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Abstract

Understanding inductive reasoning is a problem that has engaged mankind
for thousands of years. This problem is relevant to a wide range of fields and is
integral to the philosophy of science. It has been tackled by many great minds
ranging from philosophers to scientists to mathematicians, and more recently
computer scientists. In this article we argue the case for Solomonoff Induction,
a formal inductive framework which combines algorithmic information theory
with the Bayesian framework. Although it achieves excellent theoretical results
and is based on solid philosophical foundations, the requisite technical knowl-
edge necessary for understanding this framework has caused it to remain largely
unknown and unappreciated in the wider scientific community. The main contri-
bution of this article is to convey Solomonoff induction and its related concepts
in a generally accessible form with the aim of bridging this current technical
gap. In the process we examine the major historical contributions that have led
to the formulation of Solomonoff Induction as well as criticisms of Solomonoff
and induction in general. In particular we examine how Solomonoff induction
addresses many issues that have plagued other inductive systems, such as the
black ravens paradox and the confirmation problem, and compare this approach
with other recent approaches.

Keywords

sequence prediction; inductive inference; Bayes rule; Solomonoff prior; Kol-
mogorov complexity; Occam’s razor; philosophical issues; confirmation theory;
Black raven paradox.

This article is dedicated to Ray Solomonoff (1926–2009),
the discoverer and inventor of Universal Induction.
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1 Introduction

According to Aristotle, it is our ability to reason which sets humans apart from the rest
of the animal kingdom. The understanding and manipulation of our environment that
has made us so successful has only been possible through this unique ability. Reasoning
underpins every human advancement and is used on a daily basis even if only trivially.
Yet surprisingly, although reasoning is fundamental to the functioning and evolution of
our species, we have had great difficulty in producing a satisfactory explanation of the
mechanism that governs a large portion of this reasoning; namely inductive reasoning.

The difficulty of any attempt at unraveling the inner workings of the human mind
should be appreciated. Some have even argued that a complete understanding of the
human mind is beyond the capabilities of the human mind [McG89]. Understanding
how we reason is however an area in which significant progress has been made.

Reasoning is often broken down into two broad categories. Firstly there is deductive
reasoning which can be thought of as the process of drawing logically valid conclusions
from some assumed or given premise. Deductive reasoning is the type of reasoning
used in mathematical proofs or when dealing with formal systems. Although this type
of reasoning is obviously necessary it is not always adequate.

When reasoning about our world we often want to make predictions that involve es-
timations and generalizations. For this we use inductive reasoning. Inductive reasoning
can be thought of as drawing the ‘best’ conclusions from a set of observations. Unfor-
tunately these observations are almost always incomplete in some sense and therefore
we can never be certain of the conclusions we make. This process is analogous to the
scientific process in general. In science, rules and models are found by generalizing
patterns observed locally. These models are then used to understand and predict our
environment which in turn allows us to benefit, usually with great success. But like
inductive inference, scientific hypotheses can never be completely validated, so we can
never know whether they are true for certain. The difference between reasoning induc-
tively or deductively can also be simply thought of as the difference between reasoning
about the known or the unknown.

Philosophically speaking the fundamental goal of inductive reasoning is to gain a
deeper awareness of how we should maintain rational beliefs and predictions in the face
of uncertainty and the unknown observations or problems of the future. In some sense a
history of inductive reasoning is a history of questioning and attempting to understand
our own thought processes. As early as 300BC Epicurus was interested in how we judge
competing theories for some given observations [Asm84]. This led him to postulate
his principle of multiple explanations which stated that we should never disregard a
consistent theory. William of Occam countered this with his with well-known ‘Occam’s
razor’ which advised that all but the simplest theory consistent with the observations
should be discarded [Ock90]. Hume later stated the problem of induction explicitly for
the first time “What is the foundation of all conclusions from experience?” [Hum39].
He also set about questioning the validity of such conclusions. Hume’s problem led
Bayes and Laplace to make the first attempts at formalizing inductive inference which
has become the basis for Bayesianism. This is a school of thought that requires making
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an explicit choice in the class of explanations considered and our prior belief in each
of them. Bayesianism has, in turn, fueled further attempts at formalizing induction.

To say that the history of induction has been contentious is an understatement
[McG11]. There have been many attempts at formalizing inductive reasoning [GHW11]
that address specific situations and satisfy many of the intuitive properties we expect of
induction. Unfortunately most of these attempts have serious flaws or are not general
enough. Many of the results regarding induction have been controversial and highly
contested, which is not particularly surprising. By its very nature induction deals
with uncertainty, subjectivity and challenging philosophical questions, and is therefore
highly prone to discussion and debate. Even if a result is formally sound, its philo-
sophical assumptions and applicability in a range of situations are often questioned.

