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Abstract Knowledge of past plate motions derived from ocean-floor finite rotations is an important asset
of the Earth Sciences, because it allows linking a variety of shallow-rooted and deep-rooted geological proc-
esses. Efforts have recently been taken toward inferring finite rotations at the unprecedented temporal
resolution of 1 Myr or less, and more data are anticipated in the near future. These reconstructions, like any
data set, feature a degree of noise that compromises significantly our ability to make geodynamical infer-
ences. Bayesian Inference has been recently shown to be effective in reducing the impact of noise on plate
kinematics inferred from high-temporal-resolution finite-rotation data sets. We describe REDBACK, an open-
source software that implements transdimensional hierarchical Bayesian Inference for efficient noise-reduc-
tion in plate kinematic reconstructions. Algorithm details are described and illustrated by means of a syn-
thetic test.

1. Introduction

REDBACK is a software for efficient reduction of noise in plate kinematic reconstructions. It has been devel-
oped by the authors at the Research School of Earth Sciences of the Australian National University, as part
of the AuScope-AGOS Inversion Laboratory. REDBACK is released open source under the GNU General Pub-
lic License (GPL), and can be obtained by logging onto http://www.iearth.org.au/codes/REDBACK or by con-
tacting the corresponding author. REDBACK is deliberately designed to perform efficiently on personal
computers, and is available for Unix and Windows platforms/operating systems. Its strengths are easiness of
use and computational efficiency. Users include scientists and industry researchers studying plate motions
and their changes through geological time.

The theory of plate tectonics [e.g., Wilson, 1965; McKenzie and Parker, 1967; Morgan, 1968; Le Pichon, 1968] is
widely recognized as the unifying paradigm that underpinned scientific progress over the past four decades
in virtually all areas of the Earth Sciences. Central to the plate tectonic theory are reconstructions of past global
plate motions [e.g., Gordon and Jurdy, 1986; Stampfli and Borel, 2002; Torsvik et al., 2010]. These are crucial to
interpret the geological record of Earth, and more specifically to derive important inferences on plate dynam-
ics [e.g., Iaffaldano and Bunge, 2009; Copley et al., 2010], mantle convection [e.g., Ricard et al., 1993; Bunge
et al., 1998], dynamic topography [e.g., Moucha et al., 2008], and sea-level change [e.g., Braun, 2010, and refer-
ences therein], among others. Tectonic plate motions and their temporal changes are well described, under
the approximation of lithosphere rigidity [e.g., Gordon, 1998], by stage Euler vectors (i.e., time-dependent vec-
tors oriented as the axes of instantaneous rotation and whose magnitudes are equal to instantaneous angular
velocities). Stage Euler vectors are readily obtained by differentiating, according to the algebra of rotation mat-
rices, finite rotations of Earth’s lithosphere, which express the relative paleoposition of two adjacent plates at
some time in the geological past. One infers finite rotations from observations of the ocean-floor structure
(i.e., fracture zones) as well as of the imprint that the past Earth’s magnetic field left on it (i.e., magnetic linea-
tions) [e.g., Chang, 1988; Royer and Chang, 1991]. After four decades of geophysical exploration, the fraction of
present-day ocean floor mapped allows the scientific community to infer global plate motions for the past
�170 Myr at a temporal resolution of �10 Myr [e.g., M€uller et al., 2008; Torsvik et al., 2010]. While these pro-
gresses from plate kinematicists are encouraging, geodynamicists wish for finer temporal resolution of recon-
structions, in order to better constrain their models. Today, significant and important efforts are being made
toward mapping the magnetization/structure of some portions of the ocean floor (e.g., Carlsberg Ridge,
Southeast Indian Ridge) at even finer resolution than what is already available. The result is that we are
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beginning to infer relative plate-motion changes over the past �20 Myr—in some cases even �40 Myr—at
the unprecedented temporal resolution of 1 Myr or less [Croon et al., 2008; Merkouriev and DeMets, 2008; Bull
et al., 2010; Fournier et al., 2010]. These advances are indeed promising in terms of achieving finer global cov-
erage, and more high-temporal-resolution reconstructions are anticipated for the near future.

