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Abstract. We introduce a novel hybrid metal–dielectric nanoantenna
composed of dielectric (crystalline silicon) and metal (silver) nanoparticles.
In such a nanoantenna, the phase shift between the dipole moments of the
nanoparticles, caused by differences in the polarizabilities, allows for directional
light scattering; while the nonlinearity of the metal nanoparticle helps to control
the radiation direction. We show that the radiation pattern of this nanoantenna
can be switched between the forward and backward directions by varying only
the light intensity around the level of 6 MW cm−2, with a characteristic switching
time of 40 fs.
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1. Introduction

The study of optical nanoantennas has become the subject of intensive research [1, 2]. Nanoan-
tennas hold the promise of subwavelength manipulation and the control of optical radiation for
solar cells and sensing [3]. In the majority of applications, a crucial factor is the control over
the nanoantenna’s radiation pattern and its tunability. Spectral tunability and variable direction-
ality have been proposed for bimetallic antennas [4, 5], the Yagi–Uda architectures [6, 7], me-
chanically reconfigurable Au nanodimers [8], high-permittivity dielectric nanoparticles [9, 10]
and for nanoparticle chains [11]. In addition, several suggestions employed the concept of plas-
monic nanoantennas with a nonlinear load where the spectral tunability is achieved by varying
the pumping energy [12–16].

In this paper, we suggest and study theoretically a novel type of metal–dielectric
nanoantenna structure composed of a pair of dielectric (e.g. crystalline silicon) and metal
(e.g. silver) nanoparticles. The combination of a high-permittivity dielectric and metallic
nanoparticles makes it possible to achieve directional light scattering, whereas the nonlinear
response of a metal nanoparticle helps to control the radiation direction of the nanoantenna.
As a result, for such a structure we can realize efficient dynamical control over the scattering
pattern by varying the external field intensity. An estimated switching time of 40 fs, along with
the relatively low required intensities of about 6 MW cm−2, opens a promising perspective for
using nonlinear metal–dielectric nanoantennas in logical and switching devices.

2. Model

We consider a pair of spherical silicon and silver nanoparticles embedded into a SiO2 host
medium with permittivity εh, excited by a plane wave, as shown in figure 1. We assume that
the radii of the metallic and dielectric nanoparticles and the center-to-center distance are RAg =

15 nm, RSi = 30 nm and d = 80 nm, respectively. As the gap between particle surfaces s = d −

RSi − RAg exceeds min{RAg; RSi}, we can employ the point dipole approximation [17–19]. In the
optical spectral range, a linear part of a silver dielectric constant can be written in a generalized
Drude form εL

Ag = ε∞ − ω2
p/[ω(ω + iν)], where ε∞ = 4.96, h̄ωp = 9.54 eV, h̄ν = 0.055 eV [20]

(exp(−iωt) time dependence is assumed); whereas dispersion of SiO2 can be neglected since
εh ' 2.2 for photon energies 2.8–3.2 eV [21]. In this range, the permittivity of silicon εSi changes
from 23 to 36 [21] approximately; we take this experimental data into account but it will be
shown below that the impact of silicon dispersion on the system dynamics is insignificant as
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Figure 1. Schematic view of a dimer metal–dielectric nanoantenna.

well. The nonlinear dielectric constant of silver is εNL
Ag = εL

Ag + χ (3)
|E(in)

|
2, where E(in) is the local

field inside the particle. We keep only the cubic susceptibility due to the spherical symmetry of
the silver particle. In general, the value of the cubic susceptibility for metallic nanoparticles
depends on the type of metal, particle size, external pulse duration and frequency, as well
as some other factors [22]. However, the analytical quantum model, developed in [23, 24]
and confirmed with numerical simulations [25] and experimental data [26, 27], showed that
silver nanoparticles with a 15 nm radius and driven at a frequency close to the frequency of
the surface plasmon resonance, possess a remarkably high and purely real cubic susceptibility
χ (3)

' 6 × 10−9 esu, in comparison to which the cubic nonlinearity of both Si and SiO2 are
negligibly weak (∼10−12 esu [28] and ∼10−15 esu [29], respectively).

