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On the need for an international effort to capture,

share and use crystallization screening data

When crystallization screening is conducted many outcomes are observed but
typically the only trial recorded in the literature is the condition that yielded the
crystal(s) used for subsequent diffraction studies. The initial hit that was
optimized and the results of all the other trials are lost. These missing results
contain information that would be useful for an improved general understanding
of crystallization. This paper provides a report of a crystallization data exchange
(XDX) workshop organized by several international large-scale crystallization
screening laboratories to discuss how this information may be captured and
utilized. A group that administers a significant fraction of the world’s
crystallization screening results was convened, together with chemical and
structural data informaticians and computational scientists who specialize in
creating and analysing large disparate data sets. The development of a
crystallization ontology for the crystallization community was proposed. This
paper (by the attendees of the workshop) provides the thoughts and rationale
leading to this conclusion. This is brought to the attention of the wider audience
of crystallographers so that they are aware of these early efforts and can
contribute to the process going forward.

1. Introduction

“Those who cannot remember the past are condemned to repeat it’
{Santayana, 1905).

Macromolecular crystallography has been extraordinarily productive
as judged by the exponential growth of the database of structures, the
Protein Data Bank (PDB: Berman et al.. 2007). That it has been
judged to be a worthwhile pursuit for over half a century is shown by
the continued support it receives from funding agencies around the
world, by the almost universal demand for its results within the
biochemical and molecular biology communities and by the prizes
awarded to its practitioners, which include 11 Nobel Prizes.

The single most important requirement for structural experiments
of this kind is the availability of appropriate crystals of the macro
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over three decades ago by Carter and Carter. The mathematics of
incomplete design aren’t sensitive to the realities of a crystallization
experiment: some crystallization factors are intrinsically coupled (pH
and buffering species), and some combinations of independent
factors are insoluble (Carter and Carter report that the combination
of Mg?* as a cation and PO,”~ as an anion stymicd their analyses).
Only six factor classes were used in their work (precipitant, anion,
cation, divalent, temperature and pH) each with a very limited subset
of factors. Furthermore, the methodology demanded that a ranked
value is assigned to the result of each trial. Putting this all together,
the Carter and Carter experiment was simply too difficult to be
widely adopted. And vet the concept of rational exploration of
crystallization space that is so well described in this paper continues
to resonate within the community.

An even more widely cited paper (Jancarik & Kim. 1991) used the
1979 methodology as a springboard for creating a sparse matrix of
crystallization conditions from a set of positive crystallization factors
obtained from the literature. The sparse matrix was developed by
trial and error, rather than through rigorous statistical balancing of
the experiments. but overcame the problems of trying to fit pure
statistics into the messy world of a working laboratory. The Jancarik
and Kim paper revolutionized crystallization. The sparse matrix of
crystallization conditions that they described was trivial to set up, and
became even casier when the screen could be purchased as a set of
pre-mixed solutions. The first commercial instance of the Jancarik and
Kim screen was the ‘Crystal Screen” from Hampton Research.
available in 1991; this product is still available (product HR2-110).
Since then, effectively all crystallization campaigns start by screcning
crystallization space using one or more of the hundreds of commer
cially available (Newman et al.. 2010) sparse matrix screens.

Many of the later sparse matrix screens have been developed by
cherry-picking successful conditions. For example. the JCSG+ screen
was derived from successful conditions obtained from a structural
genomics project on Thermotoga maritima (Page et al., 2003), and the
Morpheus screen was derived from conditions associated with
structures in the PDB (Gorrec, 2009). Are these second and third
generation sparse matrix screens a sensible refinement of crystal
lization space. or are they artefacts of the community’s oversampling
of a very limited number of points within a large crystallization space
by the over-enthusiastic adoption of commercial screens? The
structural biology community is certainly setting up many more
crystallization experiments now than ever before. But does this mean
the process of erystallization is now better or are we merely executing
an ill-defined experiment more comprehensively? Certainly. the rate
of producing structures has gone up (PDB, http//www.wwpdb.org),
but is the improvement in efficiency a result of decreasing drop
volumes? How much of the increase can be simply attributed to more
people doine crystal structures? All these guestions have been

