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Abstract Knowledge of Nubia/Somalia relative motion since the Early Neogene is of particular

importance in the Earth Sciences, because it (i) impacts on inferences on African dynamic topography; and

(ii) allows us to link plate kinematics within the Indian realm with those within the Atlantic basin. The

contemporary Nubia/Somalia motion is well known from geodetic observations. Precise estimates of the

past-3.2-Myr average motion are also available from paleo-magnetic observations. However, little is known

of the Nubia/Somalia motion prior to �3.2 Ma, chiefly because the Southwest Indian Ridge spread slowly,

posing a challenge to precisely identify magnetic lineations. This also makes the few observations available

particularly prone to noise. Here we reconstruct Nubia/Somalia relative motions since �20 Ma from the

alternative plate-circuit Nubia-Arabia-Somalia. We resort to trans-dimensional hierarchical Bayesian

Inference, which has proved effective in reducing finite-rotation noise, to unravel the Arabia/Somalia and

Arabia/Nubia motions. We combine the resulting kinematics to reconstruct the Nubia/Somalia relative

motion since �20 Ma. We verify the validity of the approach by comparing our reconstruction with the

available record for the past �3.2 Myr, obtained through Antarctica. Results indicate that prior to �11 Ma

the total motion between Nubia and Somalia was faster than today. Furthermore, it featured a significant

strike-slip component along the Nubia/Somalia boundary. It is only since �11 Ma that Nubia diverges away

from Somalia at slower rates, comparable to the present-day one. Kinematic changes of some 20% might

have occurred in the period leading to the present-day, but plate-motion steadiness is also warranted

within the uncertainties.

1. Introduction

The geological setting of continental Africa has received much attention in recent years, chiefly owing to

the fact that it is regarded as the archetype setting emerging from the interaction between deep mantle

processes and surface tectonics [e.g., Braun, 2010]. Nyblade and Robinson [1994] first noted the anomalously

shallow bathymetry of the ocean floor surrounding southern Africa and named it, together with the high

African lands (i.e., the Ethiopian, East and South African Plateaus, the Angola Mountains, the Congo-

Cameroom Atlantic Swell), the African Superswell. Lithgow-Bertelloni and Silver [1998] were the first to link

the high African elevation to vertical stresses generated at the lithosphere base by flow within the buoyant

mantle—a mechanism commonly referred to as dynamic topography. In this context, numerous studies

[e.g., Cadek et al., 1995; Gurnis et al., 2000; Simmons et al., 2007; Moucha and Forte, 2011] resorted to geody-

namic modeling to explore the links between sub-African mantle flow and associated uplift history of the

lithosphere above, which left the most recent imprint in the stratigraphic, magmatic, and rift records from

the Oligocene/Miocene [e.g., Janssen et al., 1995; Walford and White, 2005; Manga, 2008; Jelsma et al.,
2009].

The notion of a dynamically sustained high relief of Africa requires that torques generated by deep mantle

flow at the lithosphere-base balance those associated with shallower processes, such as lithospheric flex-

ure, gravitational lateral spreading of the African high lands, and the frictional interaction of Nubia and

Somalia with each other as well as with the surrounding plates. By virtue of Newton’s second law of

motion, plate kinematics are the most compelling evidence of such a balance, and therefore, the most

powerful probe into the relative importance of the dominant controls. Temporal changes in plate motions

arise from variations of forcing conditions upon plates that have already been balanced, because the time

plates take to readjust their kinematics can be readily shown to be vanishingly small compared to
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geological time (see Ricard [2009], for a comprehensive review). Reconstructing the geologically-recent

motions between Nubia and Somalia is therefore a key to unraveling the history of the past and present

dynamic topography of Africa, among others.

The contemporary Nubia/Somalia relative motion is well constrained through geodetic and seismological

observations. A number of studies [e.g., Stamps et al., 2008; Argus et al., 2010; Altamini et al., 2012; Saria
et al., 2013] indicate that the Nubia/Somalia Euler pole is located a few degrees north of the Andrew Bain

Transform Fault Complex, with the relative rotation rate being around 0.7�/Myr. The relative motion in the

recent geological past (i.e., since �3.2 Ma) is also known with confidence from paleo-magnetic observa-

tions of the ocean floor in the vicinity of the Andrew Bain Transform Fault Complex and the Southwest

Indian Ridge, along the Nubia-Antarctica-Somalia circuit of adjacent plates [Horner-Johnson et al., 2007].

