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Abstract. One of the major challenges in neurodegenerative research is modeling systemic aging. Here, senescence-accelerated
mice such as the multigenic SAMP8 (senescence accelerated prone 8) mice are useful as they are characterized by an early
manifestation of senescence that includes a shortened lifespan and impaired brain and immune functions. While SAMPS8 mice
are widely used tools to address aging and neurodegenerative conditions such as Alzheimer’s disease (AD), the underlying gene
mutations are not known. To make the SAMPS strain a more versatile and useful research tool, we performed exome sequencing,
using SAMRI1 (senescence accelerated mouse resistant 1) mice as controls. We identified 51 SNVs (single nucleotide variants)
that discriminate SAMPS from SAMR1 mice. Using the prediction tool Polyphen2, we were able to subdivide the SNVs into
four categories: splice variants, probably damaging, possibly damaging, and benign. Of these genes, a significant fraction is
predicted to be expressed in the brain. Our data present these genes for a more detailed analysis in aging and neurodegeneration
studies. They underscore the usefulness of SAMPS mice as an animal model to study fundamental mechanisms of both aging
and the pathogenesis of AD.
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INTRODUCTION

Aging is the major risk factor for a plethora of human
diseases. This includes Alzheimer’s disease (AD), a
neurodegenerative disorder that is characterized by a
progressive decline in memory and other cognitive
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functions, leading to dementia [1]. To better understand
the underlying pathogenic mechanisms and to develop
targeted therapies, a host of transgenic animal models
has been developed that reproduce amyloid plaques
and neurofibrillary tangles, the two brain lesions char-
acteristic of the human condition [2]. A prerequisite for
developing these lesions in mice has been the trans-
genic expression of the tau-encoding MAPT or the
amyloid-3 protein precursor (ABPP)-encoding ARPP
gene together with pathogenic mutations that are

ISSN 1387-2877/13/$27.50 © 2013 — IOS Press and the authors. All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial

License.


https://core.ac.uk/display/156676549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.goetz@uq.edu.au

350 F. Delerue et al. / Exome Sequencing of Geriatric SAMPS Mice

present in early-onset familial cases. The vast major-
ity of AD cases, however, are of late onset and hence,
transgenic models do not faithfully model these spo-
radic cases. Here, senescence-accelerated mice such
as the SAMPS (senescence accelerated prone 8) strain
might be useful, as these mice display many features
known to occur early in the pathogenesis of AD, such
as increased oxidative stress and memory impairment
[3]. SAMP8 mice are therefore an excellent model
for studying the earliest neurodegenerative changes
associated with AD, providing a more encompassing
picture of human disease, a syndrome that is triggered
by a combination of age-related events [4].

Together with a series of related senescence-
accelerated mice, the SAMPS strain was established
around 1975 by conventional inbreeding of AKR/J-
derived mice that displayed features of accelerated
aging such as hair loss, reduced activity, shortened
life expectancy, lordokyphosis (increased curvature
of the spine), and periophthalmic (around the eye)
problems [5]. Littermates of mice that did not
show a senescence-associated phenotype were also
inbred, and senescence-resistant, longer-lived SAMR
mice were obtained of which SAMRI1 (senescence
accelerated mouse resistant 1) mice are commer-
cially available. SAMP strains exhibit an early onset
of age-related decline in the peripheral immunity
such as thymic involution, loss of CD4(+) T cells,
impaired helper T cell function, decreased antibody-
forming capacity, dysfunction of antigen-presenting
cells, decreased natural killer activity, increased auto-
antibodies, and susceptibility to viral infection [6].

SAMPS mice have been extensively analyzed for
cognitive functions [7]. Impairment of spatial mem-
ory is initiated at the age of four months, as shown
by using various forms of water and radial arm mazes
[8-10]. By employing the more sensitive radial arm
water maze, impairments in spatial learning became
evident as early as three months of age [11]. In measur-
ing associative memories, fear conditioning or passive
avoidance tasks are widely used [12, 13]. In SAMPS
mice, while associative learning as assessed in the
fear conditioning-paradigm is not affected, both pas-
sive and active avoidance (i.e., learning to escape the
environment in which the aversive stimulus has been
received) are affected, with an age of onset as early as
two months [14, 15].