We have chosen silver due to its relatively low loss as well as its high nonlinear
susceptibility, while the quite high permittivity of silicon leads to a pretty large extinction
cross-section of the Si nanoparticle, which makes directional scattering from an asymmetric
dimer possible. Fused silica was taken as the host matrix in order to cause a red shift of the
surface plasmon resonance frequency of the Ag nanoparticle, and to obtain it in blue light
where silicon shows relatively small losses. In addition, SiO2 possesses a good enough optical
transparency [21] to maintain the strong laser powers needed for the observation of nonlinear
switching.

First, we start from the Fourier transforms of the particle electric-dipole moments

pSi,z = αSi(E (ex)
z + ApAg,z),

pAg,z = αAg(E (ex)
z exp(ikd) + ApSi,z),

(1)

where A = [exp(ikd)/(εhd)][k2
− (1/d2) + (ik/d)] describes the dipole–dipole interaction

between particles, k = ω/c
√

εh is the wavenumber, c is the speed of light, E (ex)
z is the amplitude

of the plane wave,

αAg = εh

{
εNL

Ag (ω) + 2εh

R3
Ag[εNL

Ag (ω) − εh]
+ i

2

3
k3

}−1
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Figure 2. The full green line denotes the relative phase shift between the
dipole moments of nanoparticles, while the dashed lines show the polarizability
modulus of silver (red) and silicon (blue) nanoparticles, normalized to R3

Si
versus the frequency. The red and blue arrows indicate the orientation of the
dipole moments induced in the particles at different frequencies. Insets show the
scattering patterns of a nanodimer when: (i) h̄ω = 2.8 eV—the system scatters
light in the backward direction; (ii) h̄ω = 3.14 eV—the scattering pattern is
omnidirectional; (iii) h̄ω = 3.2 eV—the system scatters light in the forward
direction.

and αSi = 3ia1/(2k3) are the polarizabilities of silver and silicon particles, and a1 is the electric-
dipole Mie scattering coefficient [30]. The small size of the silver nanoparticle allows us to
use a quasistatic expression for αAg with the radiation damping correction [31]. On the other
hand, the local field inside a 60 nm silicon particle with a relatively large permittivity cannot be
considered as purely homogenous. That is why we define αSi through the electric-dipole Mie
scattering coefficient.

To illustrate how to achieve the directional scattering pattern from an asymmetric dimer,
we analyze the scattering intensity of two dipoles, which is given by

U (φ, θ) =
ck4

8πε
3/2
h

sin2 θ
[
|pSi,z|

2 + |pAg,z|
2 + 2|pSi,z||pAg,z| cos(19 + kd sin θ sin φ)

]
,

where φ and θ are the spherical azimuthal and polar angles, respectively, and 19 denotes
an internal phase shift between the two dipoles. 19 is determined by the complex particle
polarizabilities and therefore varies with the size, shape and material composition of the
particles. The first two terms in this expression describe the individual dipole contributions,
while the latter is responsible for the interference between particle fields. Clearly, directional
scattering can be obtained when 19 sufficiently differs from zero. In the linear limit 19 can
be tuned in a wide range by a variation in the frequency, since the silver particle experiences
the strong surface plasmon resonance at h̄ω0 = h̄ωp/

√
ε∞ + 2εh = 3.14 eV; whereas αSi is

almost frequency independent, as shown in figure 2. Similar to other nanoparticle systems
with broken symmetry [4, 5, 9, 10], one may see a switching of the dimer scattering pattern
during the growth of ω.

New Journal of Physics 14 (2012) 093005 (http://www.njp.org/)

http://www.njp.org/


5

3. Results and discussions

Next, we study the nonlinear dynamics of the dimer by employing the dispersion relation
method [32, 33] that allows us to derive a system of coupled equations for the slowly varying
amplitudes of the particle dipole moments. This approach is based on the assumption that in
the system there exist small and large time scales, which, in our case, is fulfilled automatically
because the silver particle acts as a resonantly excited oscillator with a slow (in comparison with
the light period) inertial response; whereas the almost frequency independent αSi allows us to
treat the silicon particle response as instantaneous. We rewrite equation (1) in the form

pSi,z = αSi(E (ex)
z + ApAg,z),

α−1
Ag pAg,z = E (ex)

z exp(ikd) + ApSi,z.
(2)

Assuming that χ (3)
|E(in)

|
2
� 1 and ν/ω0 � 1, we decompose α−1

Ag (ω) in the vicinity of ω0 and
keep the first-order terms for the derivatives describing the (actually small) broadening of the
silver particle polarization spectrum,

