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Abstract

We consider a Leslie-type matrix approach to an SIR epidemic in dis-
crete time. We give examples of the population of susceptibles, infectives
and removals for different birthrates and two different infection rates. Fi-
nally, when the infection rate depends on the number of infectives, we
derive conditions for a steady state.

1 Introduction

An interesting problem in epidemiology is the modelling of age-structured epi-
demics. Several such studies in continuous time have been carried out in recent
years, among them [2, 3, 5, 7].

For example, the authors of [2] derive a set of partial differential equations for
the time-dependent age-specific densities of susceptible, infective and removed
individuals in an SIR epidemic. Among other results, the authors obtain con-
ditions for the existence of steady states.

Their calculations are lengthy and result in a complicated system of equa-
tions, from which, it is not easy to get an intuitive insight. One is led to consider
if a simpler model based on a discrete time Leslie-type matrix [4], might serve
equally well as a model. Models of this type have already been used by Zhou, Ma
and Brauer [8] for the transmission of SARS in China, and by Powell, Slapnicar
and van der Werf [6] for the spread of plant pathogens.

The purpose of this paper is not to develop new mathematical methods, but
rather to indicate that discrete time age-structured epidemic models can char-
acterise SIR epidemics very adequately. We propose to examine this alternative,
and find conditions under which steady-state solutions exist.
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2 The simplest Leslie-type matrix

Suppose that at time t = 0, 1, 2, · · · we have a population consisting of N + 1
groups of size s(0, t), s(1, t), · · · , s(N, t) of susceptibles s(a, t) of ages 0 ≤ a ≤ N
(from a to a + 1 − 0), with death occurring when a = N + 1. There are i(t)
infectives who spread the disease, while birth rates f(a) ≥ 0 apply to each of
these age groups, with some of the f(a) = 0. If we assume that there is a
probability 0 < q < 1 of non-infection, independent of the number of infectives,
an infection rate p = 1− q and a removal rate r > 0 of infectives in an SIR type
epidemic process, then we can write

y(t+ 1) = Ay(t), (1)

where y(t+ 1) ∈ RN+2, y(t)a = s(a, t) for 0 ≤ a ≤ N and y(t)N+1 = i(t) and

A =




f(0) f(1) f(2) · · · f(N − 2) f(N − 1) f(N) 0
q 0 0 · · · 0 0 0 0
0 q 0 · · · 0 0 0 0
0 0 q · · · 0 0 0 0
...

...
. . .

...
...

...
0 0 0 · · · q 0 0 0
0 0 0 · · · 0 q 0 0
p p p · · · p p p 1− r




. (2)

We see that the total number of births in (t, t+ 1) is the sum
∑N
a=0 f(a)s(a, t)

while the number of infectives remaining after removal is

i(t+ 1) = (1− r)i(t) + p

N∑

a=0

s(a, t). (3)

We now present some numerical examples of such populations.

Example 2.1 Let us suppose that we have a population of insects of ages a =
0, 1 and 2, where only the group aged 1 can give birth at the rate of f(1) = 0.85.
We may start at t = 0 with s(0, 0) = 412, s(1, 0) = 492, s(2, 0) = 465 with
death occurring when a = 3. At t = 0, i(0) = 1 so we begin with one infective
in the population, with the probability 0.9 of non-infection and a removal rate
r = 0.5.

Thus, for the matrix

A =




0 0.85 0 0
0.9 0 0 0
0 0.9 0 0

0.1 0.1 0.1 0.5


 , (4)

we find as t = 0, 1, 2, 3, 4, 5 the population evolves as shown in Table 1 with the
total population size decreasing from 1370 to 896. The calculations were done in
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Table 1: Change in the population size for Example 2.1
t 0 1 2 3 4 5

s(0, t) 412 418 315 320 241 245
s(1, t) 492 371 376 284 288 217
s(2, t) 465 443 334 339 255 259
i(t) 1 137 192 198 193 175

double precision, but the s(a, t) and i(t) presented in the table are rounded off to
the nearest integer. The continual decrease in the population in the long-term
is shown in figures 1 and 2.
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Figure 1: Change in the number of susceptibles in each age-group over time for
Example 2.1.