SAMPS8 mice are neuropathologically characterized
by oxidative changes similar to those found in the AD
brain [16]. For example, key enzymes that detoxify
reactive oxygen species such as MnSOD, catalase or
glutathione peroxidase are all decreased in SAMP8

compared to SAMRI1 mice [17-19]. Increased lipid
peroxidation and carbonyl damage is present as early as
2 months of age [20]. Furthermore, SAMP8 mice have
an impaired glucose metabolism [21], and reveal age-
dependent reductions of various receptors including
for NMDA [22]. Because in the AD brain, deposi-
tion of AP leads to plaque formation and that of the
microtubule-associated protein tau to tangle forma-
tion, these two process have been extensively analyzed
in SAMPS8 mice [23]. Tau was found to be hyper-
phosphorylated using a small set of phosphorylation
site-specific antibodies, but tau filament formation and
tangle formation has not been reported indicating that
the SAMP8 mice present with an early rather than a
more advanced tau pathology [23]. In phosphorylat-
ing tau and causing its aggregation [24], studies in
SAMP8 mice suggest a role for the kinases GSK3
and Cdk5 [25]. Staining with AB-specific antibod-
ies suggested AP deposition in the mice [26, 27];
however because different from the human sequence
of ABPP, the murine protein lacks the amino acids
that are required to generate AP in the first place,
these deposits have been termed ‘Af3-like’ [26]. For
ABPP, age-related increases have been reported, both
at the protein and mRNA level [28-30]. Finally, a glial
pathology characterizes the aging brain and in par-
ticular, the AD brain, and not surprisingly, SAMP8
mice present with a marked astro- and microgliosis [30,
31]. These findings present SAMP8 mice as a suitable
model for aging dementia, thereby complementing the
existing transgenic mouse models.

However, a major drawback in making the best use
of senescence-accelerated mice is that their phenotype
is multigenic and that the underlying gene mutations
are not known. Therefore, we obtained SAMPS8 mice
from a commercial breeder and phenotypically charac-
terized them. To make the SAMP8 model more suitable
for geriatric studies, we performed massively parallel
exome sequencing [32]. By applying this method to
SAMP8 and SAMRI1 mice, we were able to identify
51 SAMPS-specific single nucleotide variants (SN'Vs),
followed by a Polyphen2 analysis that allows pheno-
type predictions.

MATERIALS AND METHODS
Animals

SAMPS8/TaHsd (in short: SAMPS) and SAMRI1/
TaHsd (in short: SAMR1) mice were obtained from
Harlan Laboratories UK Ltd. They were rederived by
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embryo transfer followed by expansion of a colony
in the SPF unit of our institute’s animal facility. Ani-
mal experimentation was approved by the Animal
Ethics Committee (AEC) of the University of Sydney
(approval number K00/1-2009/3/4914).

Phenotypic analysis and histology

The weight of the mice was monitored on a weekly
basis. Immunohistochemical staining for glial fibrillar
acidic protein (GFAP) was done on 3 pm sections of
paraformaldehyde-fixed and paraffin-embedded brain
tissue of 6 month-old mice as described [33]. More
specifically, brains were fixed in paraformaldehyde
and embedded in paraffin using an Excalibur tissue
processor (Thermo). Antigen retrieval was done in a
temperature- and pressure-controlled microwave sys-
tem (Milestone) in Tris/EDTA pH 9.0 for 7 min at
120°C, followed by cooling under running tap water
for 10 min. Primary antibody anti-GFAP (monoclonal
IgG, Sigma, #63893) was diluted 1:100 in block-
ing buffer (heat inactivated 3% normal goal serum,
2% BSA, 0.1% Tween-20 in 1 x PBS) and incubated
overnight at 4°C. After three washes in 1 x PBS,
the sections were incubated with an Alexa-coupled
secondary antibody (Invitrogen, #A-11001) for 1h
at room temperature, followed by three washes in
1 x PBS. The sections were then mounted in Fluoro-
mount medium (Sigma # F4680) and digital images
taken with a BX51 fluorescent microscope (Olympus).