With these thoughts in mind. the authors (representatives from
some of the larger public crystallization screening laboratories,
experts in chemical notation and databases as well as computational
scientists) came together in a small workshop in March 2011 led by
the Commonwealth Scientific and Industrial Research Organization
(CSIRO) in Canberra, Australia. The goal was to discuss ways that we
might capture, share and learn by using all the information available
from the vast number of crystallization experiments set up. In this
paper we report on this workshop. in particular a discussion on how
to capture crystallization experiments in a way that would help
improve the success of not only our own crystallization efforts but
also those of the community at large. We propose a crystallization
ontology for the community and provide our thoughts and rationale
leading to this conclusion. Our aim here is to bring this to the wider
audience of erystallographers so that they are aware of our carly
cfforts and can contribute to the process going forward.

2. Learning from ‘failure’

An experiment has only truly failed when it vields no information,
rather than when its outcome fails to realise our hopes. This is not
mere wordplay: this is the scientific method. However, in the high

throughput crystallization world. a rather narrow definition of

‘success’ has been adopted: initial screens are deemed a success if a
crystal appeared; absence of crystals equates to “failure”. That we
have become content with extracting a mere binary read-out from a
set of hundreds of experiments, observed at multiple time-points as
feature-rich images. should give us pause for thought.

Certainly experiments that do not produce crystals can be very
informative. For instance, conditions that are not crystallization lead
conditions (conditions immediately judged worthy of optimization)
can guide us in determining where actual lead conditions are likely to
lie. Non-crystalline outcomes provide valuable solubility data
(Collins et al.. 2003), and the crystallization screen can be an effective
method of understanding the phase behaviour of the sample (Snell et
al.. 2008). Furthermore, information about the stability of the protein
can be gleaned from these data as well. Simply knowing how much
effort is normally required may guide decisions on when to move on
to a different protein construct.

We can estimate how much information we lose with a too-narrow
view of *failure”. The worldwide structural genomics efforts (where all
outcomes, crystallization and non-crystallization, are tracked) show
that out of ~45K soluble. purified targets, ~14K crystallized and ~5K
resulted in a crystal structure (Berman ef el., 2009). Another study. in
one of our crystallization centres [the Hauptman-Woodward Medical
Research Institute (HWI1)]. showed that a subset of 96 proteins
screened against a set of 15336 chemical cocktails eave 277 crystal
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samples we average the results to ~30 leads and 15330 other
outcomes, each of which adds more information on the protein’s
behaviour. Extrapolating this using the ~5000 crystal structures
associated with structural genomics efforts. leads to an estimate of
about 80 million other outcomes that are not captured. If we extra
polate it further to the whole PDB then the numbers become
astronomical.

Most laboratories do not screen 1536 different chemical conditions
in the initial search for lead conditions [for example the Collaborative
Crystallization Centre (C3). the Hamburg High-Throughput Crys
tallization service (EMBL) and the Oxford Structural Genomics
Consortium (SGC) use 384. 576 and 576 conditions. respectively'].
However, we have not counted any experiments associated with
subsequent optimization of protocols. and we use data from the
worldwide structural genomiecs efforts that may not represent the
practices of an individual laboratory. where vyears of effort and
experiments may be devoted to a particular project. Even if our
numbers are only a crude estimate (say. accurate to within an order of
magnitude). they demonstrate that we are missing data from tens to
hundreds of millions of experiments.

Clearly the combination of producing purified protein® and crys
tallizing it is the major stumbling block in obtaining atomic resolution
coordinates of proteins. We contend that access to neglected data is
key to understanding the crystallization/protein production bottle
neck. and furthermore that this requires a research effort beyond any
individual laboratory. Tools need to be set in place so that data can be
casily transferred. so we can avoid duplication of effort and achieve
the required critical mass of investigation. Furthermore, by analysing
data from a broad swath of laboratories we hope to capture many of
the possible experimental techniques and results, thus making the
output of such analyses widely applicable.

