
Third-order spatial correlations for ultracold atoms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 New J. Phys. 15 013042

(http://iopscience.iop.org/1367-2630/15/1/013042)

Download details:

IP Address: 130.56.107.19

The article was downloaded on 19/02/2013 at 00:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/1
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Third-order spatial correlations for ultracold atoms

A G Manning, Wu RuGway, S S Hodgman, R G Dall,
K G H Baldwin and A G Truscott1

Australian Centre for Quantum-Atom Optics, Research School of Physics and
Engineering, Australian National University, Canberra, ACT 0200, Australia
E-mail: andrew.truscott@anu.edu.au

New Journal of Physics 15 (2013) 013042 (10pp)
Received 15 October 2012
Published 18 January 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/1/013042

Abstract. We present here the first measurement of the third-order spatial
correlation function for atoms, made possible by cooling a metastable helium
cloud to create an ultracold thermal ensemble just above the Bose–Einstein
condensation point. The resulting large correlation length well exceeds the
spatial resolution limit of the single-atom detection system, and enables
extension of our earlier temporal measurements to evaluate the third-order
correlation function in the spatial plane of the detector. The enhancement of the
spatial third-order correlation function above a value of unity demonstrates the
presence of spatial three-atom bunching, as expected for an incoherent source.
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1. Introduction

The coherence of a light source can be characterized by determining the statistical distribution
of the time of arrival between photons from the source, as described theoretically by Glauber [1].
For pairs of photons, the normalized second-order correlation function is defined as the arrival
probability of a second photon as a function of the delay following the detection of the first
photon, normalized by the individual photon probabilities. Likewise, the third- and higher-order
correlation functions are obtained from the arrival times between triplets and larger groups of
photons.

A perfectly coherent source is characterized by a uniform arrival probability, yielding a
correlation function of unity for all orders. By contrast, a thermal (incoherent) light source
is characterized by photon bunching, whereby the probability of detecting groups of photons
at short delay times is higher than at long delay times. Theoretically, the maximum bunching
enhancement factor for the nth-order correlation function is n! at zero delay time [1], but this
may be significantly reduced in experimental measurements due to the finite resolution of
the detection system. However, provided that the detector temporal resolution is significantly
smaller than the width of the bunching signal, then the bunching width corresponds to the
correlation time of the source.

An early experiment by Hanbury Brown and Twiss [2] measured for the first time the
second-order correlation function of an incoherent light source and demonstrated two-photon
bunching. The same measurement can be applied in the spatial domain, where the probability of
pairs of photons with particular spatial (rather than temporal) separations is measured. Applying
this to stellar light sources, Hanbury Brown and Twiss [3] were able to measure the second-
order spatial correlation function to determine the angular width of stars. Their pioneering
experiments represent the early foundations of quantum optics.

The same concepts apply to particles—including atoms—where in addition both bosonic
and fermionic species exist (cf bosonic photons). Second-order correlation functions have
been determined for both incoherent (thermal) sources [4] and coherent (Bose–Einstein
condensate(BEC)) atomic sources [5]. Thermal and BEC sources exhibited bunching and unity
correlation values respectively, with antibunching being demonstrated for fermions [6, 7].

However, until recently, there has been no matter-wave experimental verification of
Glauber’s conjecture that coherent sources exhibited unity correlation functions to higher
order. Using a new experimental technique in our laboratory, we were able to make the first
measurements of the third-order correlation function [8] which demonstrated temporal three-
atom-bunching for a thermal gas of ultracold bosonic helium, and a correlation value of unity
for a BEC. This result is consistent with BECs being characterized by coherence to higher
orders, in the same way that an optical laser is higher-order coherent. More recently, temporal
correlations up to fourth order have been measured for trapped thermal atoms [9].

In subsequent experiments using ultracold helium atoms guided in multiple modes of
an all-optical waveguide [10], we were able to demonstrate the connection between the first
observation of spatial atomic speckle and temporal two-atom bunching [11], both characteristic
of second-order incoherence. This correspondence between spatial and temporal correlations is
to be expected from Glauber’s formalism as was demonstrated for photons by Hanbury Brown
and Twiss. In similar experiments using atoms, second-order spatial correlation measurements
have also demonstrated atom bunching [5]. Spatial auto-correlation measurements have yielded
similar information about the spatial structure of the ensemble [12–16].
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Experiments determining the third-order spatial correlation function have thus far only
been performed using photons, whereby three separate point detectors were used to measure the
spatial coincidence of photon triplets [17]. The simulated (and experimental) results show that
the probability of jointly detecting three randomly radiated photons from a chaotic thermal
source using three separate detectors is 6 (and ∼5) times greater if the events fall within
the coherence time and volume of the radiation field. The imperfect three-photon-bunching
enhancement is attributed to the finite detector resolution.