2. Noise in Finite-Rotation Data Sets

Finite-rotation data sets, like any data set, feature noise. This may be substantial, and consequently hamper
our ability to build on kinematic reconstructions and derive geophysical inferences. In the specific case, finite-
rotation noise does not relate to the accuracy of instrumentation and facilities used in mapping the magnet-
ization/structure of the ocean floor (e.g., accuracy of navigation positioning in ship surveys). Instead, it arises
from the challenge of identifying clearly magnetic lineations of the ocean floor [e.g., Dyment and Arkani-
Hamed, 1995], often from insufficiently long segments of slowly spreading ridges [Patriat et al., 2008]. In fact,
raw data of ocean-floor magnetization, despite their accuracy, necessarily require choices to be made about
where to chart the imprint of paleoinversions of Earth’s magnetic field. Such choices are inevitably subjective
and thus give rise to noise in the inferred magnitude of past plate-motion changes. In addition, errors may
also arise from the calibration accuracy of geomagnetic reversal time scales [e.g., Heirtzler et al., 1968; Cande
and Kent, 1995], which impacts on the magnitude as well as timing of past kinematic changes—although
more precise astronomical calibration [e.g., Shackleton et al., 1990] helps reducing this bias for the past �25
Myr. Finally, inferring past rotation poles of adjacent plates from observations of ocean-floor fracture zones
may be prone to even greater biases. Ideally, one should collect a statistically significant number of repeated
measurements of the ocean-floor magnetization/structure in order to minimize the impact of noise. In prac-
tice, this becomes unfeasible because of the costs associated with marine and airborne surveys.

The issue of noise in plate finite rotations has been recognized since the very first kinematic reconstructions
[e.g., Hellinger, 1981]. We report below a simple example used by Iaffaldano et al. [2013] to illustrate that, as
the temporal resolution of finite-rotation reconstructions increases, noise impacts progressively more on
the inferred Euler vectors. Let h1 and h2> h1 be two finite rotations, derived from the ocean-floor magnet-
ization, that constrain the relative paleoposition of two spreading plates at times t1 and t2. The axis about
which plates rotate, as well as the spreading center separating them, are both assumed to remain fixed
from t1 to t2. Such a simplification allows scalar algebra, rather than the algebra of rotation matrices; but the
main inferences from this example hold true also for 3-D rotations about non-fixed axes. The two plates
accrue an angle equal to (h2 2 h1) during the interval of time between t1 and t2. Therefore, (t2 2 t1) is a mea-
sure of the temporal resolution of the reconstruction. Let Dh be the amount of noise present in both h1 and
h2—that is, the random departure from the true angles. Because of the origin of finite-rotation noise, Dh
does not depend on the particular resolution of the reconstruction. The reconstructed angular velocity of
the Euler vector describing the relative motion from t1 to t2 is thus xr5ðh22h1Þ=ðt22t1Þ. However, the pres-
ence of noise implies that the true angular velocity is in fact anywhere in range xt5ðh22h1Þ=ðt22t1Þ6
2Dh=ðt22t1Þ. The last term in xt represents the departure of the reconstructed angular velocity from the
true one, and arises from the presence of noise Dh. It is then evident that at finer temporal resolution of
reconstructions, the denominator (t2 2 t1) becomes smaller, and consequently the error term becomes pro-
gressively larger. Since previous reconstructions featured a relatively low temporal resolution of �10 Myr or
more [e.g., Gordon and Jurdy, 1986; Stampfli and Borel, 2002; Torsvik et al., 2010], the issue of noise has been
classically deemed of second-order importance, because a likely small noise-to-signal ratio was propagated
to the associated plate motions. However, with the modern levels of temporal resolution (�1 Myr) [e.g.,
Croon et al., 2008; Merkouriev and DeMets, 2008; Bull et al., 2010; Fournier et al., 2010], the impact of noise on
the inferred kinematic histories increases to the point that reconstructions become geodynamically implau-
sible, in the sense that geological process may hardly build torque upon plates at the rate necessary to
explain the reconstructed kinematics. This was discussed in detail by Iaffaldano et al. [2012, 2013].

