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A wide variety of molecular systems that have recently come into the reach of experimental and
theoretical investigation is dominated by quantum phenomena. However, even state of the art quantum
propagation techniques are either unsuitable for general application to molecular systems with strong
interference and tunneling characteristics or are computationally prohibitive for systems with more than a
few degrees of freedom. In this Letter, we introduce a novel quantum propagation technique with wide
applicability, controllable accuracy, and efficient utilization of computational resources. Its performance
is validated for tunneling and dissociating systems with 1, 2, and 3 degrees of freedom, and the scaling
behavior with respect to system dimensionality and requested accuracy is discussed.
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In recent years, the frontiers of physics and chemistry
have advanced to the point where the understanding of
quantum molecular processes has become critical and
classical or semiclassical techniques are no longer ade-
quate for reproducing observed effects. Consequently,
ever more refined numerical methods are being developed
to compute the quantum dynamics of molecular systems
[1-5]. One exceptionally successful method in terms of
balancing computational requirements and accuracy is
the multiconfiguration time-dependent Hartree (MCTDH)
method [6,7]. The variational multiconfiguration Gaussian
(vMCG) approach is a descendant of MCTDH that uses
localized Gaussian functions as a basis set [8,9]. This is
particularly suited to modeling the nuclear wave functions
of molecular systems as they typically contain strongly
localized components. The localized nature of the
Gaussian basis functions tremendously reduces the cost
of the potential energy surface (PES) computation in direct
dynamics [10] or interpolating approaches [11] when
combined with the local harmonic approximation of the
potential, where the Taylor expansion of the potential is
truncated at second order. vVMCG formally scales much
better with dimensionality than grid based methods.
It turns out, however, that processes that involve strongly
interfering components of the wave packet, such as tunnel-
ing scenarios, pose special numerical problems that are
difficult if not impossible to circumvent with vMCG.

In this Letter, we present a novel approach to modeling
such challenging nuclear molecular dynamics processes
with controllable accuracy. It inherits the advantages of
localized basis functions and variational propagation from
vMCG but has lower computational cost and can therefore
handle the large basis sets that are necessary to accurately
model tunneling dynamics.

In vMCG, the wave packet is expanded in a set of time-
dependent Gaussian wave packets (GWPs) whose parame-
ters evolve according to variational equations derived from
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the Schrodinger equation. Most applications of vVMCG
employ fixed width Gaussian functions since the use of
variable width Gaussians increases classicality of the
GWP trajectories and incurs numerical problems with the
propagation [12]. In principle, this approach results in a
variationally optimal representation of the wave packet
that would allow modeling of quantum phenomena with
a minimal number of GWPs. However, the Gaussian
basis is overcomplete and nonorthogonal, which can lead
to severe numerical instabilities. Unfortunately, this is
especially prevalent in tunneling scenarios as individual
Gaussians have to approach each other to accurately rep-
resent interference patterns. Furthermore, a very large
number of narrow, fixed width Gaussians is needed to
accommodate a wave packet with many fine details when
interacting with a barrier as well as where it has a wide
extent before and after the interaction. The propagation
of the Gaussian parameters as given in Ref. [9] also
requires the simultaneous propagation of a matrix that
transforms the GWPs into ‘“‘single particle functions.”
Thus, the number of differential equations that need to be
integrated scales quadratically with the number of GWPs.
With the large number of GWPs needed for tunneling
scenarios, this computational cost becomes prohibitive.

One method that has been used in an attempt to avoid
problems in integrating the evolution of the GWP basis is
ab initio multiple spawning [13,14], in which the centers of
the Gaussians are taken to follow classical paths. However,
in this approach, the basis set evolves completely indepen-
dently of adiabatic quantum effects such as quantum tun-
neling and interference, reducing the effectiveness of the
method in resolving such effects.

The approach described in this Letter eliminates these
issues by treating the overcompleteness of the Gaussian
basis functions as a resource rather than a numerical diffi-
culty. The basis being overcomplete has two key conse-
quences: there are many ways to express the same wave
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function, and wave functions can be accurately propagated
for short times without changing the basis at all. We use
both of these properties in our new method, which comes
down to performing propagations for short times without
changing the basis of Gaussian functions, interspersed
with reexpressing the propagated wave function with a
new set of Gaussians adapted to the evolved wave function.
Similar reexpression of Gaussian wave packets has been
used in ‘“matching pursuit” schemes for split operator
propagators [15,16]. However, we demonstrate that a
(potentially costly) reexpansion into a new basis is not
necessary at every time step. We shall henceforth call
this new method the basis expansion leaping multiconfigu-
ration Gaussian (BEL MCGQG) propagation. A significant
difference between BEL MCG and both ab initio multiple
spawning and vMCQG is that BEL MCG does not attempt to
continuously update the existing basis set for propagation
at later times, and so contains no equations of motion for
basis functions.