Confidence in such a reconstruction stems from the ability to close the Somalia-Antarctica-Nubia-Arabia cir-

cuit. These two independent estimates agree remarkably well and suggest that the Nubia/Somalia motion

remained essentially stable since �3.2 Ma.

Unfortunately, we currently do not possess sufficiently accurate observations of the ocean floor as old as

�3–20 Myr in the vicinity of the Andrew Bain Transform Fault Complex and the Southwest Indian Ridge to

infer the Nubia/Somalia motion further back into the Miocene. The fact that the Southwest Indian Ridge

spread slowly poses a significant challenge to the precise identification of paleo-magnetic lineations on the

ocean floor. At present, little is known about the Nubia/Somalia motion prior to�3.2 Ma—something that

hampers our ability to derive precise inferences on the dynamics of Nubia/Somalia separation. The only two

available studies constraining the total relative rotation since�11 Ma [Lemaux et al., 2002; Royer et al., 2006]

have both been challenged on account that either they are biased by a misinterpretation of the ocean-floor

magnetization pattern [Patriat et al., 2008], or imply a history of rifting in East Africa that stands at odds with

the continental record, as noted by Molnar and Stock [2009]. The implications of such a gap in knowledge are

far more significant if one considers that the Nubia/Somalia relative motion allows linking the kinematic his-

tories of Indian realm and Central/South Atlantic domain, for instance in reconstructions of the motion of

India toward Eurasia—which remain controversial still today [e.g., Molnar and Stock, 2009; Copley et al., 2010;

Iaffaldano et al., 2013]. Nonetheless, important steps in this direction are currently being taken [DeMets et al.,
2013] and kinematic reconstructions of the Antarctic ocean floor are expected in the near future.

Meanwhile, the only viable alternative remains to reconstruct the past Nubia/Somalia motions from the cir-

cuit through the Arabian plate—that is, crossing the Gulf of Aden and Aden-Owen-Carlsberg Triple Junc-

tion as well as the Red Sea. Here we do so starting from existing finite rotations. First, we reduce noise in

high-temporal-resolution finite rotations of the Arabia/Somalia paleoposition since �20 Ma [Fournier et al.,
2010] by making use of an extended formulation of the Bayesian framework [e.g., Malinverno, 2002; Bodin
et al., 2012]. Recently, Iaffaldano et al. [2012, 2013] showed this to be a useful step to infer reliable plate

kinematics. Second, we combine those kinematics with the ones derived from earlier reconstructions of the

paleodistance between Arabia and Nubia, to obtain the Nubia/Somalia past motions. While the latter ones

[Joffe and Garfunkel, 1987; Le Pichon and Gaulier, 1988; Chu and Gordon, 1998] come with no estimate of

the associated uncertainty, they feature a lower temporal resolution, and therefore a smaller noise-to-

signal ratio, compared to the reconstruction of Fournier et al. [2010]. This makes them less prone to noise

when converted into plate kinematics. We verify such a statement and quantify the relatively small influ-

ence of noise in Nubia/Arabia finite rotations assuming three putative, yet realistic uncertainty levels in our

Bayesian formulation. In order to test the reliability of our approach, we show that the resulting stage Euler

vectors for the past �3.2 Myr compare well with the independent estimate obtained by Horner-Johnson
et al. [2007], using data from the Southwest Indian Ridge. Finally, we discuss the temporal variations of sur-

face velocity and direction of Nubia/Somalia relative motion, and their implications for understanding the

controlling dynamics, implied by our reconstructed kinematics.