One may well ask if such models can lead to the gradual extinction of the
infectives i(t). From our simple insect model, we can see that i(t+ 1) < i(t) if

p (s(0, t) + s(1, t) + s(2, t)) + (1− r)i(t) < i(t),

or
p

r
S(t) < i(t),

where S(t) =
∑N
a=0 s(a, t) and p/r = 1/5 in the example given.

For Example 2.1, with a birth rate of 0.85, the size of the population rapidly
decreases, as does also the number i(t) of infectives. For t = 15 the population

is y(t) =
[
65 58 69 48.19

]T
or S(t)/5 = 192/5 = 38.4 so that a further

decline of the infectives is expected. In fact, the decline in both susceptibles
and infectives is steady, by t = 30, S(30) = 28, i(30) = 7.41.
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Figure 2: Change in the population size over time for Example 2.1.

Table 2: Change in the population size for Example 2.2
t 0 1 2 3 4 5

s(0, t) 412 566 426 586 441 606
s(1, t) 492 371 509 384 527 397
s(2, t) 465 443 334 458 345 474
i(t) 1 137 207 230 258 260

Example 2.2 In the next example we increase f(1) to 1.15. All other param-
eters are the same as Example 2.1.

In which case

A =




0 1.15 0 0
0.9 0 0 0
0 0.9 0 0

0.1 0.1 0.1 0.5.


 . (5)

The change in each age-group for t = 0, 1, 2, 3, 4, 5 is given in Table 2. The
apparent growth evident in the table is confirmed over the long-term in Figure
3.

Note that if at any time t > 0, i(t) > S(t)p/r then i(t + 1) < i(t). From
Equation (3),

i(t+ 1)− i(t) = pS(t)− ri(t) = pS(t)− r
(
S(t)p

r
+ ε

)
, ε > 0,

so that for this t, i(t+ 1)− i(t) = −rε < 0. In Section 3, we state in detail the
conditions under which both S(t) and i(t) decrease as t increases.
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Figure 3: Change in the population size over time for Example 2.2.

3 Some consequences of the matrix structure

Consider the Leslie-type matrix given in (2). We can write the matrix in block
form as

A =

[
L 0
xT 1− r

]
,

where L is the standard Leslie matrix

L =




f(0) f(1) f(2) · · · f(N − 2) f(N − 1) f(N)
q 0 0 · · · 0 0 0
0 q 0 · · · 0 0 0
0 0 q · · · 0 0 0
...

...
. . .

...
...

0 0 0 · · · q 0 0
0 0 0 · · · 0 q 0




, (6)

and x is a vector with xa = p (0 ≤ a ≤ N). Consequently, by cofactor expansion,

|A− λI2| = (1− r − λ) |L− λI1| ,

and hence the eigenvalues of A are 1 − r together with the eigenvalues of L.
The matrices I2 ∈ R(N+2)×(N+2) and I1 ∈ R(N+1)×(N+1) are identity matrices.
The standard Leslie matrix is well known and techniques for calculating its
eigenvalues appear in elementary linear algebra text books such as [1].

Consider the eigenvalue λN+1 = 1− r. Let uN+1 be a vector such that the
(N + 2)th entry is one, and all remaining entries are zero. Then

(A− λN+1I2)uN+1 =

[
L− λN+1I1 0

xT 0

]
uN+1 = 0.
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So, uN+1 is an eigenvector.
We now focus on λa, (0 ≤ a ≤ N), where λa is an eigenvalue of L with

corresponding eigenvector va. Let ua =
[
vTa α

]T
for some scalar term α.

Then

(A− λaI2)

[
va
α

]
=

[
L− λaI1 0

xT 0

] [
va
α

]

=

[
(L− λaI)va

xTva + α(1− r − λa)

]

=

[
0

xTva + α(1− r − λa)

]
.

Therefore, if α = −xTva/(1− r − λa), ua is an eigenvector.
To be more specific, let us look at the examples in which the Leslie matrix

is of the form

L =



f(0) f(1) 0
q 0 0
0 q 0


 .