Since the temporal resolution of reconstructions amplifies the impact of noise, it has become standard prac-
tice to average through time—also referred to as smoothing—finite-rotation series, in the hope of mitigat-
ing such a bias. The limited efficiency of smoothing in retrieving actual plate-motion changes can be
addressed by means of a simple 1-D synthetic test. We imagine that the angular velocity of a plate varies
every 1 Myr or so, according to an imposed pattern (Figure 1, blue). We choose plate-like values on the
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order of 1021deg/Myr [e.g., DeMets et al., 2010; Argus et al., 2011], and a pattern of temporal variations mim-
icking a slow-down by some 40% in 20 Myr—in line with evidence from previous kinematic reconstructions
[e.g., Torsvik et al., 2010]. We deem this as the true angular velocity. We then add random Gaussian noise to
it, to obtain a pattern that departs substantially from the true one, and thus could represent the result of dif-
ferentiating observed noisy finite rotations (Figure 1, black). Specifically, for each temporal stage over the
modeled past 20 Myr, the value of noise is drawn from a Gaussian distribution with standard deviation on
the order of half of the variability of actual, high-temporal resolution Euler vectors that have been recently
published [e.g., Merkouriev and DeMets, 2006, 2008]. In other words, we cast a realistic level of noise into the
true pattern. Finally, we add real uncertainties taken from the covariances of the Capricorn/Somalia motion
since �20 Ma of Bull et al. [2010] (Figure 1, gray-shaded area around black lines). Such a choice is arbitrary,
and we could have equally taken uncertainties from the India/Somalia reconstruction of the same authors,
or from the Eurasia/North America data set of Merkouriev and DeMets [2008]. We deem this pattern as noisy
observations. Green lines in Figures 1a–1c show the result of averaging the observed angular velocity every
1, 2.5, and 5 Myr, respectively. From the comparison of true and inferred kinematics, several drawbacks
associated with averaging, and more generally with smoothing, are evident: (i) It systematically downgrades
the native temporal resolution of observed finite rotations that are derived from hard-won measurements.
(ii) It does not yield a unique solution, because of the dependence on the chosen time window. (iii) Any
such choice remains arbitrary, and leads to a pattern that has little resemblance with the true one. While we
use a 1-D example, these issues apply also to realistic 3-D cases. In a notable paper, Merkouriev and DeMets
[2006] resorted to more elegant and sophisticated methods such as bootstrapping; nonetheless these
issues persist. With this example we do not question, or dismiss the usefulness of finite-rotation data sets. In
fact, we maintain that these are invaluable to Earth scientists to reconstruct the paleogeography of tectonic
plates, and indeed welcome the recent advances [e.g., Croon et al., 2008; Merkouriev and DeMets, 2008; Bull
et al., 2010; Fournier et al., 2010]. Instead, our goal with REDBACK is to bridge an objective technical gap in
our ability to unravel true plate-motion histories from reconstructed finite rotations.