2. Data and Methods

Fournier et al. [2010] determined the finite rotations for the paleoposition of Arabia with respect to Somalia

since the Early Neogene (�20 Ma) from magnetic and satellite-altimetry data collected in the Gulf of Aden

as well as in the region of the Aden-Owen-Carlsberg Triple Junction. Finite rotations, when differentiated

according to the algebra of rotation matrices, provide stage Euler vectors for the average instantaneous

Geochemistry, Geophysics, Geosystems 10.1002/2013GC005089

IAFFALDANO ET AL. VC 2013. American Geophysical Union. All Rights Reserved. 846



rotation over the associated temporal stage

[e.g., Cox and Hart, 1986]. These are also

referred to as Euler vectors. In Figure 1, we

show the temporal evolution of Euler vectors

for the Arabia/Somalia relative motion since

�20 Ma, derived from the finite-rotation data

set of Fournier et al. [2010] (in black). Plots a,

b, and c report the Euler-vector Cartesian

components about the x̂ (0�E, 0�N), ŷ (90�E,

0�N), and ẑ (90�N) axes, respectively. It is evi-

dent that the reconstructed motions feature

rapid and somewhat erratic speedups and

slowdowns through time. It is difficult to

imagine geological processes capable of gen-

erating such a kinematic pattern. Rather than

being the result of large-scale processes con-

trolling plate-motion changes, these features

arguably arise from noise in finite-rotation

data sets—similarly to the cases of other

adjacent plates reconstructed at high tempo-

ral resolution [Iaffaldano et al., 2012].

Noise is the unknown component of finite

rotation that in reality is unrelated to plate

motions. It is rather due to the difficulty of

(i) identifying in detail the ocean-floor mag-

netic lineations, particularly along short seg-

ments of slowly spreading ridges (such as

the one within the Gulf of Aden); and (ii)

accurately establishing the geomagnetic

reversal time scales [e.g., Cande and Kent,

1995; Lourens et al., 1995]. A simple example

clarifies how the influence of noise in com-

puting Euler vectors becomes progressively

more important as the temporal resolution

of finite-rotation reconstructions increases.

Let h1 and h2> h1 be two finite rotations

derived from ocean-floor observations, con-

straining the relative paleoposition of two

spreading plates at times t1 and t2. For sim-

plicity, the axis about which plates rotate, as

well as the spreading center separating

them, are both assumed to remain fixed

from t1 to t2. This allows using scalar alge-

bra, rather than the algebra of rotation mat-

rices. Nonetheless, the main inferences from

this example demonstrably hold true also

for rotations about non-fixed axes. The two

plates accrue an angle equal to (h2 2 h1) in

the interval of time between t1 and t2.

Instead, (t2 2 t1) is a measure of the tempo-

ral resolution of the reconstruction. Further,

let Dh be the amount of noise present in

both h1 and h2—that is, the random depar-

ture from the true angles. Because this noise
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Figure 1. (a) Cartesian component along the x axis (0�E, 0�N) of the rela-

tive motion between Arabian (AR) and Somalia (SO) plates since �20 Ma.

AR rotates with respect to SO. Black envelope is the angular velocity

obtained from differentiating finite rotations of Fournier et al. [2010] (F10),

which are reconstructed from magnetic and satellite-altimetry surveys of

the Gulf of Aden (GoA) and Aden-Owen-Carlsberg Triple Junction (AOCTJ).

Green envelope is the angular velocity obtained upon noise reduction in

the finite rotations of Fournier et al. [2010]. This is achieved through Bayes-

ian Inference (see text for details). Striped areas are confidence ranges. (b)

Same as Figure 1a, along the y axis (90�E, 0�N). (c) Same as Figure 1a,

along the z axis (90�N).
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arises chiefly from the challenge of identifying accurately magnetic lineations of the ocean floor, Dh does

not depend on the particular resolution of the reconstruction. The reconstructed angular velocity of the

Euler vector describing the relative motion from t1 to t2 is simply xr 5 (h2 2 h1)/(t2 2 t1). However, the pres-

ence of noise implies that the true angular velocity is in fact xt 5 (h2 2 h1)/(t2 2 t1) 6 2Dh/(t2 2 t1). The last

term of xt measures the departure of the reconstructed angular velocity from the true one. It is then evident

that the mistake made increases for finer temporal resolution of reconstructions. In this example, we have

explicitly not considered the additional noise associated with the particular geomagnetic reversal time

scale [e.g., Cande and Kent, 1995; Lourens et al., 1995], which arises from dating basalts samples and ocean-

floor sediments along spreading ridges through radiochronology and paleontology. In reality, this also con-

tributes to our ignorance of the reconstructed kinematics. Nonetheless, geomagnetic reversal time scales

benefit from precise astronomical calibration [e.g., Shackleton et al., 1990] back to �25 Ma. For this reason,

noise in finite rotations younger than that owes much to the identification of ocean-floor magnetic

lineations.