The eigenvalues of L are

λ1 =
f(0)−

√
f2(0) + 4f(1)q

2
, λ2 =

f(0) +
√
f2(0) + 4f(1)q

2
and λ3 = 0

with corresponding eigenvectors

v1 =



f(1)/(λ1 − f(0))

1
q/λ1


 , v2 =



f(1)/(λ2 − f(0))

1
q/λ2


 and v3 =




0
0
1


 .

So, the eigenvalues of

A =




f(0) f(1) 0 0
q 0 0 0
0 q 0 0
p p p 1− r




are λ1, λ2 and λ3, as listed above, with λ4 = 1−r and corresponding eigenvectors

u1 =




f(1)
λ1−f(0)

1
q
λ1

α1


 , u2 =




f(1)
λ2−f(0)

1
q
λ2

α2


 ,u3 =




0
0
1
α3


 and u4 =




0
0
0
1


 ,

where

α1 =
−p [q(λ1 − f(0)) + λ1(λ1 − f(0)) + f(1)λ1]

λ1(λ1 − f(0))(1− r − λ1)
,

α2 =
−p [q(λ2 − f(0)) + λ2(λ2 − f(0)) + f(1)λ2]

λ2(λ2 − f(0))(1− r − λ2)
,

α3 =
−p

1− r
.
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Once we obtain the eigenvalues and eigenvectors we can determine the long-
term behaviour of the system.

Consider examples 2.1 and 2.2 from Section 2. In this case f(0) = 0, so
the eigenvalues are λ1 = −

√
fq, λ2 =

√
fq, λ3 = 0 and λ4 = 1 − r, where

f(1) = f . Given that the eigenvectors u1, u2, u3 and u4 form a basis, our
initial population distribution can be written as

y(0) = c1u1 + c2u2 + c3u3 + c4u4,

for some scalar terms c1, c2, c3 and c4. Consequently,

y(t) = c1λ
t
1u1 + c2λ

t
2u2 + c3λ

t
3u4 + c4λ

t
4u4

= c1(−
√
fq)tu1 + c2(

√
fq)tu2 + c4(1− r)tu4.

As (1− r) < 1, the last term will always approach zero. If
√
fq < 1, or fq < 1,

the overall population will decrease with time, while if
√
fq > 1 it will increase

with time. If
√
fq = 1, the population will achieve a steady-state solution that

oscillates between c1u1 + c2u2 and −c1u1 + c2u2. With Example 2.1, where A
is defined in (4), fq = 0.9 × 0.85 = 0.765 < 1 and we see that the population
decreases with time. However, with Example 2.2, , where A is defined in (5),
fq = 0.9× 1.15 = 1.035 > 1 and the population increases with time.

As t grows, we expect y(t) to approach

(
√
fq)t

(
c1(−1)tu1 + c2u2

)
.

For the example given in (4), this means we expect y(t) to approach

(0.8746)t


c1(−1)t




−0.9718
1.0000
−1.0290
0.0728


+ c2




0.9718
1.0000
1.0290
0.8010





 .

In this case there is no single dominant eigenvalue and the long-term y(t)
depends on the initial distribution y(0). However, we can still determine the
qualitative behaviour of the different age-groups. For example, the (−1)t term
indicates that s(a, t) will oscillate. We would also expect s(0, t), s(1, t) and
s(2, t) to reach roughly similar percentages of the total population, as their
corresponding entries in the eigenvector all have about the same absolute value
(their absolute values are between 0.97 and 1.03). Finally, we can see that the
infectives should represent a smaller percentage of the overall population. Using
MATLAB to calculate the distribution of each group gives the results in Figure 4,
where such qualitative behaviour is evident.

Example 3.1 Instead of setting f(0) = 0, let us try f(0) = 0.56. All of the
other parameters are the same as Example 2.1.
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Figure 4: Change in the population ratio over time for Example 2.1 when A is
given by (4).

So that,

A =




0.56 0.85 0 0
0.9 0 0 0
0 0.9 0 0

0.1 0.1 0.1 0.5


 . (7)

Then, we have a single dominant eigenvalue

λ =
f(0) +

√
f2(0) + 4f(1)q

2
= 1.1984,

with corresponding eigenvector

u =




1.3315
1.0000
0.7510
0.4414


 .