In this paper, we apply a similar concept to measure the third-order spatial correlation
function of an atomic ensemble for the first time. (Other experiments have indirectly measured
the effect of third-order correlations on collision processes [18–20].) The significance of spatial
correlation measurements is fourfold.

Firstly, for an isotropic (three-dimensional spatially symmetric) cloud of atoms, spatial
coherence measurements can—interchangeably with temporal coherence measurements—be
used as a diagnostic for the overall coherence properties of the ensemble. Secondly, in
situations where there is a constrained dimensionality of the system e.g. for atoms confined
in one-dimensional and two-dimensional trapping geometries, the measurement of the spatial
correlation functions in each trapping dimension can provide additional information on the
coherence properties of the atomic source [15]. Thirdly, higher-order spatial correlations can
be used to enhance image visibility, such as in the photon experiments undertaken in [17].
There the authors also perform a ‘ghost imaging’ experiment using three-photon coincidences,
and show that the visibility is significantly improved over similar experiments performed using
two-photon coincidences.

Fourthly, while the formalism developed by Glauber [1] indicates that third-order
correlation functions can be expressed via Wick’s theorem in terms of lower order correlation
functions (see supplementary online materials in [8]), the third-order correlation functions
can be related directly to processes involving three-body physics. This includes three-body
collisions (such as studied in [18–20]), and Efimov physics where stable three-body bound
states can exist even when two-body interactions are too weak to create pairing [21–23].
Spatial third-order correlation measurements are therefore of interest in their own right through
the elucidation of three-body physics, as well as for the information provided on the overall
coherence, geometric dimensionality and imaging resolution.

2. Experiment

Here, we extend our measurements of spatial first-order coherence from the matter-wave
imaging techniques employed previously [10], to enable single-atom measurements that yield
both second- and third-order correlation functions in the spatial domain. We employ metastable
helium atoms (He∗) in the 23S1 state which has a very long lifetime (∼8000 s [24]) and which
lies ∼20 eV above the ground state enabling efficient single atom detection [25]. We use the
same apparatus as employed earlier to create a He∗ BEC [26] and a pulsed He∗ atom laser [27]
to generate a cloud of ultracold He∗ atoms.

In our previous temporal third-order correlation experiments [8] we used multiple radio-
frequency (RF) output coupling pulses to create a large number of thermal samples just above
the relatively high (∼1 µK) critical temperature Tc for BEC formation. (The temperature is
determined by measuring the time-of-flight distribution of atoms released from the trap, with
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Figure 1. Experimental schematic. After release from the magnetic trap, the
expanding cloud of ultracold He∗ atoms falls under gravity onto the MCP. The
amplified electron pulse from a single detection event on the MCP is incident
upon the DLD wire (shown only for the x-axis) which creates a current pulse
whose arrival time at each end of the wire then provides the spatial location in
that dimension.

the uncertainty dominated by shot-to-shot fluctuations.) However, in the current experiments
we progressively evaporatively cool the atoms in the magnetic trap to much lower temperatures
(∼100 nK) in order to increase the correlation length to minimize the effects of detector
resolution, while at the same time increasing the probability for detecting pairs of atoms within
the spatial correlation length.

The starting point is a bi-planar quadrupole Ioffe configuration (BiQuic) magnetic trap [26]
shown schematically in figure 1, which has trapping frequencies in the x, y and z (or equivalently
time) direction of 50, 550 and 550 Hz respectively. We load atoms into the trap, and continuously
evaporatively cool the atoms using a swept RF field to just above Tc yielding ∼106 atoms at a
temperature of ∼1 µK. At this point, the correlation length is of order the spatial resolution of
the detector (∼150 µm [8]). The correlation length at the detector ld scales linearly with the
time t taken for the atoms to drop from the trap to the detector, and is given by [28]

ld
= h̄t/mst, (1)
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where m is the particle mass and s t is the size of the cloud in the trap

s t
= (kBT/mω2)1/2 (2)

for trap temperature T, frequency ω and Boltzmann constant kB. By comparison, the transverse
de Broglie wavelength in trap is given by λdB = h/mvtrans ∼ ld(2π/tω).