Iaffaldano et al. [2012, 2013] for the first time adopted the trans-dimensional hierarchical Bayesian Inference

to reduce noise in finite-rotation data sets and retrieve actual temporal changes in plate motions. The details

of such a method have been previously discussed, and applications are appearing in a range of areas [Malin-
verno, 2002; Malinverno and Briggs, 2004; Sambridge et al., 2006; Bodin and Sambridge, 2009; Gallagher, 2012].

The effectiveness of Bayesian Inference in reducing finite-rotation noise has been verified through synthetic

tests [Iaffaldano et al., 2012]. Its essence is best explained through an analogy with repeated measurements of

a given observable. In estimating the most representative value of an observable, one typically repeats the

same measurement for a statistically significant number of times. The most representative value for the meas-

ured observable is not any particular one of these measurements, nor the most certain one. Rather, it is the

weighted average, which takes into account the uncertainty of each single measurement, but weighing more

the more certain ones. Similarly, in Bayesian Inference one deals with a number of models generated by

Monte Carlo algorithms and distributed according to any prior expectations one may have. Each of these

models is then assigned with a probability of being a faithful realization of the truth, given the noisy data

available. The probability of each model is proportional to the distance of the same model from the noisy

data. In estimating such a distance, the nominal uncertainty on the noisy data is taken into account. By gener-

ating an ensemble of millions of models and including prior expectations, one is able to sample the posterior

distribution of probability—that is, the probability of a given model after having compared it to the data—

within the model ensemble explored. Further, Markov Chain methods allow sampling of the model ensemble

in a computationally efficient manner. As with repeated measurements of observables, one is not encouraged

to pick any single one of these models as the most representative, but rather compute the weighted average

model according to the sampled posterior probability. It is also well established that trans-dimensional hier-

archical Bayesian Inference follows the principle of natural parsimony [Malinverno, 2002], where preference

always falls on the least complex explanation of observations. The synthetic test performed by Iaffaldano et al.
[2012] demonstrated that results are closer to the truth than the noisy data. Lastly, from the millions of models

generated, one can readily compute model covariances.

3. Results

In Figure 1 (in green), we report the Cartesian components of Arabia/Somalia Euler vectors since �20 Ma,

once noise is reduced through Bayesian Inference from the data set of Fournier et al. [2010]. We built on

our previous work [Iaffaldano et al., 2012] and employed unobtrusive a priori knowledge by setting our

prior to uniform distribution with relatively wide bounds. This effectively means that, before looking at the

noisy data, we have no particular expectation as to the actual kinematic pattern. It is evident that most of

the large and erratic changes derived from simple differentiation of finite rotations are in fact due to the

influence of noise. Upon noise reduction, one can see that relative motion remained remarkably stable

back to �15 Ma. Some kinematic changes occurred from 15 to 20 Ma, but we concede that uncertainties

are such that steadiness back to 20 Ma is also warranted.

We derive Euler vectors for the relative motion between Arabia and Nubia from previously published finite

rotations, reconstructed from observations of the Red Sea ocean floor. We use finite rotations for the paleo-

position of Arabia with respect to Nubia from Joffe and Garfunkel [1987]—at �20 Ma—and Le Pichon and
Gaulier [1988]—at 4.7 and 13 Ma. We also include the record from the MORVEL kinematic model [DeMets
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et al., 2010] for the past 3.2 Myr, which is

based predominantly on the reconstruction

of Chu and Gordon [1998]. Other data at

9.9, 20.2, and 20.6 Ma are available from

the Earthbyte repository (see www.earth-

byte.org). However, Dyment et al. [2013]

recently reevaluated finite rotations

between Arabia and Nubia using data from

a new aeromagnetic survey of the Red Sea.

They found that the original reconstruc-

tions by Le Pichon and Gaulier [1988] and

Joffe and Garfunkel [1987] are indeed con-

sistent with these new data, and thus hold

valid. The Cartesian components of the

Euler vectors derived from these finite rota-

tions are in Figure 2 (in black). Because the

temporal resolution of such a reconstruc-

tion is lower than that of the Arabia/Soma-

lia motions, one may argue that the

influence of noise is of less concern in this

case. Nonetheless, we explore also how

noise impacts on the Arabia/Nubia Euler

vectors. Since no covariances are provided

for the finite rotations mentioned above,

the only alternative we have is to assign

putative values within reasonable ranges.