α−1
Ag ≈ α−1

Ag (ω0) +
dα−1

Ag

dω

∣∣∣∣∣
ω=ω0

(
1ω + i

d

dt

)
, (3)

where 1ω is the frequency shift from the resonant value. Taking into account the instantaneous
response of the Si nanoparticle and the relatively low strength of the dipole–dipole interaction
[(RSi,Ag/d)3

� 1], we set αSi = αSi(ω0) = α0
Si and A = A(ω0) = A0. Having expressed E(in) via

pAg,z, we substitute equation (3) into equation (2) and obtain the equations

PSi = α0
Si[E + A0 PAg],

i dPAg

dτ
+

(
iγ + � + |PAg|

2 + δ�
)

PAg = E
[
exp(ik0d) + α0

Si A0

]
,

(4)

where δ� = [3ε2
h R3

Ag][2(ε∞ + 2εh)]−1α0
Si A

2
0 is the resonant frequency shift from ω0 caused

by the dipole–dipole interaction, PSi,Ag = p(Si,Ag),z

√
χ (3)(

√
2(ε∞ + 2εh)εha3)−1 and E =

−3εh

√
χ (3)E (ex)

z [8(ε∞ + 2εh)
3]−1/2 are slowly varying dimensionless amplitudes of the particle’s

dipole moments and the external electric field, respectively, γ = ν/(2ω0) + (k0a)3εh(ε∞ + 2εh)
−1

is in charge of the thermal and radiation losses of the Ag particle, k0 = ω0/c
√

εh, � = (ω −

ω0)/ω0 and τ = ω0t . Equation (4) describes the temporal nonlinear dynamics of a hybrid Si–Ag
dimer driven by the external plane wave with a frequency of ω ∼ ω0.

Next, we consider the stationary solution of equation (4), which can be written as
follows:

PSi = α0
Si[E + A0 PAg],(

iγ + � + |PAg|
2 + δ�

)
PAg = E

[
exp(ik0d) + α0

Si A0

]
.

(5)

When � < −Re δ� −
√

3 (γ − Im δ�), the particle polarizations PAg and PSi become three-
valued functions of � with two stable (lower and upper) and one unstable (middle) branches,
as shown in figure 3(a). As a consequence, bistability, in this case, also appears in the
frequency dependency of the nanoantenna front-to-back ratio (see figure 3(b)). One may see
a significant contrast in the scattering patterns corresponding to the different stable branches.
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Figure 3. Frequency dependencies of (a) |PAg| (red), |PSi| (blue) and (b)
back-to-front ratio at the external intensity of 5.8 MW cm−2 (E = 7.1 × 10−3). In
(b) green and blue curves correspond to linear and nonlinear cases, respectively.
The middle branches inside the bistability loops correspond to the unstable
solutions. Arrows show the transitions between the stable branches. Transitions
between the stationary states marked by red dots at h̄ω = 2.94 eV (� =

−0.062) and h̄ω = 2.8 eV (� = −0.11) were studied by numerical simulations
of equation (4).

Being in the upper branch, the dimer scatters light predominantly in the forward direction or
omnidirectionally, whereas the lower branch shows pronounced backscattering. Thus, having
fixed ω close to one of the thresholds of the bistability region, one can switch the system’s
scattering pattern by varying the external field intensity.

To illustrate the dynamical control of the nanoantenna radiation, we solve equation (4)
numerically at h̄ω = 2.94 eV (� = −0.062) and h̄ω = 2.8 eV (� = −0.11) and zero initial
conditions. The stable system states generated by these frequencies are marked in figure 3(b)
by red dots, and the scattering patterns, corresponding to h̄ω = 2.94 and 2.8 eV, are shown
in figures 4(a)–(d). To initiate the system’s transition from state 1 to state 2, we assume that
the intensity of the pump pulse varies, slowly growing to the saturation level 5.8 MW cm−2.
Then, when the system is in state 1, the Gaussian signal pulse appears, provoking the system’s
transition to state 2, as shown in figure 5(a).

To initiate the transition between states 3 and 4, we at first deliver the system to state 3
by adding the Gaussian pulse centered around 20 fs to the pump pulse, slowly increasing again
to the level 5.8 MW cm−2, because state 3 belongs to the upper branch of the bistability loop.
Then, at t ∼ 170 fs a signal pulse, being out of phase with a pump pulse, results in switching, as
shown in figure 5(b).