3. Attempts to data mine and improve crystallization

Consider the information provided by the analysis of limited crys
tallization data. In a binary study. looking at crystal or no crystal.
Page er al. (2003) identificd a minimal core screen. The Joint Center
for Structural Genomics (JCSG) reported 392 out of 465 proteins
(84% ) required only 67 out of the 480 conditions sampled to vield a
crystal hit. Remarkably. for samples reported from the University of
Toronto (Kimber et al.. 2003) six biochemical conditions produced
crystals for over half the proteins studied (180 out of 338). A simple
analysis of crystal versus no crystal data identified a subset of
conditions that. if used. had a high degree of success and could allow
the exploration of other factors, e.g. sample concentration, additives
etc. Interestingly a second paper from the same group (Collins et al.,
2005) explores the use of clear drops in determining buffers that may

e marticunlarlv gmtted ta crvetallization This evamnle demonstratos

to bioinformatics associated with the sample. we can use this data to
gain significant insight into the general process of erystallization.

Data on crystallization and subsequent X-ray diffraction from the
North East Structural Genomics group were analysed (Price ef al..
2009). The analysis compared crystals that resulted in structures with
bioinformatic and biophysical propertics of the proteins. The data set
consisted of 697 strongly expressed well behaved proteins with one
construct for cach protein target. These were screened to exclude
samples that were aggregated. samples with predicted transmem
brane  -helices or having greater than 20% low complexity
sequences. Some 157 of these yielded crystal structures with an
additional 39 yielding crystals that had insufficient diffraction for
structural studies. The authors determined sequence specific features
that correlated with crystallization propensity. Similarly. an analysis
of data from the JCSG looked at protein production and crystal
lization: a set of 1503 proteins that were successfully crystallized and
went on to reveal structural information were compared with 2456
that were not (Slabinski et al.. 2007). The authors also determined
features that allowed an analysis of the potential for crystallization as
it related to general biophysical properties of the sample. Each of
these predictive mechanisms performs best when focused on the
sample subset it has been trained upon. Expanding beyond the
original data set to include more diverse samples requires analysis
and testing of a population representing those samples. Similarly,
expanding the capability will require expanded data. The authors
note that for enhanced analysis ‘more effort on data standardization
and exchange protocols is necessary”. An ontology approach achieves
these two requirements.

A number of studies have discussed the most effective sampling
strategy for crystallization. For example Segelke (2001 ) estimates that
288 trials are sufficient to find crystallization conditions with high
probability and the studies reported above show that success with 6
or 67 conditions is still remarkably high. Almost immediately the
reader should question the numbers we report: 384, 576 and 576
conditions with the extreme case being the HWI screening 1536
different chemical conditions (Luft et al.. 2003; Luft, Snell et al.. 2011)
We contend that screening at this level is useful. Sampling more
chemical space than that needed to find a single lead condition
increases the probability of finding multiple conditions and provides
information to guide subsequent optimization. In the HWI case. this
was a deliberate design decision: the sampling of chemical space
identifies not only crystallization conditions but also probes the
protein’s solubility. Rupp (2003). considering protein crystallization
as a sampling problem, noted that consistent data mining will be
difficult because of inherent differences in the sampling of chemical
space for screening and optimization, and the variety of crystal
lization methods emploved. An ontology approach that takes these
differences into account and allows a collective elobal analysis of the
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even this purely logistical, scientifically non-controversial task is very
challenging. as there are currently no defined nomenclatures for
describing a crystallization experiment, not for the chemicals used,
nor for the physical parameters. never mind for the protein sample
itself. Take, for example. the non-protein component of a “standard’
(vapour diffusion or microbatch) crystallization experiment: this has
been called ‘the precipitant’, “the reservoir’, ‘the cocktail’. ‘the
condition’. ‘the well solution” or (for the hopeful) ‘the crystallant’
amongst others. It has been reported that in the free-form data field
for erystallization in the PDB (REMARK 280). the chemical
‘ammonium sulfate” is represented by approximately 100 different
strings (Peat et al., 2005).

The problem of capturing outcomes objectively would appear even
more challenging still. as it requires scientific effort rather than
merely establishing conventions. At least the push into high
throughput crystallization means that many recent experiments do
have a measured outcome. in the form of one or more image(s)
associated with the experiment. However, the image still has to be
translated objectively into a form that can be used for quantitative
analysis. This process will have to be automated to obtain not only
complete but also consistent results: manual scoring of the same
experiments is only about 70% consistent if using a seven-class
system (Walker et al. 2007).