We elect to assign the same numeric value

(r2) to the diagonal of the covariance

matrix (C), and zero to nondiagonal entries.

That is, C 5 r2�I, where I is the 3 3 3 iden-

tity matrix. We then explore three different

possible values of r2 that are roughly in the

same range of covariances associated with

Arabia/Somalia finite rotations from Four-
nier et al. [2010]. They are 5 3 1028, 1 3

1028, and 5 3 1029 rad2/Myr2. Colored

envelopes in Figure 2 show the Cartesian

components of the Arabia/Nubia Euler vec-

tors upon noise reduction, each obtained

using either of the r2 values mentioned

above. A comparison of the resulting Euler

vectors with the original ones indicates

that (i) in the case of Arabia/Nubia plate

motions, noise is of less concern, due to

the lower temporal resolution of the recon-

struction. It also indicates that (ii) upon

noise reduction, the resulting kinematics

do not differ significantly for different val-

ues of the assumed uncertainty on the orig-

inal finite rotations (r2). In this case, the

covariances on the noise-reduced Euler

vectors would depend directly on the val-

ues we chose for the uncertainty associated

with the original finite rotations. While the

latter are plausible, they carry little
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Figure 2. (a) Cartesian component along the x axis (0�E, 0�N) of the relative

motion between Arabian (AR) and Nubia (NU) plates since �20 Ma. AR

rotates with respect to NU. Black envelope is the angular velocity obtained

from merging finite rotations of Joffe and Garfunkel [1987] (J87), Le Pichon
and Gaulier [1988] (L88), and DeMets et al. [2010] (D10). No uncertainties are

provided in the first two studies. Colored envelopes are angular velocities

obtained upon Bayesian noise reduction in these finite rotations. We

assumed variance (r2) to be 5 3 1028 (red), 1 3 1028 (green), and 5 3

1029 (blue) rad2/Myr2 (see text for details). (b) Same as Figure 2a, along the

y axis (90�E, 0�N). (c) Same as Figure 2a, along the z axis (90�N).
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statistical meaning; thus we refrain from esti-

mating them.

We combine the kinematics inferred upon

noise reduction in Arabia/Somalia and Ara-

bia/Nubia (r2 5 1 3 1028 rad2/Myr2) finite

rotations to obtain Euler vectors for the

Nubia/Somalia relative motion since �20 Ma.

We do so at the higher temporal resolution

associated with Arabia/Somalia Euler vectors.

Figure 3 (black envelope) shows Cartesian

components of the resulting Euler vectors, as

well as the associated uncertainties obtained

from covariances. Results indicate that since

�16 Ma the rigid rotation between Nubia

and Somalia remained remarkably stable

within the uncertainty range. Some kine-

matic variability is evident prior to this stage,

but we concede that uncertainties for the

older stages are such that steadiness back to

�20 Ma could be equally warranted.

Horner-Johnson et al. [2007] derived the

Nubia/Somalia relative motion since �3.2 Ma

from data collected along the Nubia-

Antarctica-Somalia plate circuit. We use their

result as an independent test for the validity

of our approach in reducing finite-rotation

noise along the alternative circuit Nubia-

Arabia-Somalia. In Figure 3 (in magenta), we

report the Cartesian components of the Euler

vector provided by Horner-Johnson et al.
[2007], together with the associated uncer-

tainties. A comparison of our and their recon-

structions over the past �3.2 Myr indicates

they agree within the uncertainty ranges,

therefore allowing increased confidence in

our reconstruction over the earlier stages. To

enforce this point, we note in Figure 4 that

using Euler vectors derived from original

finite rotations—that is, without reducing

noise in the inferred kinematics—would

imply a more erratic Nubia/Somalia kine-

matic pattern over the past �20 Myr. Most

importantly, it would yield a record for the

past �3.2 Myr significantly different than the

reliable estimate of Horner-Johnson et al.
[2007]. Euler vectors for the Nubia/Somalia

relative motion since �20 Ma are in Table 1.