3. REDBACK

The theory underlying REDBACK is the well-known Bayesian Inference [e.g., Bayes, 1763], implemented in
the recently developed transdimensional hierarchical fashion [e.g., Malinverno and Briggs, 2004; Sambridge
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Figure 1. Synthetic test showing an Earth-like plate-motion pattern (in blue, deemed as true), as well as the same pattern, upon addition
of Gaussian noise and uncertainties (in black, deemed as observed—see text for details). (a) Result of smoothing the observed kinematic
pattern by averaging every 1 Myr (in green). (b and c) Same as Figure 1a, but using an averaging window of 2.5 and 5 Myr, respectively.
(d) Result of applying REDBACK to the observed kinematic pattern. The solution of REDBACK (in red) (i) retrieves well the true kinematic
patters, (ii) comes at no loss of temporal resolution with respect to the original data, and (iii) features small uncertainty (red-shaded
areas—see text for details).
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et al., 2006]. This probabilistic approach to data inference has already been discussed and applied to several
problems in the Earth Sciences [e.g., Malinverno, 2002; Bodin and Sambridge, 2009; Gallagher, 2012; Tkalcić
et al., 2013]. Iaffaldano et al. [2012, 2013, 2014] used it for the first time in the context of tectonic plate finite
rotations, to reduce the impact of noise in a number of recently published plate-motion histories (i.e., India/
Somalia, Eurasia/North America, Pacific/Antarctica, India/Eurasia, and Nubia/Somalia). Generally speaking,
transdimensional hierarchical Bayesian Inference allows one to recognize, in a noisy time series of observa-
tions, the level of data noise, and thus the level of complexity of the true series. In the case of finite-rotation
time series, this effectively means being able to distinguish temporal kinematic changes that are likely to be
real changes in plate motion due to geological processes, from the artifacts originating from noise in finite
rotations. Bayesian Inference is therefore well suited to identifying plate-motion changes from noisy
records.

REDBACK implements transdimensional hierarchical Bayesian Inference through the following algorithm:
initially, a 3-D model m that may represent the true series of finite-rotation angle and pole through geologi-
cal time is randomly generated. Such a 3-D model consists of three 1-D time series that, together, parame-
terize finite rotations: one series for the longitude of the rotation pole, one for the latitude, and one for the
rotated angle between adjacent tectonic plates. One does not need to have any particular a priori knowl-
edge as to the exact number, magnitude, or timing of true changes, because these are treated as free
parameters. Further, such a model is initially considered just as likely to be a faithful realization of the truth
as any other randomly generated model. In the jargon of Bayesian Inference, this corresponds to choosing
a uniform prior probability density distribution—or simply prior—within reasonable bounds. In simpler
words, it means initially assigning to m a probability p of being the faithful realization of the truth before
even looking at the data d. The prior is typically indicated with p(m). REDBACK assumes that p(m) is uniform
within bounds set ad hoc for the particular data set at hand. Specifically, for each time series of the 3-D
finite-rotation data set (longitude of the rotation pole, latitude of the same and rotated angle), the prior is
set to a constant uniform value in the interval from little less than the minimum to little more than the max-
imum of the time series. Instead, outside such an interval the prior is set to zero. Thus, values within the
minimum and the maximum of the data time series are initially considered to be equally probable; while
values smaller than the data minimum or larger than the data maximum are not considered at all. Such a
choice is logical for the time series of rotated angle, which is by definition monotonically increasing from
younger to older time stages. We regard such a prior to be a reasonable choice also for the time series of
rotation-axis longitude and latitude. In fact, in noisy finite-rotation data sets the geographical region over
which longitude and latitude scatter is typically so wide [e.g., Iaffaldano et al., 2012, 2013] that the true val-
ues will very likely fall in it. Next, REDBACK estimates how well the model m fits (i.e., explains) the observed
finite rotations. In the jargon of Bayesian Inference, this means estimating the likelihood of observing the
input data set d, given the model time series at hand m. The likelihood is indicated with pðdjmÞ (generally,
the expression a|b means a given, or conditional on, b), and is defined as follows:

pðdjmÞ5 1

2p
ffiffiffiffiffiffi
jCj

p exp 2
1
2
ðd2mÞT C21ðd2mÞ

� �
(1)

where C is the covariance of data and T indicates the transpose of the difference vector (d 2 m) between
data and model. Because of the negative sign within the exponential, the smaller such a distance is, the
greater the likelihood of d, given m, will be.