In BEL MCG, the nuclear wave function is expanded
in a set of Gaussians that remain stationary between
reexpressions (all quantities given are in atomic units
and i = 1):

N
W(x, 1) =Y A(Dgq,0,p (X), (1)
i=1

with x the vector of nuclear coordinates and

£2q,o,p,(X) = exp{(x — Q)[a;(x — Q,) +iP;] + ¢},
(2)

where Q; and P; are vectors of position and momentum
parameters, a; is a diagonal matrix whose diagonal
elements a, ;; = —(20;;)"? are defined by the elements
of the vector of widths o;, and ¢; is a real normalization
parameter.

In the subspace spanned by these Gaussians, the time
evolution of the coefficients according to the Schrodinger
equation is provided by the Dirac-Frenkel variational prin-
ciple (6W|H — i9,| W) = 0 [17,18], with the Hamiltonian
operator H, yielding

iA(r) = STTHA(p), (3)

where S;; = (g;|g;) is the overlap matrix of the Gaussians,
and H;; = (g,-llfllgj) is the Hamiltonian matrix. The poten-
tial part of the Hamiltonian will be evaluated in the
local harmonic approximation. For time-independent
Hamiltonians, Eq. (3) is a set of coupled differential equa-
tions with constant coefficients that may be solved with a
wide variety of methods. For the example systems dis-
cussed in this Letter, numerical adaptive step size integra-
tion has proven efficient and robust (cf. [19]).

Before the wave packet evolves beyond the space
spanned by the current set of Gaussians, a reexpansion

in a new set needs to be performed to accommodate the
changed state. The reexpansion produces a completely
new set of Gaussians, adapted to the current wave function.
The BEL MCG’s performance does not critically depend
on the specific way of choosing the new expansion, beyond
requiring that the wave function can be faithfully repro-
duced in the new basis set (that is, that one can achieve a
negligible deviation from the wave packet expressed in the
previous set of Gaussians). The procedure described in
Ref. [16] scans the entire Gaussian parameter space with
a Monte Carlo sampling. While this allows for reexpan-
sions with a very low deviation, it is computationally
expensive and constructs unnecessarily complex expres-
sions of the wave packet, again leading to numerical prob-
lems. Fortunately, the redundancy of the GWP set is so
large that there are many configurations of Gaussians that
are equally well suited to expressing the wave function.
The position, momentum, and width parameters can be
selected separately and chosen such that auxiliary optimi-
zation criteria are satisfied.

The following iterative procedure for assigning the
Gaussian function parameters has proven flexible and
robust. It is controlled by a single accuracy parameter .
In the limit of € — 0, BEL MCG converges toward a full
expansion of the wave packet and thus reproduces the
quantum dynamics of the system exactly.

When performing a reexpansion, the new set of Gaussian
functions depends on the previous set of Gaussians only
indirectly, through the form of the evolved ¥4 expressed
in the previous set of basis functions. Basis functions are
added sequentially to the new basis set, starting from an
empty set. For the ith new Gaussian, (1) Determine the
position Q; = maxqf;(Q) with

i—1
Q) =0V, QP —&] Y 1Q - Qill + wl5¥,  (Q,
k=1

“4)

where O[] is the Heaviside step function and 6V¥;_;(Q) =
V,4(Q) — ¥, (Q) is the remaining deviation between
the wave function before the reassignment Wy and the
wave function composed of the first i — 1 new Gaussians
.. f;(Q) is sufficiently smooth and simple for efficient
simplex maximization with the Nelder-Mead method [20].
It ensures that Gaussians are placed in regions that con-
tribute significantly to the probability distribution (®[-])
while spacing them as uniformly as possible (X || - |])
and targeting remaining deviations (last term). A uniform
spacing results in lower basis set overlaps and higher
numerical stability of the subsequent propagation step.
The factor w, whose units depend on the dimensionality
of the problem, adjusts the balance between these consid-
erations. (2) Adjust the widths o; such that

V(Q, + e0;,;)) = V(Q;,+eo)=¢ 5)