In 1964 Ray Solomonoff published the paper “A Formal Theory of Inductive In-
ference” [Sol64]. In this paper he proposed a universal method of inductive inference
which employs the Bayesian framework and his newly created theory of algorithmic
probability. This method of Solomonoff induction appears to address the issues that
plagued previous attempts at formalizing induction and has many promising properties
and results. Solomonoff induction and related concepts are the central focus of this
article.

The formalization of Solomonoff induction makes use of concepts and results from
computer science, statistics, information theory, and philosophy. It is interesting that
the development of a rigorous formalization of induction, which is fundamental to
almost all scientific inquiry, is a highly multi-disciplinary undertaking, drawing from
these various areas. Unfortunately this means that a high level of technical knowledge
from these various disciplines is necessary to fully understand the technical content
of Solomonoff induction. This has restricted a deep understanding of the concept to
a fairly small proportion of academia which has hindered its discussion and hence
progress.

In this article we attempt to bridge this gap by conveying the relevant material
in a much more accessible form. In particular we have expanded the material in
the dense 2007 paper “On Universal Prediction and Bayesian Confirmation” [Hut07b]
which argues that Solomonoff induction essentially solves the induction problem. In
addition to providing intuition behind the overall setup and the main results we also
examine the philosophical motivations and implications of Solomonoff’s framework.

We have attempted to write this article in such a way that the main progression
of ideas can be followed with minimal mathematical background. However, in order
to clearly communicate concrete results and to provide a more complete description to
the capable reader, some technical explanation is necessary.

By making this knowledge more accessible we hope to promote discussion and
awareness of these important ideas within a much wider audience. Every major con-
tribution to the foundations of inductive reasoning has been a contribution to under-
standing rational thought. Occam explicitly stated our natural disposition towards
simplicity and elegance. Bayes inspired the school of Bayesianism which has made us
much more aware of the mechanics behind our belief system. Now, through Solomonoff,
it can be argued that the problem of formalizing optimal inductive inference is solved.
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Being able to precisely formulate the process of (universal) inductive inference is also
hugely significant for general artificial intelligence. Obviously reasoning is synonymous
with intelligence, but true intelligence is a theory of how to act on the conclusions
we make through reasoning. It may be argued that optimal intelligence is nothing
more than optimal inductive inference combined with optimal decision making. Since
Solomonoff provides optimal inductive inference and decision theory solves the problem
of choosing optimal actions, they can therefore be combined to produce intelligence.
This is the approach taken by the second author in developing the AIXI model which
will be discussed only briefly.

1.1 Overview of Article

Here we will give a brief summary of the contents of this article.

Section 2 looks at the broader context of (universal) induction. At first we con-
trast it with deduction. We then argue that any inductive inference problem can be
considered or converted to a sequence prediction problem. This gives justification for
focusing on sequence prediction throughout this article. We also examine the relation
between Solomonoff induction and other recent approaches to induction. In particular
how Solomonoff induction addresses non-monotonic reasoning and why it appears to
contradict the conclusion of no-free-lunch theorems.

Section 3 covers probability theory and the philosophy behind the varying schools
of thought that exist. We explain why the subjective interpretation of probability is the
most relevant for universal induction and why it is valid. In particular we explain why
the belief system of any rational agent must obey the standard axioms of probability.

Applying the axioms of probability to make effective predictions results in the
Bayesian framework which is discussed in depth in Section 4. We look at what it means
to be a Bayesian; why models, environments and hypotheses all express the same con-
cept; and finally we explain the mechanics of the Bayesian framework. This includes
looking at convergence results and how it can be used to make optimal Bayesian de-
cisions. We also look briefly at continuous model classes and at making reasonable
choices for the model class.

Section 5 gives an overview of some of the major historical contributions to induc-
tive reasoning. This includes the fundamental ideas of Epicurus’s principle of multiple
explanations and Occam’s razor. We also discuss briefly the criticisms raised by induc-
tive skeptics such as Empiricus and Hume. Laplace’s contribution is then examined.
This includes the derivation of his famous rule of succession which illustrates how the
Bayesian framework can be applied. This rule also illustrates the confirmation problem
that has plagued many attempts at formalizing induction. The cause of this problem
is examined and we show that a recent claim by Maher [Mah04], that the confirmation
problem can be solved using the axioms of probability alone, is clearly unsatisfactory.
One of the most difficult problems with confirmation theory is the black ravens paradox.
We explain why this counter-intuitive result arises and the desired solution.