Exome sequencing

Exome enriched, paired end libraries were prepared
from genomic DNA of two SAMPS and two SAMR1
mice following the protocol ‘SureSelect Target Enrich-
ment System for Illumina Paired-End Multiplexed
Sequencinglibrary’ (v1.1.1,November2010, Agilent).
The Illumina Paired-end genomic DNA sample prep
kit (PE-102-1001, Illumina) was used for preparing
the libraries including end repair, A-tailing, and liga-
tion of the Illumina adaptors. For capture, SureSelect
Mouse exome baits (G7550, Agilent) were used to
enrich for the mouse exome. Each sample was pre-
pared with an index in an amplification step following
capture using the Illumina multiplexing sample prepa-
ration oligo-nucleotide kit (PE-400-1001, Illumina).
Enriched sample libraries were pooled in equimolar
batches of three and each batch run as 100 bp paired
end libraries on the Illumina HiSeq 2000 sequencer.

Data analysis

Sequence reads were mapped to the NCBIM37
assembly of the reference mouse genome using
Burrows-Wheeler Aligner (http://bio-bwa.sourceforge
.net) [34]. Untrimmed reads were aligned allowing
a maximum of two sequence mismatches and were
discarded where they aligned to the genome more
than once. Sequence variants were identified with
SAMtools (http://samtools.sourceforge.net) [35] and
annotated using Annovar (http://www.openbioinforma
tics.org) [36]. A version of PolyPhen?2 (http://genetics.
bwh.harvard.edu/pph2) [37], adapted for the mouse,
was utilized for the calculation of the variant effect.

Validation of single nucleotide variants

SNVs identified by Next Generation Sequencing
were validated using the Amplifluor SNP genotyping
system (Chemicon, Millipore). Assays were designed
to each SNV of interest and validated against a
set of Samp8 and SamR1 mice. Primer sequences
for each SNV that has been assayed can be found
in the Supplementary Table 1 (available online:
http://dx.doi.org/10.3233/JAD-130089).

RESULTS
Phenotypic characterization of SAMPS8 mice

To phenotypically characterize SAMP8 mice and
differentiate them from SAMR1 mice, we determined
the lifespan of both strains. According to Harlan from
whom we had obtained the mice, the median survival
time of SAMPS8 mice is 12.1 months whereas SAMR1
mice have a median survival time of 18.9 months. Oth-
ers reported a mean lifespan of 9.7 months for SAMP
mice (not specifying the sub-strain) and 16.3 months
for SAMR mice, while standard inbred mouse strains
(such as C57B1/6) have a life expectancy in the order
of 28 months [4]. In agreement with previous data, we
found that SAMPS8 mice displayed an increased mor-
tality compared to SAMR1 mice (Fig. 1A), and gained
less weight as they aged (Fig. 1B). Atsix months of age,
using immunohistochemistry, we did not find evidence
for amyloid plaque formation in the SAMPS8 compared
to the SAMR1 mice using the 4G8 antibody, nor did
we find pronounced differences in tau phosphoryla-
tion using antibodies 12E8, AT180, or AT8 (data not
shown). However, what we found at this age was a
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Fig. 1. Phenotypic characterization of SAMP8 mice. A) SAMPS have an increased mortality compared to SAMRI mice, (B) they are charac-
terized by a reduced weight gain due to reduced body musculature, and (C) already at an age of 6 months reveal pronounced astrogliosis as
evidenced by GFAP immunoreactivity. The pons is shown. For comparison, both strains revealed astrogliosis in the hippocampus but not the

cortex.

pronounced astrogliosis in the pons of SAMPS8 com-
pared to SAMRI1 mice (Fig. 1C). In the hippocampus,
the two strains showed a similar degree of astroglio-
sis, while cortical areas were, in our hands, virtually
free of activated astrocytes (data not shown). Pheno-
typically, by three to four months of age, SAMP8 mice
can be discriminated from SAMR1 mice based on their
reduced weight (Fig. 1B), a slightly hunched position,
skin coarseness, and partial alopecia, as shown for 6
month-old mice (Fig. 2A).