The simplest outcome is the binary. erystalino erystal classification.
which can provide meaningful information. The other extreme is the
classification of outcomes related to protein solubility and the phase
diagram, e.g. crystal, clear. precipitate. phase separation. skin efc.
(Luft. Wolfley et al. 2011) which provides for significantly more
information. This is a more detailed classification scheme, but
requires correspondingly higher analysis times and the data will be
less accurate than a simple binary classification. It becomes increas
ingly difficult to differentiate between the classifications of similar
looking outcomes when using a finer granularity in the classifications.
Rescarch in one of our centres (at HWI) has led to an automated
classificr which is now comparable to humans at identifying single
categories such as clear, precipitate. and also combinations of phase,
skin, precipitate efc. but is not as precise or accurate when identifying
crystals (Kotseruba et of.. 2012). Efforts to automate the classification
of erystallization experimental outcomes have been ongoing for over
a decade (Pan et al.. 2006; Cumbaa & Jurisica, 20035; Walker er al..
2007). In designing our ontology we must keep in mind the reliability
of the measurement and its associated data. We have to capture not
only the outcome but how that outcome was determined. In this
manner we can account for different visual mechanisms (multiple
types of microscopes and magnifications) and classification schemes.

These will be aided by using other parts of the light spectrum, eg.

ultraviolet, and even in sife X-ray analysis.
One of the results of the meetine was a commitment to develop a

The sample can be described by a name and the sequence of the
protein.® or proteins, that comprise it. Important protein properties
may include sequence. molecular weight and isoelectric point
(Slabinski et af., 2007). The sample has other properties associated
with it: even a minimal sample consisting of only one protein in water
has an associated concentration, unit of concentration, a history (e.g.
snap frozen and thawed just prior to setup’). Preparation details of
the sample may be also be important, e.g. ‘retention time on a
column’, *purity’ and *polydispersity’?

The experimental setup. even for something as common as a
hanging-drop experiment (Benvenuti & Mangani. 2007). is also very
hard to describe precisely. Assuming “hanging drop’, we need to know
that is a type of “vapour diffusion” and thus we should capture the
chemicals used, drop volumes, reservoir volume, initial concentra
tions, predicted final concentrations, the time course. surface arcas,
geometry, material, incubation temperature, amongst other things.
Indeed. even the time between drop mixing and sealing (in vapour
diffusion). or the time course of temperature and dehydration can be
critical.

Outcomes, the results of our experiments, are a morass into which
we rarely delve with any enthusiasm: the sheer number of experi
ments which we don’t accurately describe, or describe at all, attests to
this. To a large part this is a result of our fixation, almost a glori
fication. of crystals as the only useful result (Chayen & Saridakis.
2008). The non-crystal results can point toward an optimization
direction, although one may have to work harder to determine what
that direction is. There is a major difficulty in describing these non
crystalline outcomes. When does a precipitate become an amorphous
or a crystalline precipitate? Is that drop clear. or is there evidence of a
light precipitate? Even then we should note we are looking at results,
and not reasons. Is that clear drop clear because it is under-saturated?
Is it clear because it is metastable? Or does it appear clear because
the perfect crystal contained within matches the refraction index of
the surrounding liquid and we simply cannot sce it? We should not
only capture outcome, but also how that outcome was determined to
add a level of confidence to the classification. Was the classification
strictly an evaluation through a low-magnification binocular micro
scope, or were spectroscopic, UV fluorescence, light scattering. dyes,
or other physico-chemical means employed for validation? One of
the potential benefits of such rigour would be the development of
metrics to allow us to abandon non-productive experiments carly.

This emphasises that our vocabulary has to be comprehensive, it
has to have multiple tiers to capture and integrate basic information
recorded in one laboratory with more detailed information from
another, and it has to be descriptive, precise and uniform.

A number of other disciplines have already faced these challenges
leading to the development of computational analysis techniques
built on ontologies (first seen as the New Latin ontologia “the study of

http://journals.iucr.org/f/issues/2012/03/00/en5482/en5482.pdf

22/04/2013 12:30 PM



On the need for an international effort to capture, share and use crystallization screening data - en5482.pdf