263202-2



REVIEW LETTERS

week ending
28 JUNE 2013

PRL 110, 263202 (2013) PHYSICAL

for all degrees of freedom j, with

. v a;; 9V

VIQ.+e.0; )=V(Q,)+ 0o, . — L2 N 6
(Qz e] 0-1,]) (Qz) 0-1,] ax] ) (’)xf 0 ( )

the second order Taylor expansion of the potential at Q;
along the cardinal direction e;. This condition ensures an
acceptably low error is incurred by the local Harmonic
approximation. In practice, this is achieved by sequential
halving of o; ; from a default value until Eq. (5) is obeyed,
for each j. (3) Determine the momentum P; = maxpf%(P)
with

fi(P) =(gq,o.pl6Wi1). (N

The Nelder-Mead method is used again here. This step is
analogous to the procedure described in Ref. [16]. After
this maximization step, the initial expansion coefficient in
Eq. (1) is determined by A; = fI(P;).

Note that the optimizations in steps 1 and 3 need not be
to extremely high tolerance. This is another manifestation
of the overcompleteness of the Gaussian function basis.

While it remains numerically significant, the magnitude
of (8W;|6W;) decreases as Gaussians are added with the
procedure above. New Gaussians need to be added to the
list until (8W;|6W;) <e. After that limit is reached,
the procedure can optionally be continued to add a set of
negligibly populated Gaussians. These additional functions
can be used as sentinels to guard against propagating for
too long before reexpression. A rising population of these
Gaussians is one indication that the significantly populated
states no longer span a suitable space for the wave packet
and a reassignment is necessary.

With the new basis set assigned with negligible
perturbation of the wave function, the matrices S~! and
H required for Eq. (3) are computed from the new parame-
ter set {Q,, o;, P;} and propagation of the coefficients
A continues.

Both the reassignment as well as the propagation scale
as O(N?) with the number of Gaussians N, whereas VMCG
scales as O(N*). Therefore, the much larger number of
Gaussians required to correctly describe the wave packet
while allowing for narrow widths in the vicinity of
complex regions of the potential in tunneling scenarios
can easily be accommodated. Adaptive assignment of
Gaussian widths provides a further advantage over
VvMCQG, in which the widths stay constant throughout the
propagation irrespective of the nature of the PES in the
vicinity of the basis function.

An important aspect of the basis set reexpression proce-
dure is that the locations of the centers of the new
Gaussians do not depend directly on the locations of the
centers of the previous set of Gaussians. When the wave
function is propagating into new regions of configuration
space, the flexibility of the Gaussian basis allows proba-
bility density to migrate a short distance outside the
domain of the Gaussian function centers. When reexpressed

in an unbiased way, this density causes some of the new
basis functions to be located in these regions that the wave
function is propagating into. Similarly, regions of negligible
probability density do not get populated with basis func-
tions, allowing the domain of the basis functions to move
through space with the wave function.

Clearly, accurate propagation requires a sufficiently
high reexpression frequency, which depends on the details
of the calculation. An adaptive algorithm is again used
here. From an initial conservative (high) reexpression
frequency, if the number of GWPs required to achieve
the required reexpression accuracy ¢ is below the user sele-
cted maximum, the reexpression frequency is decreased.
Conversely, rewinding the propagation and increasing
reexpression frequency is effective in maintaining reexp-
ression accuracy. The reexpression frequency is thus auto-
matically adjusted to suit the current complexity of the
wave function.

To demonstrate the viability of the presented approach,
one-, two-, and three-dimensional examples will be dis-
cussed that cover asymptotically free and bound barrier
tunneling scenarios as well as realistic molecular evolu-
tion. The tunneling problems in particular present signifi-
cant challenges that cannot be solved simply with vMCG.
The initial wave packets for all systems are chosen to be of
Gaussian form analogous to Eq. (2).

For transmission through a one-dimensional Eckart [21]
barrier, with e = 103, the BEL MCG method can readily
calculate accurate transmission probabilities from 1 down
to 1073, A more stringent 1D test is transmission through a
rounded rectangular barrier described by

Vi) = 3 fanb[Bx = )] — anbl B+ D

with barrier height D, width v, and steepness parameter 3.
It is more demanding than the Eckart barrier because its
steepness requires much narrower Gaussian widths for
accuracy in the local harmonic approximation, resulting
in a higher number of basis functions for the same level
of propagation accuracy.