Exome sequencing of SAMPS8 and SAMRI DNA

To identify genes with a putative role in the SAMP8
phenotype, we performed exome sequencing of two
SAMP8 and SAMRI mice each. Exome enrichment
allowed us to successfully sequence 85-90% of the
CCDS exome to a high level of coverage. From this
sequencing, we found 226 SNVs that were common
between the two SAMPS8 mice and not seen in either
SAMRI1 mice or in any previous sequencing effort

(>250 exomes, mostly C57B1/6). By removing olfac-
tory and vomeronasal genes to eliminate a large subset
of possible SNV call errors due to the high sequence
homology amongst these gene family members, and
excluding genes with multiple SNVs (also indicating
short-read alignment errors rather than mutations) the
list was reduced to 113 SN'Vs.

Of the 113 SNVs, 105 were selected for validation
using a specific Amplifluor assay to each SNV on a
larger pool of SAMP8, SAMRI1, C57B1/6, and AKR/J
control samples (8 assays could not be designed with
primers of sufficient quality). Of the 103 SNVs, 37
were shared with the AKR/J control strain (i.e., a poly-
morphism between the C57B1/6 reference genome and
the control AKR/J sample), 13 assays failed, 2 were
shown to be heterozygous and unique to SAMPS, 1
was a false positive, 1 was homozygous in the SAMP8
strain and heterozygous in all controls, and 51 SNVs
were unique to SAMPS (Table 1). We found that the
SNVs were found on all chromosomes but 9, 16, and
Y. Most SNVs were found on chromosome 8 (a total
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Fig. 2. Phenotype predictions. A) Partial alopecia shown for 6 month-old SAMP8 compared to SAMR1 mouse. B) Of the 51 SNVs that we
identified as being unique to SAMPS, 10 are possible splice variants, while 41 are within the coding sequence. According to the amino acid
substitution prediction tool Polyphen2, of the 41 coding variants, 24 are possibly or probably damaging (confidence of 0.5-1.0), while 17 are
probably benign (confidence <0.5). C) By consulting the Allen brain atlas, the four groups are either moderately or strongly expressed in brain,
not expressed or there are no data available.
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of ten), followed by chromosome 13 (five SNVs), and
4,7, 10, and 19 (with four SNVs each).

Polyphen prediction of SAMPS8-specific single
nucleotide variants and brain-specific expression
of SAMPS genes

Of the 51 SNVs that we identified as being unique
to SAMPS8, 10 are possible splice variants (intronic
mutations located within 10 base pairs of the exon
boundary), while 41 are within the coding sequence.
According to the amino acid substitution predic-
tion tool Polyphen2, of the 41 coding variants, 24
are possibly or probably damaging (confidence of
0.5-1.0), while 17 are probably benign (confidence
<0.5) (Table 1, Fig. 2B). The genes with SNVs have
multiple functions as suggested by a Gene Ontology
(GO) analysis (Table 2).

21 of the genes have an OMIM entry and 11 have
a reported phenotype in mice with a null mutation
(Table 2). By consulting the Allen brain atlas (Allen
Brain Atlas [Internet]. Seattle (WA): Allen Institute
for Brain Science. Copyright © 2009. Available from:
http://www.brain-map.org), we found that within the
first category (splice variants), 8 of 10 genes are
expressed in brain, while for 2 no expression was
reported (Table 3, Fig. 2C). For the second category
(probably damaging SNVs), for three genes, no data
are available, four are not expressed in brain, and nine
are expressed in brain, ranging from very slight to high
expression levels, and from a restricted expression pat-
tern to expression throughout the brain (Fig. 2C). For
the third category (possibly damaging), no datais avail-
able for one gene; and 7 genes are listed as being
expressed in brain. For the fourth category (benign),
for 1 no data are available on brain expression, 5 are not
expressed in brain, and 2 are slightly expressed in brain
(Fig. 2C). Overall, the data indicate that at least 50%
of all identified genes may have a function in the brain
(Fig. 2). Whether the SNVs cause changes in levels of
the encoded proteins, in their subcellular localization,
association with other proteins and/or in their activity,
remains to be determined in subsequent studies.