REDBACK uses this level of fit to estimate the probability that finite-rotation model m is in fact a faithful real-
ization of the truth, given the data d. Such a probability estimate is referred to as the posterior pðmjdÞ,
because it is determined after comparing models to observations. In Bayesian Inference, the posterior is
proportional to the likelihood times the prior, that is, pðmjdÞ / pðdjmÞ3pðmÞ. Sampling the posterior
across the space of possible models is the core of Bayesian Inference. Since REDBACK employs a uniform
prior within bounds derived from the input data, the posterior distribution of probability is in fact shaped as
the likelihood distribution across the model space. Sampling of the entire space of models can be computa-
tionally expensive (sometimes prohibitively so), especially if the model space stretches across dimensions.
To sample the posterior in a computationally efficient fashion, REDBACK implements a Monte Carlo Markov
Chain [see Sisson, 2005, for a review] that, instead of systematically sampling the entire model space,
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samples a subspace in which models are ultimately distributed like the posterior. Specifically, after having
estimated the likelihood of model m through equation (1), REDBACK perturbs m to generate a new model
m
0
. It then (i) compares m

0
to data as well to m, and—on the basis of such a comparison—(ii) accepts or

rejects it as a faithful realization of the truth. In case of rejection, a new model is randomly generated.
Instead, in case of acceptance, the Markov Chain moves to a further model generated by perturbing the
previously accepted one m

0
. Acceptance criteria take into account the likelihood of previous and subse-

quent models, and in general depend on the type of perturbation used by REDBACK. They are described in
the following.

In moving the Markov Chain from one accepted model to the next proposed one, REDBACK randomly
selects a type of perturbation—or move—among the following five options: (1) one single plate-motion
change cast within the previously accepted model of finite rotations is perturbed. Effectively, this is readily
achieved by perturbing one single finite rotation of the model series. Its new value is drawn from a Gaussian
distribution that is centered about the previous value, and features a standard deviation chosen by the
user. In Figure 2a, we show a schematic example of how this option would perturb an imaginary time series
of rotated angles. REDBACK then computes the probability a that m

0
is a better realization of the truth than

m. Specifically, a5min 1; pðdjm0Þ=pðdjmÞ½ �. If a is greater than a threshold drawn each time from a uniform
random distribution between 0 and 1, then m

0
is accepted into the Markov Chain. Otherwise it is rejected,

and a new model is generated by perturbing m. In other words, if the likelihood of m
0

is greater than that of
m, then m

0
will certainly be accepted. Otherwise, m

0
might still be accepted depending on the always-new

value of the acceptance threshold. Changing such a threshold for every proposed move ensures, over a
large number of proposals, that no particular standards for acceptance are enforced. (2) The timing of one
plate-motion change cast within the previously accepted model of finite-rotation series is perturbed. To this
end, the time associated to one randomly selected finite rotation of the model is moved by an amount
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Figure 2. Examples of options that REDBACK uses to perturb a previously accepted model (in black) into a newly proposed one (in red)
within the Monte Carlo Markov Chain. For simplicity, examples are shown for an imaginary 1-D time series of finite-rotation angles (dots)
and associated uncertainties (vertical bars) since �8 Ma. In fact, REDBACK uses these options to propose a new 3-D model consisting of
three time series: longitude, latitude, and rotated angle of finite rotations. Gaussian distributions used to draw the perturbation values are
in green. Figures 2a–2e show, respectively, options 1–5 described in the main text. For the latter example, uncertainties on the proposed
model have been reduced. However, they could also be increased, depending on the parameters set by the user. All input parameters are
described in more detail in the user manual associated with REDBACK.

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005309

IAFFALDANO ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 1667



drawn from a Gaussian distribution with standard deviation chosen by the user (see example in Figure 2b).
The expression of probability a and acceptance/rejection criterion is the same of option (1). (3) A new plate-
motion change is cast into the previously accepted model. This is achieved by adding one finite rotation to
the model. The new rotation values (time and magnitude) are drawn from Gaussian distributions centered
around a randomly selected, previously accepted one, and featuring standard deviations chosen by the
user (see example in Figure 2c). In this case, the probability a that m

0
is a better realization of the truth than

m assumes a slightly different expression. Let us indicate with Dm, the range of values that REDBACK may
possibly assign to proposed models. Let us also indicate with m

