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Electrical self-oscillation is reported for a Ti/NbOx negative differential resistance device incor-

porated in a simple electric circuit configuration. Measurements confirm stable operation of the

oscillator at source voltages as low as 1.06 V, and demonstrate frequency control in the range

from 2.5 to 20.5 MHz for voltage changes as small as �1 V. Device operation is reported for

>6.5� 1010 cycles, during which the operating frequency and peak-to-peak device current

decreased by �25%. The low operating voltage, large frequency range, and high endurance of

these devices makes them particularly interesting for applications such as neuromorphic comput-

ing. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921745]

Transition metal oxides which exhibit a metal-insulator

transition (MIT) (e.g., VO2, NbO2, Ti2O3) are of particular

scientific and technological interest, and have found wide

spread application as functional materials.1–4 This stems from

the fact that the MIT can be controlled by external stimuli

(e.g., temperature, pressure, and electric field) and results in

abrupt changes in the materials intrinsic properties (e.g., elec-

trical conductivity, thermal conductivity, and refractive

index).3–5 In this context, vanadium dioxide (VO2) is one of

the most well studied and widely exploited materials.5 It

undergoes a thermally induced insulator-metal transition at a

temperature of 340 K. Of particular relevance to the present

study is the use of VO2 films as the active element in relaxa-

tion oscillators. This application derives from the fact that the

MIT can be induced in a simple metal/VO2/metal structure by

Joule heating, and the fact that such structures exhibit current-

controlled negative differential resistance (NDR). The result-

ing oscillators have been shown to operate at frequencies in

the range from 1 kHz to 1 MHz.6,7

Unfortunately, the low MIT temperature of VO2 pre-

cludes its use in many microelectronics applications where

the expectation is that devices will operate at temperature

approaching 400 K. To address this limitation recent interest

has been focussed on materials with higher transition tem-

peratures, including NbO2 which has a transition temperature

of �1080 K.8,9 Studies have demonstrated the potential of

NbO2 for applications in optical modulation,10 electrical

switching,11 and memory devices.12,13 Recently, the MIT-

induced oscillation phenomenon has been reported in NbOx

with sub-nanosecond switching speed and �100 fJ switching

energies.14 The properties of these MIT-induced oscillators

make them suitable for applications such as voltage-controlled

oscillators,15,16 electronic switches,17,18 neuristor,19 and nano-

oscillator based non-boolean associative architectures.20–22 In

this study, NbOx based relaxation oscillators are reported with

high-endurance operation at frequencies up to�20 MHz.

Simple metal/oxide/metal test structures were employed

for the current study. An insulating layer (150 nm SiNx) was

first deposited on a silicon substrate by plasma enhanced

chemical vapour deposition (PECVD) to isolate the test

structure from the silicon substrate. A 50 nm thick Pt layer

was then deposited by electron beam evaporation to form the

bottom electrode. The active niobium oxide layer was then

deposited onto the bottom electrode by reactively sputter

deposition using a metallic Nb source and an O2/Ar gas mix-

ture in the ratio of 1/9. The film thickness was 85 nm as veri-

fied by ellipsometry. Top electrodes consisting of a 10 nm Ti

layer and a 50 nm Pt layer were then deposited through a

shadow mask by electron beam evaporation to produce an

array of circular contacts of 150 lm diameter. These struc-

tures were subsequently annealed by rapid thermal annealing

(RTA) at 300 �C for 300 s under Ar gas flow. Electrical char-

acterization was undertaken with an Agilent B1500A para-

metric analyser.

Fig. 1 shows typical DC current-voltage (I-V) character-

istics of devices during voltage-controlled (Fig. 1(a)) and

current-controlled (Fig. 1(b)) sweeps. The former shows

threshold switching behaviour, in which the oxide layer

transforms to a metallic state as the voltage is increased

beyond a threshold value and returns to an insulating state as

it is reduced below a critical hold voltage. In this case, the

MIT is believed to result from Joule heating of a filamentary

conduction path in the oxide layer,14 a mechanism that is

supported by its nonpolar nature, which is illustrated in the

inset of Fig. 1(a). In this context, it should be noted that

threshold switching is only observed after an initial forming

process, in which the voltage is scanned from 0 to �8 V.23

The current-controlled I-V sweep (Fig. 1(b)) provides

additional insight into the switching process, and clearly

highlights the NDR response of these devices. This was

measured by scanning the current from 0 mA to 5 mA and

a)Electronic mail: xinjun.liu@anu.edu.au
b)Electronic mail: rob.elliman@anu.edu.au

0003-6951/2015/106(21)/212902/4/$30.00 VC 2015 AIP Publishing LLC106, 212902-1

APPLIED PHYSICS LETTERS 106, 212902 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.56.107.13 On: Tue, 21 Jul 2015 08:47:01

http://dx.doi.org/10.1063/1.4921745
http://dx.doi.org/10.1063/1.4921745
http://dx.doi.org/10.1063/1.4921745
http://dx.doi.org/10.1063/1.4921745
mailto:xinjun.liu@anu.edu.au
mailto:rob.elliman@anu.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4921745&domain=pdf&date_stamp=2015-05-26


back to 0 mA in 50 lA steps. The current and voltage at P1

and P2 were measured as �0.3 mA and �0.88 V and

�1.95 mA and �0.76 V, respectively, where V1 and V2 are

known as threshold and hold voltages. The symmetric, non-

polar nature of the characteristics is again highlighted in the

inset. This NDR response provides the basis for a relaxation

oscillator and is the focus of the following discussion.24

The oscillation dynamics of NbOx devices were studied

by including the devices in a series circuit, as shown in the

inset of Fig. 2(b). The circuit consists of a source voltage

(VS), a load resistor (RL), a 50 X monitoring resistor (RM)

and the device under test. Rectangular voltage pulses were

generated with a Waveform Generator/Fast Measurement

Unit (WGFMU) as part of the B1500A analyser, and the

resulting electrical response was recorded by monitoring the

voltage drop across the 50 X resistor using a Tektronix

TPS2024B oscilloscope.