DISCUSSION

Characterized by a range of age-associated impair-
ments, which includes the nervous system, senescence-
accelerated SAMPS mice present themselves as an
excellent geriatric model [38]. We confirmed that
SAMP8 mice die prematurely and that they display
a reduced weight gain compared to SAMRI1 mice.

Astrogliosis has been suggested as a useful marker to
discriminate, at a pre-symptomatic age, the two strains;
however, we found this less reliable as in our studies
astrogliosis depended on the brain area investigated,
with both strains showing a similar degree of activa-
tion in the hippocampus, while SAMR1 mice showed
a much lesser degree of astrogliosis in the pons com-
pared to SAMPS mice.

We also performed exome sequencing and identified
51 SNVs (mutations) that are unique to SAMPS8 mice,
using senescence-resistant SAMR1 mice as well as the
two inbred strains C57Bl/6 and AKR/J (from which
SAMR1 and SAMPS8 have been originally derived [5])
as controls. 10 of the SN'Vs are possible splice variants;
41 are within the coding sequence. Using the predic-
tion tool Polyphen2, we identified 24 of the 51 SN'Vs as
being either probably or possibly damaging. In com-
ing up with these predictions, it is not only the type
of amino acid that is critical but also where it sits in
relation to the different domains, such as binding and
active sites. Interestingly, not all A-T SN'Vs are benign,
as is the case, e.g., for SLC12A4.

As evidenced by GO analysis, the mutated genes
encode proteins with a wide range of cellular functions.
These include ion transport, cytokine activity, axono-
genesis, heme binding, GTP binding, protein transport,
and others. 21 of the genes have an OMIM entry and 11
have a reported phenotype in mice with a null muta-
tion. Consulting the Allen brain atlas revealed that a
significant fraction is expressed in the brain, often with
a regional pattern and ranging from very low to pro-
nounced expression levels. Overall, the data indicate
that at least 50% of all identified genes have a function
in the brain.

When we analyzed the genes with brain expres-
sion in more detail and restricted the analysis to those
SAMPS8 SNVs for which the Polyphen tool either made
no predictions or predicted that they are ‘probably or
possibly damaging’, we identified several gene prod-
ucts that are worth being discussed in the context of the
known SAMPS brain phenotype: APBA3 (also known
as Mint3) encodes an adapter protein that is part of
the X11 protein family. Interestingly, APBA3 interacts
with ABPP from which A is derived by proteolytic
cleavage. More recently APBA3 has been identified as
a mediator of ABPP signaling: Its interaction with a
set of transcriptional co-activators was shown to lead
to nuclear localization and transactivation, whereas an
interaction of the same set with Mintl or Mint2 pre-
vented nuclear localization and transactivation [39].
There is increasing evidence that in AD gene regu-
latory networks are deregulated [40]: In the current
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Table 3
SAMP8-specific mutations and predictions of expression in brain. For the 51 SNVs that are unique to SAMPS the genes are indicated we
assessed the expression in brain as provided by the Allen brain atlas (Allen Brain Atlas [Internet]. Seattle (WA): Allen Institute for Brain Science.
Copyright © 2009. Available from: http://www.brain-map.org): CTX, cortex; Hip, hippocampus; Olfact, olfactory bulb; Hypo, hypothalamus;
Crb, cerebellum; Thal, thalamus; pons, pallidum, and medulla. The MGI (Mouse Genome Informatics) link provides additional information on