Consequently, we expect the long-term solution to approach some multiple of
u. Figure 5 shows the distribution of each age-group when A is given by (7).
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Figure 5: Change in the population ratio over time for Example 3.1 when A is
given by (7).

4 A more realistic Leslie-type matrix

If instead of a probability q of non-infection, we replace this by qi(t), for i(t)
independent infectives, then the Leslie-type matrix becomes

A(t) =




f(0) f(1) f(2) · · · f(N − 2) f(N − 1) f(N) 0
qi(t) 0 0 · · · 0 0 0 0

0 qi(t) 0 · · · 0 0 0 0
0 0 qi(t) · · · 0 0 0 0
...

...
. . .

...
...

...
0 0 0 · · · qi(t) 0 0 0
0 0 0 · · · 0 qi(t) 0 0

1− qi(t) 1− qi(t) 1− qi(t) · · · 1− qi(t) 1− qi(t) 1− qi(t) 1− r




(8)
and, once again, we can write the SIR process as y(t+ 1) = A(t)y(t).

Example 4.1 This starts with the same initial populations, s(0, 0) = 412,
s(1, 0) = 492 and s(2, 0) = 465 as for Example 2.1, but with the Leslie-type
matrix

A =




0 0.85 0 0
0.9i(t) 0 0 0

0 0.9i(t) 0 0
1− 0.9i(t) 1− 0.9i(t) 1− 0.9i(t) 0.5


 .

Example 4.2 Similarly we apply the Leslie-type matrix (8) to Example 2.2
where f(1) = 1.15.
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Example 4.3 The final example applies the Leslie-type matrix (8) to Example
3.1 where f(1) = 0.56 and f(1) = 0.85.
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Figure 6: Change in the number of susceptibles and infectives in each age-group
over time for Example 4.1.

The results for the SIR process y(t+ 1) = A(t)y(t) using the examples 4.1,
4.2 and 4.3 are shown in figures 6, 7 and 8. We can see that the results are now
markedly different from those shown in Sections 2 and 3. In these cases, as in
the more realistic cases, most of the insects end up as infectives.

Is it possible to find examples where the steady-state solution does not have
all susceptibles removed from the system? In other words, can we find y(t+ 1)
such that y(t+ 1)− y(t) = 0, but y(t+ 1)a = s(a, t+ 1) 6= 0 (for 0 ≤ a ≤ N)?

Now, y(t+ 1)− y(t) = 0 if y(t) is in the null space of

(A(t)− I2) =

[
L(t)− I1 0
x(t)T −r

]
.

where Ii ∈ R(N+i)×(N+i), and

L(t) =




f(0) f(1) f(2) · · · f(N − 2) f(N − 1) f(N)
qi(t) 0 0 · · · 0 0 0

0 qi(t) 0 · · · 0 0 0
0 0 qi(t) · · · 0 0 0
...

...
. . .

...
...

0 0 0 · · · qi(t) 0 0
0 0 0 · · · 0 qi(t) 0




, (9)
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Figure 7: Change in the number of susceptibles and infectives in each age-group
over time for Example 4.2.

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

time

s
u
s
c
e

p
ti
b

le
s

Change in susceptibles and infectives

 

 
s(0, t)
s(1, t)
s(2, t)
i (t)

Figure 8: Change in the number of susceptibles and infectives in each age-group
over time for Example 4.3.
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with x(t)a = 1 − qi(t). Let us focus on L(t) − I1. A vector s ∈ RN+1 is in the
null space of L(t)− I1 if

0 = (L− I1)s

=




f(0)− 1 f(1) f(2) · · · f(N − 2) f(N − 1) f(N)
qi(t) −1 0 · · · 0 0 0

0 qi(t) −1 · · · 0 0 0
0 0 qi(t) · · · 0 0 0
...

...
. . .

...
...

0 0 0 · · · qi(t) −1 0
0 0 0 · · · 0 qi(t) −1







s0
s1
s2
...

sN−1

sN



.