In order to understand the concept of Kolmogorov complexity which is integral
to Solomonoff induction, it is necessary to briefly examine the fundamental concept
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of computability and the closely related Turing machine. The introduction of the
theoretical Turing machine is in some ways considered the birth of computer science.
We look at the basic idea of what a Turing machine is and how, through Solomonoff,
it became an integral part of universal induction. The measure of complexity that
Kolmogorov developed is a major part of algorithmic information theory. We examine
the intuition behind it as well as some relevant properties.

In Section 6 we discuss reasonable approaches to making a rational choice of prior
as well as desirable properties for a prior to have. The universal prior involves the use
of Kolmogorov complexity which we argue is highly intuitive and does justice to both
Occam and Epicurus.

At this point, having introduced all the necessary concepts, Section 7 gives an expla-
nation of Solomonoff’s universal predictor. We examine two alternate representations
of this universal predictor and the relationship between them. We also look at how
this predictor deals with the problem of old evidence, the confirmation problem and
the black ravens paradox.

Section 8 discusses several bounds for this universal predictor, which demonstrate
that it performs excellently in general. In particular we present total, instantaneous,
and future error bounds.

Section 9 looks at the value of Solomonoff induction as a gold standard and how it
may be approximated and applied in practice. We mention a number of approximations
and applications of either Solomonoff or the closely related Kolmogorov complexity.
The extension of Solomonoff to universal artificial intelligence is also briefly covered.

Section 10 gives a brief discussion of some of the issues concerning Solomonoff
induction as well as a review of the pro’s and con’s, and concludes.

2 Broader Context

The work done on the problem of induction, both philosophically and formally, has been
both vast and varied. In this article the focus is on using inductive inference for making
effective decisions. From this perspective, having an effective method of prediction is
sufficient. It is for this reason that this article focuses primarily on sequence prediction,
rather than inference in the narrow sense of learning a general model from specific
data. Even concept learning, classification, and regression problems can be rephrased
as sequence prediction problems. After having clarified these relationships, we briefly
look at Solomonoff induction in the context of some of the most significant concepts
in recent discussions of inductive reasoning [GHW11] such as Bayesian learning versus
prediction with expert advice, no-free-lunch theorems versus Occam’s razor, and non-
monotonic reasoning.

2.1 Induction versus Deduction

There are various informal definitions of inductive inference. It can be thought of as
the process of deriving general conclusions from specific observation instances. This is
sort of dual to deductive inference, which can be thought of as the process of deducing
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specific results from general axioms. These characterizations may be a bit narrow and
misleading, since induction and deduction also parallel each other in certain respects.

The default system for deductive reasoning is “classical” (first-order predicate) logic.
The Hilbert calculus starts with a handful of logical axiom schemes and only needs
modus ponens as inference rule. Together with some domain-specific non-logical ax-
ioms, this results in “theorems”. If some real-world situation (data, facts, observation)
satisfies the conditions in a theorem, the theorem can be applied to derive some con-
clusions about the real world. The axioms in Zermelo-Fraenkel set theory are universal
in the sense that all of mathematics can be formulated within it.

Compare this to the (arguably) default system for inductive reasoning based on
(real-valued) probabilities: The Bayesian “calculus” starts with the Kolmogorov axioms
of probability, and only needs Bayes rule for inference. Given some domain-specific
prior and new data=facts=observations, this results in “posterior” degrees of belief in
various hypotheses about the world. Solomonoff’s prior is universal in the sense that
it can deal with arbitrary inductive inference problems. Hypotheses play the role of
logical expressions, probability P (X) = 0/1 corresponds to X being false/true, and
0 < P (X) < 1 to X being true in some models but false in others. The general
correspondence is depicted in the following table:

Induction ⇔ Deduction

Type of inference: generalization/prediction ⇔ specialization/derivation
Framework: probability axioms =̂ logical axioms
Assumptions: prior =̂ non-logical axioms
Inference rule: Bayes rule =̂ modus ponens
Results: posterior =̂ theorems
Universal scheme: Solomonoff probability =̂ Zermelo-Fraenkel set theory
Universal inference: universal induction =̂ universal theorem prover