4. Discussion

It is productive to derive the temporal pat-

tern of rate/direction of motion between

Nubia and Somalia since the Early Neogene

implied by our Euler vectors. In Figure 5, we
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Figure 3. (a) Cartesian component along the x axis (0�E, 0�N) of the rela-

tive motion between Nubia (NU) and Somalia (SO) plates since �20 Ma.

NU rotates with respect to SO. Black envelope is the angular velocity

obtained by combining the relative motions of AR/SO (in black in Figure

1) and AR/NU (in green in Figure 2) obtained upon Bayesian noise reduc-

tion. In magenta is the independent record for the past �3.2 Ma obtained

by Horner-Johnson et al. [2007], reconstructed from the Nubia-Antarctica-

Somalia plate circuit. Striped areas are confidence ranges. (b) Same as Fig-

ure 3a, along the y axis (90�E, 0�N). (c) Same as Figure 3a, along the z axis

(90�N).
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compute the magnitude of the surface

velocity (a) as well as its direction (b) at a

position (35.2�E, 18�S), which is at the

present-day halfway along the Nubia/Soma-

lia margin (see inset in Figure 5a). Because

the relationship between Euler vector and

surface velocity/direction is nonlinear (i.e., it

involves the computation of norm and arc-

tangent), one cannot easily infer confidence

regions for the latter ones by propagating

covariances of Euler vectors, which are avail-

able from the ensemble considered in

Bayesian Inference (see section 3.). Our pref-

erence is to derive the uncertainties on

magnitude and direction of the surface

velocity numerically. For each temporal

stage of the reconstructed Nubia/Somalia

plate motion, we draw 104 Euler vectors

from the confidence regions of Cartesian

components shown in Figure 3. The compo-

nents of these Euler vectors are correlated

with each other according to the covariance

values between the nominal Euler-vector

components (see Table 1). We then com-

pute surface velocity and azimuth (angle

clockwise from the local North) for each of

the 104 Euler vectors drawn. Bold lines in

Figure 5 are the stage averages, while the

confidence region indicates the interval

around the averages where 95% of the 104

estimates fall. This corresponds to a confi-

dence level of about two standard

deviations.

Figure 5a shows that during Early Neogene

the total Nubia/Somalia motion was likely

faster than at the present-day, although it

remains difficult to determine precisely by

how much, due to the confidence regions

associated with Nubia/Somalia Euler vectors

at early stages. Some kinematic variations of

�20% might have occurred during the

more recent stages (i.e., since �11 Ma), but

steadiness of the Nubia/Somalia total

motion is also warranted. More interesting is

the pattern of direction of Nubia/Somalia

relative motion in Figure 5b. It is evident

that Nubia changed significantly its direc-

tion of motion with respect to Somalia over

the past �20 Myr. Our reconstruction indi-

cates it is only since �11 Ma that the rela-

tive motion is directed roughly westward

(260 to 2100� clockwise from local North),

generating the rifting in continental Africa that is observed today. Instead, at earlier stages relative motion

was directed north-northwestward (220 to 240� clockwise from local North), implying a significant strike-

a) NU/SO angular velocity about (0°E, 0°N)

b) NU/SO angular velocity about (90°E, 0°N)

c) NU/SO angular velocity about 90°N
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Figure 4. Same as Figure 3, but using Euler vectors derived from differen-

tiation of noisy finite rotations for the relative paleoposition of Arabia with

respect to Nubia and Somalia. Note that the ranges of vertical axes are the

same of Figure 3.
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slip component along the Nubia/Somalia

margin. One should keep in mind that

observational constraints on Nubia/Soma-

lia azimuth are somewhat weaker than

those on the relative-motion rate. This is

because the former ones come from the

relatively short boundaries in the Gulf of

Aden and Red Sea, and suffer from scarcity

of fracture zone segments. Instead, rates

of relative motion come from the angular

distances between conjugate isochrons on

either sides of spreading centers. Nonethe-

less, such a kinematic pattern is consistent

with evidence from the geological record

of the African continent. A number of

studies reported structural, petrological,

and geochronological data from the East

African Rift suggesting that divergence

between Nubia and Somalia began near

11 Ma [e.g., Woldegabriel et al., 1990; Wolf-

enden et al., 2004; Bonini et al., 2005; Pik
et al., 2008; Corti, 2009]. At the same time,

these studies found no indication for a dif-

ferent spreading regime or for stronger

rifting activity since then. For the sake of

comparison, we show in Figure 6 total

Nubia/Somalia relative motion and azi-

muth obtained from the noisy Euler vec-

tors in Figure 4. This time the kinematic

pattern at the surface is too erratic, partic-

ularly in terms of direction of relative

motion, to represent the result of geologi-

cal processes providing torque upon the

Nubia and Somalia plates.