Figure 1 shows a snapshot of the density of the propa-
gated wave packet just after interacting with the barrier.
Both the reflected part with the interference pattern as
well as the rather smooth transmitted part are reproduced
well with BEL MCG. The degree of convergence with
respect to the deviation parameter & is shown. At most,
600 Gaussians were required. The quality of reproduction
is similar for other times, through to the wave function no
longer significantly interacting with the barrier.

As a 2D test problem, we use the potential

Vo(xp, xp) = Vi(x)) + k(63 + D)2 =872 (9)

a harmonic ring with the rounded rectangular barrier super-
imposed on it. § and k denote the radius and the curvature
of the ring, respectively. This potential is not separable and
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FIG. 1 (color online). Propagated density for rounded rectan-
gular barrier (double-dashed line, right axis) with (all in atomic
units) D = 30, 8 = 100, and y = 0.0625. The W(x, 0) parame-
ters are Q = —0.7, o = 0.0728, and P = 25. The mass is 10.
Density at £ = 0.012 is shown for exact calculation (solid black
line) and BEL MCG with & = 102 (dotted blue line) and
e = 1073 (dashed red line).

anharmonic, presenting a challenging test case that incurs
prohibitively large computational requirements when
treated with vMCG.

Figure 2 shows the density of the wave packet just after
interacting with the barrier. The distribution of the density
along the potential ring with the transmitted part and the
interference pattern of the reflected part are all excellently
reproduced. As expected, more Gaussians are required for
the same & than in the 1D case, with 800 Gaussians being
required to maintain accuracy at the & = 1073 level. This
example involved 276 reexpressions (cf. 12 119 integration
time steps). For comparison, a poorly converged, 100 GWP
vMCG calculation for the same wave packet requires twice
the CPU time.

45 -1 -05 0 0.5 1 15

FIG. 2 (color online). Density propagated on V, with (all in
atomic units) D=15, B=30, y=0.0625, k=20, and 6 = 1. The
W(x, 0) parametersare O, =—1,0,=0,0; = 0, = 0.1, P, = 0,
and P, = 15. The mass is 10. Density at t = 0.055 is shown for
exact calculation (top panel) and BELMCG with e = 1073 (bottom
panel) with locations of Gaussian function centers (circles).

If a more integrated quantity such as barrier transmission
probability is desired, a larger & and thus a much lower
number of Gaussians are sufficient to obtain converged
results with BEL MCG.

An application of BEL MCG to a more realistic prob-
lem, although not one involving tunneling, is the calcula-
tion of the photodissociation spectrum of NOCI on the
S, surface. This problem has been studied in detail in the
past and has been used for testing early in the development
of new quantum dynamics methods [11,22,23]. We per-
form the 3D calculation in body-fixed Cartesian coordi-
nates, using the same PES as in previous work. See
Refs. [11,23] for details. A single populated Gaussian is
used as the initial wave packet on the S; surface, and the
photodissociation spectrum is calculated from the autocor-
relation function of the wave function evolving in time.

Figure 3 shows the calculated photodissociation spec-
trum calculated with BEL MCG and with MCTDH using
the same Hamiltonian. As & decreases, the calculated
photodissociation spectrum converges toward the con-
verged MCTDH result. Achieving the & = 10~3 matching
criterion required at most 1300 Gaussians. The shape and
position of the adsorption feature is well reproduced,
although at & = 1073 a small difference remains in the
peak intensity.

These test systems demonstrate the BEL MCG’s appli-
cability to a variety of scenarios related to the nuclear
motion of chemical systems on a single PES [24].
Convergence toward the correct result is shown for all of
these systems. While the required number of Gaussians
depends strongly on the type of system under investigation,
the method is generally applicable to any time-independent
potential surface. Generalization to fully coupled, multi-
state PESs is expected to be straightforward, but time-
varying Hamiltonians lie outside the scope of BEL MCG.
The reexpression procedure described in this Letter is

o(FE) (arb. units)

0.75 1 1.25 1.5 1.75 2
Energy (eV)

FIG. 3 (color online). Photodissociation spectrum of NOCI on
S, calculated with MCTDH (solid black line) and BEL MCG
with & =3 X 1072 (long-dashed green line), ¢ =3 X 1073
(short-dashed blue line), and & =1 X 1073 (dotted magenta
line). The wave function is propagated for 20 a.u.
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efficient, robust, adapts automatically to the user selectable
accuracy parameter, and only requires the PES evaluation
at reassignment steps. Furthermore, once the Gaussian
widths have been fixed (which may be an approximate
process), PES information is needed only at the Gaussian
centers Q;.