To increase the correlation length, we continue the evaporative cooling process to reduce
the temperature (and hence the trap size) while simultaneously smoothly attenuating the
atom number to avoid condensation. The attenuation is achieved during the final 2.7 s of the
evaporation process by using additional broadband RF pulses (with a 50% duty cycle over
a 100 µs pulse width) to remove atoms uniformly over the entire ensemble. This expels the
vast majority of atoms from the trap, leaving a very cold cloud (∼95 + 10 nK) of ∼1000
atoms, whose minimum temperature is limited by the stability of the (already highly-stablized)
magnetic trap [30]. The correlation length at the detector along the y-axis is then ∼1.5 mm
which is an order of magnitude larger than the detector resolution.

The magnetic trap is then switched off, thereby releasing the atoms which fall ∼848 mm
over 416 ms under gravity onto an 80 mm diameter micro-channel plate (MCP) detector. By
optimizing the evaporation process, we can achieve a highly reproducible ensemble number
which yields ∼350 detection events per experimental cycle, which are then averaged over nearly
4000 cycles.

As the He∗ atoms arrive at the MCP their ∼20 eV internal energy creates an electron pulse
which is then incident upon a delay-line detector (Roentdek DLD80). The DLD consists of a
wire coil in both the x and y dimensions (figure 1) in which a current pulse is generated for
each MCP event. By measuring the arrival time at the end of each wire the three-dimensional
position of the detection event can be reconstructed.

The detector spatial resolution (∼150 µm) is set by a combination of the MCP pore size
and the DLD detection electronics. The detector resolution was determined by passing He∗

atoms through a fiducial mask which acts as a point source of atoms. The point spread function
determined by the system geometry was then deconvolved from the resulting image to obtain
the detector resolution.

The correlation functions are then determined using a similar technique to that described
in [8], except that here we measure correlations in the plane of the detector (defined by the
x- and y-axis in figure 1) rather than in time (or its equivalent, the z-axis). For a spherical trap the
isotropic nature of the expanding atomic cloud yields the same correlation length at the detector
along both axes. However, in our system, the difference in the x- and y-axis trapping frequencies
(50 and 550 Hz respectively) yields more than an order-of-magnitude greater correlation length
in the y-direction. Since the x-axis correlation length is of order the detector resolution, we have
concentrated on measuring the y-axis correlation function.

A detection event is analysed to determine whether another event occurs within a given
spatio-temporal bin to determine g(2)(1y). The bin size used was 250 µs in the z-direction
(corresponding to 1z = 1 mm at a velocity of 4 m s−1), 1 mm in the x-direction and 200 µm in
the y-direction. The x, y, t bin sizes need to be at least as large as the detector resolution, and
the smaller y bin size reflects the optimization of the data sets needed to achieve the best signal-
to-noise ratio. To measure the third-order spatial correlation function g(3)(1y1, 1y2), the data is
analysed to determine whether a further particle arrives within the same bin volume centred on
the second particle position.
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Figure 2. Normalized second-order spatial correlation function g(2)(1y) for
∼95 nK thermal atoms. The red line shows a gaussian fit to the data.

3. Results

The second-order correlation function g(2)(1y) determined by this process is shown in figure 2
for a thermal ensemble at ∼95 nK. Here the clear atom bunching signature can be seen at small
particle separations, with a correlation length of 1.30 ± 0.03 mm. The bunching enhancement
factor is 1.131 ± 0.015 compared with the expected value of 2.0 (2!) given perfect detector
resolution. A simple theoretical model [8] using our experimental values with no free parameters
predicts an enhancement of 1.14 ± 0.02 and a correlation length of 1.5 ± 0.2 mm, in good
agreement with the experiment.

The simple theoretical model is the same as employed in our previous experiment [8,
supplementary online material] and is based on the method of Gomes et al [28] which employs
the theory of Naraschewski and Glauber [29]. The theory allows the determination of g(2)(1y)

at the detector for a trapped atomic cloud released in the absence of interparticle interactions
(which applies at our very low atomic number densities). The correlation function depends on
the cloud temperature, the trap frequencies, and the time taken for the atoms to fall under gravity
from the trap to the detector, all of which we determine empirically from the experiment. The
model can also be extended to higher order correlation functions via Wick’s theorem.