the gene
Gene name Expression in brain Allen atlas link MGI Link
SYTI11 All brain http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
2649 MGI: 1859547
ARFIP2 CTX & Hip http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
74990537 MGI:1924182
TPP1 CTX & Hip http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68148756 MGI:1336194
NAE1 Slight in CTX http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
76098392 MGI:2384561
TMEM208 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69015745 MGI:1913570
EDC4 CTX & Hip http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68911011 MGI:2446249
CNTNAP4 Very slight in Hip & Olfact http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68196926 MGI:2183572
PARP8 CTX, Hip, & Hypo http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68445676 MGI:1098713
6720463M24RIK No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68797816 MGI:1924994
KLF12 Slight in CTX & Olfact http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69289279 MGI:1333796
SLC12A4 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69873797 MGI:1309465
APBA3 Very slight in CTX http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68442913 MGI:1888527
PQLC3 No data http://www.informatics.jax.org/marker/
MGI:2444067
TMEMS55B CTX, Thal, Pons, Medulla  http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69529095 MGI:2448501
DISERTD621E No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
71723906 MGI:1277178
DNAHCS8 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69626945 MGI:107714
F830016B0O8RIK No data http://www.informatics.jax.org/marker/
MGI:3588218
FXN Very high, all brain http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69672575 MGI:1096879
PTPRD CTX, Hip & Thal http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
855 MGI:97812
SPCS2 CTX, Pallidum & Hypo http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68667312 MGI:1913874
IRS2 Very slight in Hip & Thal  http://mouse.brain-map.org/experiment/show/ http://www.informatics.jax.org/marker/
71211707 MGI:109334
ODZ2 Very slight in Hip only http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
79591631 MGI:1345184
HBB-BH2 No data http://www.informatics.jax.org/marker/
MGI:96025
ANKRD2 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69526647 MGI:1861447
4930506MO7RIK CTX & Hip http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
275675 MGI:1918903
TESK1 Slight in CTX, Hip & Crb  http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69980268 MGI:1201675
D630023F18RIK No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69609007 MGI:2138198
PRL8A9 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
71656664 MGI:1914560
PCDH7 Very slight in CTX http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/

69782790

MGI:1860487
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Table 3
(Continued)

Gene name Expression in brain Allen atlas link MGI Link

IFNA2 No data http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69526838 MGI:107666

ARHGEF5 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69526838 MGI:1858952

LRRC20 Very slight in Crb & Olfact http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68797500 MGI:2387182

ZC3H12D No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
71809097 MGI:3045313

1700019N19RIK No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69114465 MGI:1914757

ZFP352 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
70785732 MGI:2387418

LNX1 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
74277745 MGI:1278335

CDHR2 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69529107 MGI:2687323

LOXHDI1 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
73514737 MGI:1914609

GASS CTX, Hip & Thal http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
74990538 MGI:1202386

CAR7 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
71496276 MGI:103100

F12 No data http://www.informatics.jax.org/marker/

MGI:1891012

BANK1 Slight in CTX http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69528076 MGI:2442120

JARID2 Slight in olfact http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
605 MGI:104813

BCAP31 CTX, Pons & Medulla http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
79544798 MGI:1350933

NLGN3 High all brain http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
70300559 MGI:2444609

WDR19 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
70194988 MGI:2443231

CES2G Very slight in olfact http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68445053 MGI:1919611

PROM2 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
68498519 MGI:2138997

CALU No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
69013426 MGI:1097158

PDP2 No expression http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/
70299983 MGI:1918878

TBC1D30 Very slight in CTX http://mouse.brain-map.org/experiment/show/  http://www.informatics.jax.org/marker/

72283432

MGI:1921944

study, we also identified the enhancer of decapping
Edc4 [41], and KIf12 that encodes Kruppel-like Factor
12, a member of a zinc finger protein family that reg-
ulates gene transcription [42]. Interestingly, a recent
transcriptomic analysis of tau mutant mice revealed a
deregulation of several transcription factors including
Zranbl (a Zinc finger-containing protein) and SFPQ
(splicing factor proline/glutamine rich), also known as
PSF (Polypyrimidine tract-binding protein-associated
Splicing Factor) [43]. Validation of SFPQ revealed that
in AD the transcription factor is relocalized from the
nucleus to the cytoplasm [43].

