction. Plant leaf tissue was
incubated for at least 6 h in a LL growth chamber (light intensity was
65 μmol photons m−2·s−1, 22 °C) and then collected as an LL sample. The leaf
tissue was exposed for the indicated time to a light intensity of 1,300 μmol
photons m−2·s−1 (22 °C) (EL) or to 24 μM DBMIB (Aldrich) solution following
3 min of vacuum infiltration. hEL and fEL were generated by the metal
halogen bulb lamp. For fEL, a perspex box containing a 2-cm height column
of water and ice mixture was placed below the light source. The LED array
system consists of nine individual white Luxeon-III star LEDs (Lumileds
Lighting) controlled by current limiters and focusing lenses.

Leaf Disk Luciferase Assay. Leaf disks were collected from rosette leaves using
a 5-mm diameter cork borer. The leaf disks were floated on 2 mM luciferin
dissolved in 0.002% (vol/vol) Triton X-100 solution in 96-well plates. LUC ac-
tivities were measured using the GLOMAX luminometer (Promega) following
a 2-min incubation in the dark condition to dissipate any possible luminescence
from activated chlorophylls. To get baseline LUC activities, the leaf disks on 2
mM luciferin were incubated in a LL growth chamber for 6 h. Before the EL
treatment, LL RLUwasmeasuredwith a 4-s exposure perwell, and immediately
after the EL treatment, EL RLU was measured in the same way.
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