However, the finite experimental resolution will reduce the peak bunching amplitude to a
value less than n!—the ideal value for the nth order correlation function for incoherent bosons.
In addition to the finite detector spatial resolution (∼150 µm), as indicated above the data is
binned along the various axes to improve the signal-to-noise-ratio, and if the bin size comparable
to or greater than the correlation length, it will also contribute to a loss of resolution.

The correlation functions determined using [28] are averaged over the bin volume where
the position of each detected atom is degraded by the detector resolution. The reduction in
bunching amplitude is dominated by this imperfect resolution, which can be approximated by
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Figure 3. Normalized third-order spatial correlation functions g(3)(1y1, 1y2)

(top left). Three-dimensional plot of the experimental data with false colour
rendering (top right). Corresponding theory obtained from our simple model
(bottom). Plan view of the both images. Note the diagonal ridge corresponding
to the enhanced probability of both particles 2 and 3 being present at the same
1y value.

convoluting the correlation function with a single Gaussian function that represents the effective
resolution (the combination of bin size and detector resolution) so that the peak bunching for
second order becomes

g(2)

obs = 1 +
∏

α∈(x,y,z)

√√√√ (1 + d2

α/S2
α(t))(

1 + 4d2

α/
(
ld
α (t)

)2
) , (3)

where ld
α(t) is the correlation length at the detector, Sα(t) = t∗(kBT/m)1/2 is the cloud size

at detector, and dα is the effective rms resolution. To further improve this, corrections are
added to represent the response of the MCP and DLD system and temperature fluctuations
using a Monte Carlo method to average the correlation functions over the three-dimensional
effective bin volume. The resulting model therefore has no free parameters as all the variables
are determined directly from the experiment.
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Figure 4. Plot of g(3)(1y1 = 1y2 = 1y) − 1, red dashed line, and the three-body
contribution, blue solid line, to g(3)(1y1 = 1y2 = 1y).

The measured third-order correlation function g(3)(1y1, 1y2) is shown in figure 3 (top
left). This is plotted as a function of the y-axis separation for each particle pair in the triplet
i.e. 1y1 = y2 − y1 and 1y2 = y3 − y2. The measured bunching enhancement is 1.44 ± 0.02
compared with an expected enhancement of 6.0 (3!) with perfect detector resolution. The simple
theoretical model [8] with no free parameters yields 1.47 ± 0.05 (top right). A plan view of
both the three-dimensional plot is also shown in the plots underneath. Note that the second-
order correlation function in figure 2 can in principle be derived from the third-order function
in figure 3 when one atom is a large distance from the other two in each triplet (for example,
g(2)(1y1) can be found by averaging g(3)(1y1, 1y2) for values of 1y2 much greater than the
correlation length).

Apparent in all the three-dimensional and plan views is a ridge of enhancement along the
diagonal, where the separation of the first and third particles from the second is the same. This is
to be expected, as when 1y1 = 1y2 there is an enhanced probability of two of the three particles
being close together and therefore interfering.The same phenomenon is present in the third-
order spatial correlation measurements using photons reported in [17]. This ridge line is not
present in the temporal third-order correlation function presented in [8] since time-ordering is
implicit in the detection of particle three after the detection of a particle pair (allowing intervals
without time ordering i.e. enabling time reversal of the first two particles, would yield the same
diagonal ridge).

Finally, it is interesting to note that g(3) contains contributions from g(2) since (as noted
above) when one of the three particles is taken far away, g(3) reduces to g(2). It is possible to
remove these two-body contributions from the three-body correlation function (see equation
S2 in the – supporting online material [8]). Such a decomposition has been used previously
for ultracold atoms [31] and weakly correlated plasmas [32]. Figure 4 shows the three-body
correlation function (g(3)(1y1 = 1y2 = 1y) − 1, dashed red line) as well as the contribution
towards this signal from solely three-particle interference (solid blue line).
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4. Conclusion

Using an improved experimental technique, we have extended our temporal third-order
correlation measurements to determine the spatial third-order correlation function for atoms for
the first time. By reducing the temperature of the atomic cloud by over an order of magnitude
to ∼95 nK, we have been able to increase the correlation length in the y-direction to more than
an order of magnitude greater than the spatial resolution of the detector. This also increases
the number of pair and triplet events measured within the bin size, despite the reduction in the
number of atoms detected as a result of the evaporative cooling process.