0
j the new finite rotation added to propose

m
0
, and with mi the value that the previously accepted model m would have at the newly-cast time associ-

ated with m
0
j . Finally, let Nmi ;r2ðm0

jÞ denote the value that the Gaussian distribution—centered around mi

and featuring standard deviation r used to generate m
0
j—assumes at m

0
j . Then a5min 1; 1=Dm3½

pðdjm0Þ=pðdjmÞ3N21
mi ;r2ðm

0
jÞ�. The acceptance/rejection criterion is the same of option (1). (4) A plate-

motion change cast into the previously accepted model is removed. This is achieved by randomly selecting
and discarding one finite rotation from the previously accepted model (Figure 2d). Let us indicate with mi

the finite rotation removed from m to propose m
0
, and with m

0
j the value that m

0
assumes at the time asso-

ciated with mi. Since option (4) may be considered the reverse of (3), in this case
a5min 1;Dm3pðdjm0 Þ=pðdjmÞ3Nmi ;r2ðm0

jÞ
� �

, while the acceptance/rejection criterion is the same of
option (1). Options (3) and (4) implement the transdimensional character of the inference algorithm. (5)
Covariances associated with the observed, noisy finite rotations, which provide the associated uncertainty,
are scaled by a factor, also referred to as hierarchical parameter. The value of the hierarchical parameter may
be smaller than 1—expressing the user’s hypothesis that nominal uncertainty on data might have been
overestimated—or greater than 1—expressing, instead, the hypothesis of underestimation. Such a value is
drawn from a Gaussian distribution centered around the previously accepted hierarchical-parameter value
(or randomly selected in the first instance), and featuring standard deviation chosen by the user (see exam-
ple in Figure 2e). The expression of probability a and acceptance/rejection criterion are the same of option
(1). Option 5 impacts on the computed level of data fit (i.e., on the distance between subsequent models
and data), and therefore on sampling of the posterior. All the probability formula and acceptance criteria
follow the well-known criterion of Metropolis-Hasting [Metropolis et al., 1953; Hasting, 1970], which ensures
that a better-fitting model with respect to the previously accepted one (i.e., a 5 1) will always be accepted,
while a poorer model (i.e., a< 1) will be accepted with some probability. This avoids, for instance, the fact
that the Markov Chain systematically rejects all proposed models once a local maximum of the likelihood
distribution has been sampled.

REDBACK iterates such a procedure a number of times set by the user, with recommended values being on
the order of million. We note that the Monte Carlo Markov Chain character of the procedure only ensures
computational efficiency in sampling—particularly on personal computers, for which REDBACK is intended.
However, the effectiveness of the sampling (i.e., whether the ensemble of accepted models do ultimately dis-
tribute like the posterior probability density) relies predominantly on choices made by the user, and more spe-
cifically on the standard deviations used in the Markov Chain algorithm for perturbing the previously
accepted model into the next one. It is straightforward to imagine that if the user chooses values for these
standard deviations which are too small, then the perturbed model is likely to be very similar to the previously
accepted one. As a consequence, the iteration will effectively dwell on a particular subregion of the model
space to sample. In fact, since small standard-deviation values enforce resemblance between two consecu-
tively accepted models, it is unlikely, during the iteration process, to move away from such a subregion.
Instead, if the user selects standard-deviation values which are too large, then the iteration will quickly move
from one subregion of the model space to a different one, likely without having sampled it enough to obtain
sufficient resemblance to the posterior. For a more technical and comprehensive review of these notions, see
Gallagher et al. [2009]. User’s choices impact on the rate at which the posterior is sampled throughout the
model space, and hence on the efficiency of the algorithm. However, all choices will, eventually, lead to
unbiased sampling of the posterior. While this is true in theory, in practice the user needs to make sure that
reasonable, if not optimal, sampling is achieved within the preset number of iterations. Typically, first-order
indications that this has been achieved are the smoothness and shape of histograms for the distribution of
input parameters across the ensemble of accepted models. In the user manual associated with REDBACK, we
provide more detailed examples of how to follow such a criterion. In this sense, user’s choices are crucial to
the effectiveness of REDBACK in retrieving true plate-motion changes from noisy finite-rotation data sets.
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The final solution REDBACK provides is not a single best-fitting model among the ensemble that has been
sampled, nor the most probable one based on the posterior. It is, rather, the mean of the whole ensemble
of accepted models. In addition, REDBACK computes covariances around the mean from the entire ensem-
ble. This provides the user with a confidence interval for the solution found by REDBACK. In a way, the algo-
rithm that REDBACK implements is not too dissimilar to what experimentalists do in the laboratory when
taking repeated measurements of a given observable. In estimating the most representative value of an
observable, one typically repeats the same measurement for a statistically significant number of times. The
most representative value of the observable is not any particular one of these measurements, nor the most
certain one. Rather, it is the weighted mean, which takes into account the uncertainty of each single mea-
surement, but weighs more the most certain ones. Instead of repeated measurements and associated
uncertainties, REDBACK deals with an ensemble of millions of models, and computes the final solution as
the mean of such an ensemble. The fact that the accepted models are distributed in a way similar to the
posterior implies that their mean effectively corresponds to the weighted mean of all possible models—
where weights are determined by the posterior distribution of probability. Finally, at first glance one may
think that models featuring a greater number of plate-motion changes may seem prone to fit the noisy
finite rotations better, thus yielding higher posterior probability with respect to simpler models. However, it
is well established that transdimensional hierarchical Bayesian Inference follows the principle of natural par-
simony [MacKey, 2003], where preference always falls on the least complex explanation of observations.