2.2 Prediction versus Induction

The above characterization of inductive inference as the process of going from specific
to general was somewhat narrow. Induction can also be understood more broadly
to include the process of drawing conclusions about some given data, or even as the
process of predicting the future. Any inductive reasoning we do must be based on some
data or evidence which can be regarded as a history. From this data we then make
inferences, see patterns or rules or draw conclusions about the governing process. We
are not really interested in what this tells us about the already observed data since
this is in the past and therefore static and inconsequential to future decisions. Rather
we care about what we are able to infer about future observations since this is what
allows us to make beneficial decisions. In other words we want to predict the natural
continuation of our given history of observations. Note that ‘future observations’ can
also refer to past but (so far) unknown historical events that are only revealed in the
future.

From this general perspective, the scientific method can be seen as a specific case
of inductive reasoning. In science we make models to explain some past data or obser-
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vation history and these models are then used to help us make accurate predictions.
As humans we find these models satisfying as we like to have a clear understanding
of what is happening, but models are often overturned or revised in the future. Also,
from a purely utilitarian point of view, all that matters is our ability to make effective
decisions and hence only the predictions and not the models themselves are of impor-
tance. This is reminiscent of but not quite as strong as the famous quote by George
Box that “Essentially, all models are wrong, but some are useful”.

We look now at some specific examples of how general induction problems can be
rephrased as prediction problems.

2.3 Prediction, Concept Learning, Classification, Regression

In many cases the formulation is straight forward. For example, problems such as “what
will the weather be like tomorrow?”, “what will the stock market do tomorrow?” or
“will the next raven we see be black?” are already in the form of prediction. In these
cases all that needs to be done is to explicitly provide any relevant historic data, such
as stock market records or past weather patterns, as a chronological input sequence
and then look for the natural continuations of these sequences. It should however be
noted that a simple formulation does not imply a simple solution. For example, the
chaotic nature of stock markets and weather patterns make it extremely difficult to
find the correct continuation of this sequence, particularly more than a few time steps
ahead.

More formally, in the field of machine learning, sequence prediction is concerned
with finding the continuation xn+1 ∈ X of any given sequence x1, ..., xn. This may be
used to represent a wide range of abstract problems beyond the obvious application
to time series data such as historical weather or stock patterns. For instance, (on-
line) concept learning, classification and regression can be regarded as special cases of
sequence prediction.

Concept learning involves categorizing objects into groups which either do or don’t
possess a given property. More formally, given a concept C ⊂ X , it requires learning a
function fC such that for all x:

fC(x) =

{
1 if x ∈ C

0 if x /∈ C

Solomonoff induction only deals with the problem of sequence prediction; however, as
we discuss in the next paragraph, sequence prediction is general enough to also capture
the problem of concept learning, which itself is a specific case of classification. Although
the setup and interpretation of classification using Solomonoff may be less intuitive than
using more traditional setups, the excellent performance and generality of Solomonoff
implies that theoretically it is unnecessary to consider this problem separately.

In machine learning, classification is the problem of assigning some given item x to
its correct class based on its characteristics and previously seen training examples. In
classification we have data in the form of tuples containing a point and its associated
class (xi, ci). The goal is to correctly classify some new item xn+1 by finding cn+1.

8



As before, all data is provided sequentially with the new point xn+1 appended at the
end. In other words, the classification of x becomes “what is the next number in the
sequence x1c1x2c2...xncnxn+1?”. Technically this could be regarded as a specific case
of regression with discrete function range, where the function we are estimating maps
the items to their respective classes.

Regression is the problem of finding the function that is responsible for generating
some given data points, often accounting for some noise or imprecision. The data
is a set of (feature,value) tuples {(x1, f(x1)), (x2, f(x2)),....(xn, f(xn))}. In machine
learning this problem is often tackled by constructing a function that is the ‘best’
estimate of the true function according to the data seen so far. Alternatively, it can
be formalized directly in terms of sequential prediction by writing the input data as
a sequence and appending it with a new point xn+1 for which we want to find the
functional value. In other words the problem becomes: “What is the next value in the
sequence x1, f(x1), x2, f(x2), ...xn, f(xn), xn+1, ?”. Although this approach does not
produce the function explicitly, it is essentially equivalent, since f(x) for any x can be
obtained by choosing xn+1 = x.