Using back substitution, we get

qi(t)sN−1 − sN = 0⇒ sN−1 = q−i(t)sN ,

qi(t)sN−2 − sN−1 = 0⇒ sN−2 = q−i(t)sN−1 = q−2i(t)sN ,

and so forth, until finally

qi(t)s0 − s1 = 0⇒ s0 = q−i(t)s1 = q−Ni(t)sN .

But we still need to take the first row into account. From the first row,

0 = (f(0)− 1)s0 + f(1)s1 + f(2)s2 + · · ·+ f(N)sN

=
{

(f(0)− 1)q−Ni(t) + f(1)q−(N−1)i(t) + · · ·+ f(N)
}
sN .

Recall that we are looking for the steady-state solutions, so we are assuming
i(t + 1) = i(t) = i for all t > T , at some point T in time. Consequently, if the
following constraint

0 = (f(0)− 1)q−Ni + f(1)q−(N−1)i + · · ·+ f(N) (10)

is satisfied, the non-trivial null space of L(t)− I1 is spanned by,

w =
[
q−Ni q−(N−1)i . . . q−i 1

]T
. (11)

If Constraint (10) is not satisfied, the null space of L(t)− I1 only contains the
zero vector.

In our example problems we have f(0) = f(2) = f(3) = 0. So, for Constraint
(10) to be satisfied, we must have f(1) = q−i.

Suppose we have s that belongs to the null space of L(t)− I1, then s = cw

for some scalar term c. Furthermore, y =
[
sT i

]T ∈ RN+2 is in the null space
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of A(t)− I2 if xTs− ri = 0. In other words,

i =
1

r
xTs

=
1

r

(
1− qi

) N∑

a=0

sa

=
c

r

(
1− qi

) N∑

a=0

q−ai

=
c

r

(
q−Ni − qi

)
.

Rearranging the terms in the above equations gives the following additional
constraint on i

0 =
r

c
i+ qi

(
1− q−(N+1)i

)
. (12)

To find an example of a non-zero steady-state solution we set q = 0.9 and
found an example of i that satisfied Constraint (12) with r/c = 0.5. That is,
we set i = 5.969091. We then set f(1) = q−i and used Equation (11) to find
s, with c = 1.5. As shown in Figure 9, the solution does not change with time.
This appears to be a stable equilibrium point. We tried changing i to i = 2.4691
(set f(1) = q−i and used Equation (11) to find s), where the resulting system
shown in Figure 10 is periodic.
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Figure 9: An example of a non-zero steady-state solution
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Figure 10: An example of a periodic equilibrium solution

5 Conclusion

Our discrete time approach proves simpler than the continuous time analysis
presented in [2]. It offers readily calculable results, such as those of Table 2
and the graphs in figures 2, 4, 5, and 6. From the view point of the practising
epidemiologist, this simple applicability of the Leslie-type matrix approach is a
distinct asset.

References

[1] H. Anton and C. Rorres. Elementary Linear Algebra. Wiley, 10th edition,
2010.

[2] Y. Cha, M. Iannelli, and F. A. Milner. Existence and uniqueness of endemic
states for the age structured S-I-R epidemic model. Math. Biosci., 150:177–
190, 1998.

[3] J. M. Hyman and J. Li. Infection age-structured epidemic models with
behavior change or treatment. J. Biol. Dynamics, 1:109–131, 2007.

[4] P. H. Leslie. On the use of matrices in certain population mathematics.
Biometrika, 33:183–212, 1945.

[5] X.-Z. Li and J.-X. Liu. An age-structured two-strain epidemic model with
super-infection. Math. Biosci. Eng., 7:123–147, 2010.

[6] J. A. Powell, I. Slapnicar, and W. van der Werf. Epidemic spread of a
lesion-forming plant pathogen–analysis of a mechanistic model with infinite
age structure. Lin. Alg. Applns, 398:117–140, 2005.

14



[7] E. Shim, Z. Feng, M. Martcheva, and C. Castillo-Chavez. An age-structured
epidemic model of rotavirus with vaccination. J. Math. Biol, 53:719–746,
2006.

[8] Y. Zhou, Z. Ma, and F. Brauer. A discrete epidemic model for SARS trans-
mission and control in China. Math. Comput. Modelling, 40(13):1491–1506,
2004.

15