The BEL MCG method will be available in the develop-
ment version of the Heidelberg MCTDH package.
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*wkoch@rsc.anu.edu.au
’Ltjf@rsc.anu.edu.au
[1] R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).
[2] N. Makri, Annu. Rev. Phys. Chem. 50, 167 (1999).
[3]1 M. Yang, J. Chem. Phys. 129, 064315 (2008).
[4] J. Sielk, H.F. von Horsten, F. Kriiger, R. Schneider, and
B. Hartke, Phys. Chem. Chem. Phys. 11, 463 (2009).
[51 A. Shimshovitz and D.J. Tannor, Phys. Rev. Lett. 109,
070402 (2012).
[6] H.-D.Meyer, U. Manthe, and L. Cederbaum, Chem. Phys.
Lett. 165, 73 (1990).
[7]1 H.-D. Meyer, Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2, 351 (2012).
[8] I. Burghardt, H.-D. Meyer, and L. S. Cederbaum, J. Chem.
Phys. 111, 2927 (1999).

(91
[10]
(11]
[12]

[13]

263202-5

G.A. Worth, M. A. Robb, and I. Burghardt, Faraday
Discuss. 127, 307 (2004).

B. Lasorne, M. J. Bearpark, M. A. Robb, and G. A. Worth,
Chem. Phys. Lett. 432, 604 (2006).

T.J. Frankcombe, M. A. Collins, and G. A. Worth, Chem.
Phys. Lett. 489, 242 (2010).

S.-I. Sawada, R. Heather, B. Jackson, and H. Metiu,
J. Chem. Phys. 83, 3009 (1985).

M. Ben-Nun and T. J. Martinez, J. Chem. Phys. 108, 7244
(1998).

M. Ben-Nun, J. Quenneville, and T.J. Martinez, J. Phys.
Chem. A 104, 5161 (2000).

S. Mallat and Z. Zhang, IEEE Trans. Signal Process. 41,
3397 (1993).

Y. Wu and V.S. Batista, J. Chem. Phys. 118, 6720
(2003).

P. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376
(1930).

J. Frenkel, Wave Mechanics: Advanced General Theory
(Clarendon, Oxford, 1934), Vol. 2.

T.J. Frankcombe and S.C. Smith, J. Theor. Comput.
Chem. 02, 179 (2003).

J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

C. Eckart, Phys. Rev. 35, 1303 (1930).

U. Manthe, H.-D. Meyer, and L. S. Cederbaum, J. Chem.
Phys. 97, 3199 (1992).

B. Lasorne, M. A. Robb, and G. A. Worth, Phys. Chem.
Chem. Phys. 9, 3210 (2007).

B.T. Sutcliffe and R.G. Woolley, J. Chem. Phys. 137,
22A544 (2012).


http://dx.doi.org/10.1146/annurev.pc.45.100194.001045
http://dx.doi.org/10.1146/annurev.physchem.50.1.167
http://dx.doi.org/10.1063/1.2967854
http://dx.doi.org/10.1039/b814315c
http://dx.doi.org/10.1103/PhysRevLett.109.070402
http://dx.doi.org/10.1103/PhysRevLett.109.070402
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/10.1002/wcms.87
http://dx.doi.org/10.1002/wcms.87
http://dx.doi.org/10.1063/1.479574
http://dx.doi.org/10.1063/1.479574
http://dx.doi.org/10.1039/b314253a
http://dx.doi.org/10.1039/b314253a
http://dx.doi.org/10.1016/j.cplett.2006.10.099
http://dx.doi.org/10.1016/j.cplett.2010.02.068
http://dx.doi.org/10.1016/j.cplett.2010.02.068
http://dx.doi.org/10.1063/1.449204
http://dx.doi.org/10.1063/1.476142
http://dx.doi.org/10.1063/1.476142
http://dx.doi.org/10.1021/jp994174i
http://dx.doi.org/10.1021/jp994174i
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1063/1.1560636
http://dx.doi.org/10.1063/1.1560636
http://dx.doi.org/10.1017/S0305004100016108
http://dx.doi.org/10.1017/S0305004100016108
http://dx.doi.org/10.1142/S0219633603000483
http://dx.doi.org/10.1142/S0219633603000483
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1103/PhysRev.35.1303
http://dx.doi.org/10.1063/1.463007
http://dx.doi.org/10.1063/1.463007
http://dx.doi.org/10.1039/b700297a
http://dx.doi.org/10.1039/b700297a
http://dx.doi.org/10.1063/1.4755287
http://dx.doi.org/10.1063/1.4755287