2.4 Prediction with Expert Advice versus Bayesian Learning

Prediction with expert advice is a modern approach to prediction. In this setting it
is assumed that there is some large, possibly infinite, class of ‘experts’ which make
predictions about the given data. The aim is to observe how each of these experts
perform and develop independent predictions based on this performance. This is a
general idea and may be carried out in various ways. Perhaps the simplest approach,
known as follow the leader, is to keep track of which expert has performed the best in
the past and use its prediction. If a new expert takes the lead, then your predictions
will switch to this new leading expert. Naively the performance of an expert can
be measured by simply counting the number of errors in its predictions but in many
situations it is appropriate to use a loss function that weighs some errors as worse
than others. A variant of this simple ‘follow the leader’ concept is known as ‘follow
the perturbed leader’ in which our predictions mimic the leader most of the time
but may switch to another with some specified probability [HP05]. This technique
gives a probability distribution rather than a deterministic predictor which can be
advantageous in many contexts.

The traditional Bayesian framework discussed in this article uses a mixture model
over a hypothesis or environment or model class, which resembles the ‘follow the per-
turbed leader’ technique. This mixture model reflects our rational beliefs about the
continuation of a sequence given the performance of each “expert” and, as we will see,
performs very well theoretically. Solomonoff induction uses the Bayesian framework
with the infinite class of “experts” given by all computable environments. This means
that there is always an expert that performs well in any given environment which allows
for good performance without any problem-specific assumptions.
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2.5 No Free Lunch versus Occam’s Razor

This is in some way a contradiction to the well-known no-free-lunch theorems which
state that, when averaged over all possible data sets, all learning algorithms perform
equally well, and actually, equally poorly [WM97]. There are several variations of the
no-free-lunch theorem for particular contexts but they all rely on the assumption that
for a general learner there is no underlying bias to exploit because any observations are
equally possible at any point. In other words, any arbitrarily complex environments
are just as likely as simple ones, or entirely random data sets are just as likely as
structured data. This assumption is misguided and seems absurd when applied to
any real world situations. If every raven we have ever seen has been black, does it
really seem equally plausible that there is equal chance that the next raven we see
will be black, or white, or half black half white, or red etc. In life it is a necessity to
make general assumptions about the world and our observation sequences and these
assumptions generally perform well in practice.

To overcome the damning conclusion of these no-free-lunch theorems in the con-
text of concept learning, Mitchell introduced the following inductive learning assump-
tion which formalizes our intuition and is essentially an implicit part of our reasoning
[Mit90].

“Any hypothesis found to approximate the target function well over a sufficiently
large set of training examples will also approximate the target function well over other
unobserved examples.”

Similar assumptions can be made for other contexts but this approach has been
criticized as it essentially results in a circular line of reasoning. Essentially we assume
that inductive reasoning works because it has worked in the past but this reasoning is
itself inductive and hence circular. Hume’s argument that this circularity invalidates
inductive reasoning is discussed further in Subsection 5.2. In fact this inductive learning
assumption is closely related to what Hume called the principle of uniformity of nature.
A principle he said we implicitly, but invalidly, assume.

If we prescribe Occam’s razor principle [Ock90] to select the simplest theory con-
sistent with the training examples and assume some general bias towards structured
environments, one can prove that inductive learning “works”. These assumptions are
an integral part of our scientific method. Whether they admit it or not, every scientist,
and in fact every person, is continuously using this implicit bias towards simplicity and
structure to some degree.

Any agent, animal or machine, must make use of underlying structure in some form
in order to learn. Although induction inherently involves dealing with an uncertain
environment for which no hard guarantees can be made, it is clear that our world
is massively structured and that exploiting structure in general is the best technique
for performing well. By denying the relevance of this structure no-free-lunch theorems
imply that general learning, and the concept of general intelligence, is essentially futile,
which contradicts our experience. Solomonoff induction is witness to the possibility of
general learning, assuming only some structure in the environment without having to
specify which type of structure, and using Occam’s razor.
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2.6 Non-Monotonic Reasoning

Non-monotonic reasoning is another concept that has been discussed recently in relation
to induction. This concept attempts to solve the problem of formalizing common
sense logic. When artificial intelligence researchers attempted to capture everyday
statements of inference using classical logic they began to realize this was a difficult if
not impossible task. The problem arises largely because of the implicit assumption of
normality we often make to exclude exceptional circumstances. For example, it would
be perfectly acceptable to make a statement such as “the car starts when you turn
the key in the ignition” [GHW11]. Therefore if we let F (x) be the predicate that we
turn the key in the ignition in car x, and S(x) be the predicate that x starts, then
the previous sentence would be represented by the logical statement F (x) ⇒ S(x). Of
course there are many reasons why this might not be correct such as the fact that the
car x has no fuel or a mechanical problem. But these exceptions do not stop us making
these types of statements because it is implicity assumed that this statement may only
hold under normal conditions.