Our findings, therefore, imply Nubia/Soma-

lia kinematic steadiness and offer the

opportunity to speculate on the character

of the dominant controls on African geo-

dynamics since the Neogene. The short

time scales (i.e., few Myr) involved in

Table 1. NU/SO Euler Vectors for Relative Motion Since �20 Ma, Obtained Upon Noise Reductiona

Stage (Ma) Euler vector (�/Myr) Covariances (1028�rad2/Myr2)

From To xx xy xz Cxx Cxy Cxz Cyy Cyz Czz

0 2.581 0.039 0.032 20.043 39 11 11 17 18 9

2.581 3.596 0.045 0.040 20.042 150 60 64 55 30 49

3.596 6.033 0.026 0.031 20.050 49 18 20 21 9.3 18

6.033 8.769 0.037 0.041 20.046 51 17 7 8 9 10

8.769 11.040 0.029 0.025 20.040 53 95 14 38 56 31

11.040 15.974 0.037 0.011 20.025 60 15 21 34 10 28

15.974 17.533 0.016 20.022 20.046 980 370 440 330 190 330

17.533 19.722 0.023 20.085 20.036 870 290 370 370 150 340

aThe Nubia plate rotates with respect to Somalia. For each temporal stage, Cartesian components along the x (0�E, 0�N), y (90�E,

0�N), and z (90�N) axes are provided.

a) NU/SO total motion at (35.2°E,18°S)
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Figure 5. (a) Total surface velocity and (b) azimuth of the relative motion of

Nubia (NU) with respect to Somalia (SO) obtained from NU/SO Euler vectors

upon Bayesian noise reduction (see Figure 3—black envelopes). Surface

motion is computed at a point along the NU/SO margin (see inset in Figure

4a—AR is Arabian plate). Striped areas are confidence ranges computed

numerically (see text for details).
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changes of the Nubia/Somalia relative

motions would not be surprising if they

were caused by shallow tectonic forces

emplaced along plate margins [e.g., Iaffal-
dano and Bunge, 2009]. In the context of

deep-rooted forces that act upon the Afri-

can lithosphere, however, this evidence

might suggest intriguing temporal

changes in the large-scale mantle convec-

tion pattern, which are only beginning to

be explored (L. Colli et al., Rapid South

Atlantic spreading changes and coeval

vertical motion in surrounding continents:

Evidence for pulsating pressure-driven

upper mantle flow, submitted to Tecton-
ics, 2014). Bayesian Inference applied to

finite rotations of tectonic plates [Iaffal-
dano et al., 2012] proved able to over-

come the influence of noise and unravel

past plate-motion changes in a precise

manner. It stands as a promising technical

advance to make geodynamic inferences.

5. Conclusions

We utilized the trans-dimensional hier-

archical Bayesian Inference to reduce

noise in finite rotations for the relative

paleoposition of Arabia with respect to

Somalia and Nubia. We used these results

to reconstruct the relative motion

between Nubia and Somalia since �20

Ma, from the circuit of adjacent plates

Nubia-Arabia-Somalia. Our reconstruction

compares well with the independent esti-

mate available for the past �3.2 Myr,

which is obtained through the Nubia-

Antarctica-Somalia plate circuit. On the

basis of this agreement, we were able to

confidently compute the relative surface velocity at a position along the Nubia/Somalia margin. Results

indicate that, prior to �11 Ma, the Nubia/Somalia relative motion was faster than today, and featured a sig-

nificant strike-slip component. Nubia has since then diverged westward from Somalia, at rates that might

have been �20% larger than those of the present-day. Kinematic steadiness since �11 Ma is, however, also

consistent with the uncertainties. Our reconstructed pattern of relative motions agrees well with geological

records previously inferred from continental Africa.
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