Fig. 2(a) shows the device voltage (VD) and current ID

during excitation with a pulse of amplitude of 2.6 V and

width of 2 ls, with RL equal to 1 kX. Oscillations begin as

VD reaches �0.82 V, as illustrated in the inset of Fig. 2(a),

which is close to the threshold voltage reported in Fig. 1(b).

Stable, periodic oscillations are observed once VS reaches its

specified value of 2.6 V. For this case, the peak-to-peak

amplitudes were measured as �0.3 V and �0.26 mA, respec-

tively. The oscillation frequency was determined from fast

Fourier transform analysis to be 19 MHz.

The oscillator circuit depicted in Fig. 2(b) is of the

Pearson-Anson form and its response is determined by the de-

vice NDR characteristics (Fig. 1(b)) and by VS and RL.25 Each

oscillation of ID and VD shows an exponential rise and fall,

similar to that previously reported for VO2.
6 This is illustrated

in Fig. 2(b) and can be modelled from the equivalent RC cir-

cuit shown in the inset. The time constant for charging is given

by RC, where C is the device capacitance, estimated to be

�15 pF, and Reff¼ (RLþRM)RD/(RLþRMþRD) with RD

representing the high resistance state of the NbOx device. The

time constant for charging was �42 ns in this case. As VD

approaches its maximum value, the device switches to its low

resistance state and VD begins to drop with an RC time con-

stant, in which RD now represents the low resistance state of

the device. The discharging time constant was �11 ns.

Fig. 3(a) depicts the oscillation range of VS and RL, and

compares values determined from direct measurement with

those derived from the data in Fig. 1(b) using load-line anal-

ysis.24 The region bounded by the solid lines represents VS

and RL values for which stable oscillation was observed.

This shows that stable oscillations were observed at source

voltage as low as 1.06 V for RL equal to 0.5 kX, which corre-

sponds to a peak device voltage of 0.9 V. Also shown, color-

coded is the effect of these parameters on the oscillation fre-

quency. This shows that the frequency increases with

increasing voltage for a given load resistance. This is shown

more explicitly in Fig. 3(b), which also demonstrates the

near linear scaling of frequency with VS. This dependence is

consistent with that expected for the Pearson-Anson oscilla-

tor, as shown in the inset of Fig. 2(b), which predicts a de-

pendence of the form24

FIG. 1. Typical current-voltage characteristics of the device, (a) positive

voltage sweep and (b) positive current sweep. Insets show symmetric, non-

polar nature of voltage and current sweeps.

FIG. 2. (a) Electrical oscillatory responses of VD and ID during a 2 ls 2.6 V

pulse. Inset shows detail of the initial response. (b) Expanded view of a sin-

gle device voltage oscillation. Inset shows the equivalent circuit used for

analysis.
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fo ¼ aRLC ln
VS � V2

VS � V1

� �� ��1

; (1)

where V1 and V2 are the threshold and hold voltages, and a
is a scaling parameter, which accounts for factors such as

parasitic capacitance. The solid lines in Fig. 3(b) represent a

fit of this equation to the data with a fixed a value of 55 for

all curves.

Device endurance and stability are important for practical

applications. These were tested by running oscillators for 96

min with a pulse amplitude of 2.2 V, which corresponds to

�6.5� 1010 oscillation cycles. The oscillation characteristics

were monitored after 1, 6, 36, and 96 min by recording the os-

cillator output. The stability of the peak-to-peak device current

and oscillation frequency are shown in Fig. 4. The peak-to-

peak current is observed to undergo a 20% reduction in ampli-

tude during the first �8� 108 (1 min) cycles but to remain rea-

sonably constant thereafter. In contrast, the oscillation

frequency decreases almost linearly with increasing cycle num-

ber, decreasing by around 25% over the full testing period,

�6.5� 1010 cycles. The relative changes in the peak-to-peak

current and frequency are similar (�25%) over the full testing

period, but their trend with increasing cycle number is clearly

quite different. The only variables in the circuit, once VS and

RL are fixed, are the device capacitance and resistance. It is

therefore clear that the device structure changes with time dur-

ing continuous operation.

For the simple equivalent circuit depicted in Fig. 2(b),

the device current depends only on changes in the device re-

sistance, while the frequency is affected by changes in both

the resistance and capacitance. While it is possible to con-

struct schemes where specific changes in resistance and ca-

pacitance account for the changes reported in Fig. 4, this

remains speculative and further work is required to under-

stand the physical changes occurring in the device. Given the

relatively high temperature of the MIT such changes are

likely to result from Joule-heating induced chemical reac-

tions at the NbOx/Ti interface or modification of the MIT

volume.

In conclusion, we have investigated the properties of a

relaxation oscillator based on the metal-insulator transition

in NbO2. The parameters (load resistance and source volt-

age) required for stable oscillation were shown to be consist-

ent with the NDR response of isolated devices, and the

oscillation frequency was shown to scale linearly with source

voltage (for a given load resistance), as predicted for a

Pearson-Anson oscillator. Measurements confirmed stable

operation of the oscillator at source voltages as low as

1.06 V, and demonstrated frequency control in the range

from 2.5 to 20.5 MHz for voltage changes as small as �1 V.

Devices operated for �6.5� 1010 cycles during which their

frequency and peak-to-peak current decreased by �25%.

The low operating voltage, large frequency range, and high

endurance of these devices makes them particularly interest-

ing for applications such as neuromorphic computing.
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