50f6

scientific comment

The field of crystallography is not new to ontology developments.
Under the auspices of the International Union of Crystallography a
data exchange format was developed for small-molecule single
crystal diffraction experiments, the Crystallographic Information File
(CIF) (Hall et al.. 1991). An extension to this for macromolecules
(mmCIF) followed ( Bourne et af., 1997). This includes some terms for
describing a successful crystal growth experiment but fewer for
describing the unsuccessful majority of outcomes in a crystallization
experiment. In developing a more detailed erystallization ontology.
we will be building on the current mmCIF with the aim of developing
ameans to capture and be able to analyse all crystallization screcning
experiments. To do so we have to comprehensively define the things’
that it needs to represent. This includes both physical objects, e.g. in
the experiment example. ‘ammonium sulfate solution’. and the
propertics associated with the object. e.g. *3.14 M concentration”,
‘contains NH," ions’, *is volatile’, *has 2:1 stoichiometry of cations to
anions’. The power in the ontology approach comes from the ability
to use these descriptions and links between them (e.g “all solutions
containing the cation NH," are somewhat similar’) as the basis for
both describing our experiments and understanding better the rela
tionships between experimental conditions and outcomes.

5. Using an ontology

The goal of our ontology is to develop a common language for

describing macromolecular crystallization experiments. We  will
improve communication and progress when we have a common
nomenclature and universal descriptions that are shared by the
community to capture the essence of the crystallization process. Once
this is achieved, we have a common foundation to make all of our
individual experiments accessible to others in the field. It is sobering
that despite the structural victories enabled by the high-throughput
technologies of the past decade, our means of sharing data is
predominately through publications. Currently. even among
seemingly similar crystallization platforms, we cannot move or readily
assimilate experimental data. Although many of the high-throughput
crystallization centres do analyse their own crystallization data,
producing, amongst other things, screens which are combinations of
experimentally derived hotspots of crystallization (Page et al.. 2003;
Page & Stevens. 2004). these analyses are necessarily limited to the
data from that centre. Once we step outside any individual centre. the
best we can do in terms of data mining are rudimentary analyses of
the collective. single crystallization conditions reported for structural
determinations found in resources such as the PDB (Berman er al..
2002, 2007), BMCD (Biological Macromolecular Crystallization
Database: Tung & Gallagher, 2009). or MPCD (Marseille Protein
Crystallization Database: Charles er al. 2006). amongst others. We
know of no other associated experimental details or results that are

define the scope of our ontology, we have employed the method
proposed by Noy & McGuinness (2001) in which we design the
ontology to address certain ‘competency questions’, some of which
arc shown below.

1. What was the outcome of this experiment (in qualitative terms)?
2. What were the methods used for this experiment?

3. What are the chemical and physical conditions of this experi
ment?

4. What is the chemical or physical relationship between the
conditions of different experiments?

5. What observations relate to this experiment?

6. What sample was used for this experiment?

7. What was the intent of this batch of experiments?

Although there are a variety of tools available for developing
ontologies, our initial modest efforts use the Web Ontology Language
(OWL) for a number of reasons. It has the benefit of being well
accepted: being highly structured, offering the advantages of both a
formal schema and a controlled vocabulary; and importantly. being
amenable to the representation of partial knowledge.

Currently. our ontology primarily comprises knowledge about
chemical crystallants; what necds expansion is how to capture char
acteristics of proteins and constructs, experimental methods. condi
tions. and outcomes. Much of our chemical knowledge has been
drawn from several pre-existing resources, including standard crys
tallization reference books. the IUPAC Gold Book. ChEBI.
PubChem. and also incorporates dictionary terms published in the
IUCr Macromolecular CIF dictionary (mmCIF), as well as drawing
on our own unpublished knowledge of the field. However, we
recognize that our initial attempt is incomplete. insufficiently docu
mented. and is almost certainly at least partially incorrect.

One of the advantages of formalizing data in this manner is that we
can begin to test machine-learning techniques to mine the large body
of otherwise wasted experimental data. This will take time and a
collective effort from the community. We invite our readers to
contribute in the development of the ontology and invite them to
dx-ontology.org to take part. The

collaborate; please visit http:
eventual outcome will be to use the power of these massive quantities
of collected experimental data to guide the most efficient crystal
lization of a single sample.

6. Summary

Crystallization of biological macromolecules is seen by most struc
tural biologists as a necessary cvil, a means to the end. which is
knowledge about a biological system derived from a macromolecular
structure. Although the focus of biologists may be on structural
analysis to understand functional mechanisms. we argue that our

current knowledee abhont ecttine ta that naint may be insuff
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