The result is a large enhancement of the spatial atom-bunching signal values of 1.131 ±

0.015 for g(2)(1y) and 1.44 ± 0.02 for g(3)(1y1, 1y2), compared with 1.022(2) and 1.061(6)
respectively for the temporal second- and third-order correlations measured previously [8]. This
strong atom-bunching signal is a clear signature of the incoherent nature of the thermal atomic
ensemble.

The measurement of higher-order spatial correlation functions in atomic ensembles holds
promise for enhancing imaging visibility [17], and for probing quantum mechanical phenomena
such as entanglement and the violation of Bell’s inequalities [33]. By improving our correlation
techniques to increase the atom-bunching signals, we aim to make higher-order correlation
measurements more accessible for such applications.
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[13] Fölling S et al 2005 Nature 434 481
[14] Greiner M et al 2005 Phys. Rev. Lett. 94 110401
[15] Manz S et al 2010 Phys. Rev. A 81 031610
[16] Perrin A et al 2012 Nature Phys. 8 195
[17] Zhou Yu et al 2010 Phys. Rev. A 81 043831
[18] Burt E A et al 1997 Phys. Rev. Lett. 79 337

New Journal of Physics 15 (2013) 013042 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1103/PhysRevLett.77.3090
http://dx.doi.org/10.1126/science.1118024
http://dx.doi.org/10.1038/nature05319
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1103/PhysRevLett.107.160403
http://dx.doi.org/10.1364/OL.36.001131
http://dx.doi.org/10.1103/PhysRevA.81.011602
http://dx.doi.org/10.1038/ncomms1292
http://dx.doi.org/10.1103/PhysRevLett.91.010406
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevA.81.031610
http://dx.doi.org/10.1038/nphys2212
http://dx.doi.org/10.1103/PhysRevA.81.043831
http://dx.doi.org/10.1103/PhysRevLett.79.337
http://www.njp.org/


10

[19] Laburthe Tolra B et al 2004 Phys. Rev. Lett. 92 190401
[20] Haller E et al 2011 Phys. Rev. Lett. 107 230404
[21] Kraemer T et al 2006 Nature 440 315
[22] Knoop S et al 2009 Nature Phys. 5 227
[23] Zaccanti M et al 2009 Nature Phys. 5 586
[24] Hodgman S S et al 2009 Phys. Rev. Lett. 103 053002
[25] Vassen W et al 2012 Rev. Mod. Phys. 84 175
[26] Dall R G and Truscott A G 2007 Opt. Commun. 270 255
[27] Manning A G et al 2010 Opt. Express 18 18712
[28] Gomes J V et al 2006 Phys. Rev. A 74 053607
[29] Naraschewski M and Glauber R J 1999 Phys. Rev. A 59 4595
[30] Dedman C J et al 2007 Rev. Sci. Instrum. 78 024703
[31] Armijo J et al 2010 Phys. Rev. Lett. 105 230402
[32] Boyd T J M and Sanderson J J 2003 The Physics of Plasmas (Cambridge: Cambridge University Press)
[33] Jack B et al 2009 Phys. Rev. Lett. 103 083602

New Journal of Physics 15 (2013) 013042 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.107.230404
http://dx.doi.org/10.1038/nature04626
http://dx.doi.org/10.1038/nphys1203
http://dx.doi.org/10.1038/nphys1334
http://dx.doi.org/10.1103/PhysRevLett.103.053002
http://dx.doi.org/10.1103/RevModPhys.84.175
http://dx.doi.org/10.1016/j.optcom.2006.09.031
http://dx.doi.org/10.1364/OE.18.018712
http://dx.doi.org/10.1103/PhysRevA.74.053607
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1063/1.2472600
http://dx.doi.org/10.1103/PhysRevLett.105.230402
http://dx.doi.org/10.1103/PhysRevLett.103.083602
http://www.njp.org/

	1. Introduction
	2. Experiment
	3. Results
	4. Conclusion
	Acknowledgments
	References