In both cases the characteristic switching time is 40 fs, and the saturation intensity level
is 5.8 MW cm−2. However, such high illuminating powers can lead to thermal damage of the
dimer. To estimate the maximal pulse duration, we rely on the results of previous studies
on the ablation thresholds for silver particles [34] and silicon films [35] providing values
about 3.96 and 0.4 J cm−2, respectively, for the picosecond regime of illumination. Taking into
account the amplification of the electric field inside the Ag nanoparticle, due to surface plasmon
resonance and the required intensity of 6 MW cm−2, we come to the maximal pulse durations
of 1 and 36 ns corresponding to the Ag and the Si particles, which are much longer than the
characteristic switching time. Thus, the proposed metal–dielectric nanoantenna is fully suitable
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Figure 4. Normalized scattering patterns of the metal–dielectric nanoantenna for
the stationary states denoted by red dots 1 (a), 2 (b), 3 (c) and 4 (d) in figure 3.
Red and blue curves indicate E-plane and H -plane, respectively. Red arrows
show the direction of plane wave incidence.
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Figure 5. Temporal dependencies of |PAg| (red), |PSi| (blue) and intensity
of the external field (black) when the signal pulse provokes a transition (a)
from the back scattering state 1 to the fourth scattering state 2 and (b) from
the omnidirectional scattering state 3 to the back scattering state 4. Movies
1 and 2 (available at stacks.iop.org/NJP/14/093005/mmedia), demonstrate the
dynamical behavior of the system’s scattering pattern, corresponding to (a) and
(b), respectively.

for ultrafast all-optical switching. Furthermore, it appears to be a competitive alternative to
optical switches based on semiconductor microcavities, as well as plasmonic nanoantennas with
nonlinear dielectric and semiconductor loading, whose minimal switching time is of several
picoseconds [12, 15, 36].

Apparently, when the external electric field is polarized along the y-axis in the linear
regime, one can excite in the dimer a longitudinal dipole mode at ω = ω0 or linear quadrupole
modes with positive and negative relative phase shifts at ω > ω0 and ω < ω0, respectively [4, 5].
Consequently, a bistable response of the silver nanoparticle will result in the dipole–quadrupole
and quadrupole–quadrupole dynamical transitions of the system’s scattering pattern in the
manner similar to that described above.

In practice, Si–Ag heterodimers can be obtained through a recently suggested combination
of top-down fabrication and template-guided self-assembly [37], which allows the precise
and controllable vertical and horizontal positioning of the plasmonic elements relative to
dielectric spheres. Atomic force microscopy nanomanipulation is another useful approach for
the construction of such hybrid systems [38–40].

4. Conclusions

We have predicted a bistable response of a hybrid nonlinear Si–Ag nanoantenna and revealed
that its radiation pattern can be reversed by varying the external intensity. This effect originates
from the phase shift between the dipole moments of the nanoparticles, caused by differences in
the polarizabilities between Si and Ag nanoparticles, induced by the intrinsic nonlinearity of a
silver particle and the different dispersions and sizes of the particles. A characteristic switching
time of 40 fs, along with the relatively low required intensity of 6 MW cm−2 can be useful for
ultrafast logical hybrid nanophotonic–plasmonic devices and circuitry.

New Journal of Physics 14 (2012) 093005 (http://www.njp.org/)

http://stacks.iop.org/NJP/14/093005/mmedia
http://www.njp.org/


9

Acknowledgments

The authors are indebted to A A Zharov, A E Miroshnichenko and I S Maximov for useful
comments, to P A Belov for stimulating discussions and to the Ministry of Education and
Science of Russian Federation and the Australian Research Council for a financial support.

References

[1] Bharadwaj P, Deutsch B and Novotny L 2009 Optical antennas Adv. Opt. Photon. 1 438
[2] Novotny L and van Hulst N 2011 Antennas for light Nature Photon. 5 83
[3] Giannini V, Fernández-Domı́nguez A I, Heck S C and Maier S A 2011 Plasmonic nanoantennas: fundamentals

and their use in controlling the radiative properties of nanoemitters Chem. Rev. 111 3888
[4] Sheikholeslami S, Jun Y-W, Jain P K and Alivisatos A P 2010 Coupling of optical resonances in a

compositionally asymmetric plasmonic nanoparticle dimer Nano Lett. 10 2655
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