Among the genes with brain expression are several
that encode enzymes such as kinases and phosphatases
(PTPRD, TESK1, TMEMS55B) that could potentially
regulate the phosphorylation of cytoskeletal proteins
such as tau. TESKI1 is particularly interesting as
together with Spredl, it is an interaction partner of
the kinase MARKK/TAOI that links the microtubule
and actin cytoskeleton [44]. With a SNV in the gene
encoding the signal peptidase SPCS2, more fundamen-
tal processes could be affected in the SAMPS8 mice as
depletion of SPC3 in yeast leads to impaired secretion
and the accumulation of secretory proteins [45]. TPP1


http://mouse.brain-map.org/experiment/show/69526838
http://www.informatics.jax.org/marker/MGI:107666
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http://www.informatics.jax.org/marker/MGI:3045313
http://mouse.brain-map.org/experiment/show/69114465
http://www.informatics.jax.org/marker/MGI:1914757
http://mouse.brain-map.org/experiment/show/70785732
http://www.informatics.jax.org/marker/MGI:2387418
http://mouse.brain-map.org/experiment/show/74277745
http://www.informatics.jax.org/marker/MGI:1278335
http://mouse.brain-map.org/experiment/show/69529107
http://www.informatics.jax.org/marker/MGI:2687323
http://mouse.brain-map.org/experiment/show/73514737
http://www.informatics.jax.org/marker/MGI:1914609
http://mouse.brain-map.org/experiment/show/74990538
http://www.informatics.jax.org/marker/MGI:1202386
http://mouse.brain-map.org/experiment/show/71496276
http://www.informatics.jax.org/marker/MGI:103100
http://www.informatics.jax.org/marker/MGI:1891012
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http://www.informatics.jax.org/marker/MGI:2443231
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encodes the lysosomal enzyme tripeptidyl-peptidase 1,
and mutations in this gene cause a form of spinocere-
bellar ataxia, with patients having a shortened lifespan.
It might be possible, that the SNV found for TPP in the
SAMPS8 mice contributes to the shortened lifespan that
characterizes the strain [46]. A SNV was also found
in the FXN gene, for which a trinucleotide expansion
in human causes yet another ataxia, Friedreich ataxia
[47].

Finally, IRS2 (insulin receptor signaling 2) is an
interesting molecule with central functions including
the regulation of mammalian lifespan and nutrient
homeostasis [48], glucose metabolism [49], as well as
mitochondrial functions and the dealing with oxidative
stress [50]. Moreover, IRS2 is a negative regula-
tor of memory formation and has been shown to
impair NMDA receptor-dependent long-term potenti-
ation [51, 52]. All of these functions are impaired in
the SAMPS mice suggesting that an impaired IRS2
function could potentially contribute to the SAMP8
phenotype.

Having identified a total of 51 SNVs by exome
sequencing that discriminate SAMP8 and SAMRI1, we
anticipate that these will allow a phenotypic discrim-
ination, especially as it is evident from our list that
several of the SNVs are within genes that in principal
could contribute to the SAMPS8 phenotype. Itis reason-
able to assume that a subset of the SN'Vs causes either
changes in protein levels, stability, subcellular local-
ization or posttransational modification of the encoded
proteins, which can be detected provided that suitable
antibodies are available. The SN'Vs should be also use-
ful in monitoring the SAMPS strain to ensure that there
is no genetic drift in any given colony. Furthermore, it
may be possible to establish sub-lines that inherit some
of the SN'Vs and hence result in a segregation of a sub-
set of the phenotypic traits that affect selected systems
such as the brain or the immune system.

As mentioned above, SAMPS8 mice do not present
with typical plaques and tangles, although the accu-
mulation of AP and hyperphosphorylated tau has been
reported [23, 26]. In order to exploit SAMPS8 mice
for AD research a further possibility is to cross the
SAMPS mice with either A plaque-forming or tau
tangle-forming transgenic mice. Here, for example, the
question can be asked whether a tau pathology such as
that of P301L tau mutant mice with a memory pheno-
type [53] or of K3691 mutant mice with neuronal loss
and a motor phenotype [54, 55] would be accelerated
by the presence of distinct SAMP8 SNVs. Alterna-
tively one could ask whether removing or reducing tau
would ameliorate some of the phenotypes that charac-

terize the SAMPS mice [56]. In conclusion, we believe
that our data contribute to ascertaining SAMP8 mice as
a suitable model system to study aging and dementia.
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