In Figure 1d, we show the solution provided by REDBACK for the simple 1-D synthetic test described above.
The red line is the weighted mean of the ensemble, while the red-shaded area around it represents the con-
fidence the user should have in such a solution, expressed in the form of covariances similar to those typi-
cally associated with finite-rotation or Euler-vector data sets. At each time stage, REDBACK computes the
matrix Cij for the covariance of the ensemble using the standard formula Cij5E½mi �mj�2E½mi� � E½mj�—
where i; j51; 2; 3 indicate the axes—x̂ ; ŷ , and ẑ—of the orthonormal reference frame, m indicates the
model component along a particular axis and E[. . .] is the expected value—or mean—of the argument
within brackets. Comparing Figures 1a–1c with Figure 1d clearly indicates the advantages associated with
REDBACK: (i) it offers a superior capability to retrieve the true pattern of kinematic changes, compared to
more classical smoothing methods. (ii) Covariances on the stage Euler vectors in output remain small. (iii)
The solution comes at no loss of temporal resolution with respect to the original finite-rotation data set.
Outputs of REDBACK include noise-reduced Euler vectors and associated finite rotations (both completed
with covariances), as well as few useful auxiliary files that serve for diagnostics. Importantly, we built into
REDBACK the option of sampling the solution at different temporal stages than the native ones. This is par-
ticularly suited for combining different finite-rotation data sets in reconstructing, for instance, the relative
convergence between subducting and overriding plates. To our knowledge, no other algorithm is capable
of achieving this level of accuracy in estimation of true plate motions.

4. Conclusions

REDBACK has been developed for efficient noise reduction in plate kinematic reconstructions. We explained
the origin of noise in finite rotations, and illustrated the impact it has on the inference of plate kinematics. We
outlined the algorithm implemented within REDBACK, which builds on the increasingly popular approach
known as transdimensional hierarchical Bayesian Inference. By resorting to a synthetic test, we showed that
REDBACK offers a superior ability to retrieve true plate-motion changes from noisy finite-rotation data sets, as
opposed to more classical smoothing methods. REDBACK is released open source under the GNU General
Public License (GPL), and can be obtained by contacting the corresponding author or by logging onto http://
www.iearth.org.au/codes/REDBACK. Users include plate kinematicists, geodynamicists, and anyone making
use of tectonic plate motions and their changes through geological time. REDBACK comes with a user manual
that includes examples based on synthetic as well as real finite-rotation data sets.
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