This assumption of normal conditions also leads to a logic that is non-monotonic in
its arguments. Normally if the statement A ⇒ C holds, then it follows logically that
A ∧ B ⇒ C. However this rule may no longer hold using ‘normal case’ reasoning. If
G(x) is the predicate that x has no fuel then, although the statement F (x) ⇒ S(x)
is (normally) true, F (x) ∧ G(x) ⇒ S(x) is (normally) not true, since the car will not
start without fuel. Another example is that a general rule in our knowledge base may
be that “birds can fly”. Therefore if x is a bird it is natural to assume that x can fly;
however if x is a bird and x is a penguin then it is no longer correct to say that x can
fly.

2.7 Solomonoff Induction

Solomonoff induction [Sol64] bypasses this issue entirely by avoiding the use of strict
logical syntax which seems to be an inadequate tool for dealing with any reasonably
complex or real-world environment. Non-monotonic statements such as the examples
shown can be programmed in a variety of ways to effectively deal with ‘the normal case’
and an arbitrary number of exceptional cases. This means that there exists a com-
putable environment in Solomonoff’s universal class which will effectively describe the
problem. The non-monotonicity of the environment will certainly affect its complexity
and hence its prior but a simple non-monotonic environment will still have a reasonably
high prior since there will be a reasonably short way of expressing it. More generally
the complexity, and hence prior (see Subsection 6.5), of a non-monotonic environment
will depend on the variety and number of exceptions to the general rules, but this
seems to be a desirable property to have. The implicit assumption of normality we use
is due to our prior experience and knowledge of the real world. Initially, for an agent
acting in an unknown environment, it seems reasonable that upon being told a general
rule, it should assume the rule to hold in all cases and then learn the exceptional cases
as they are observed or inferred. This is essentially how Solomonoff induction behaves.

Because of the fundamental way in which Solomonoff’s universal induction scheme

11



continuously learns and improves from its experience, it may be argued that any useful
computable approach to induction in one way or another approximates Solomonoff
induction. In any case it appears to compare well with the above approaches. The
major issue remains its incomputability and the difficulty of approximating Solomonoff
in reasonably complex environments. This is discussed further in Section 9.

3 Probability

In order to fully appreciate the Bayesian framework it is important to have some
understanding of the theory of probability that it is based on. Probability theory has
had a long and contentious history [Goo83, Jay03, McG11]. Even today probability
theory divides the scientific community with several competing schools of thought which
stem largely from the different methods of dealing with uncertainty as it appears in
different areas of science. The most popular of these are objective, subjective and
frequentist which reflect fundamentally different philosophical interpretations of what
probability means. Surprisingly it turns out that these interpretations lead to the same
set of axioms and therefore these philosophical differences are of little importance in
practical applications. It is however worth considering these differences when looking
at our motivation in the context of induction.

In the following Ω is used to denote the sample space which is the set of all possible
outcomes. An event E ⊂ Ω is said to occur if the outcome is in E. For instance when
throwing a die the sample space Ω is {1, 2, 3, 4, 5, 6} and an event E is some specific
subset of these outcomes. For instance, the even numbers is the event E = {2, 4, 6}
and the set of numbers less than 3 is the event E = {1, 2}.

3.1 Frequentist

The frequentist approach is the most intuitive interpretation of probabilities, however
it has several crippling drawbacks and is not applicable in many situations where we
would like it to be. A frequentist defines the probability of an event as the limiting
frequency of this event relative to the entire sample space Ω. Formally if k(n) is the
number of times that event E occurs in n trials then P (E) := limn→∞[k(n)/n]. For
example when throwing a die the probability of throwing a 6 is defined as the ratio of
the number of throws that come up 6 to the number of throws in total as the number
of throws goes to infinity. After many throws we expect this number to be close to
1/6. This is often one of the ways the concept of probability is taught, which is part
of the reason that it appeals to our intuition. However when examined more closely it
becomes apparent that this definition is problematic.

No matter how large n gets there is no guarantee that k(n)/n will converge to
P (E). Even if the die is thrown a million times it is conceivable although extremely
unlikely that every roll will produce a 6 or that half the rolls will produce a 6. The
best we can say is that as n increases, the probability that k(n)/n is arbitrarily close
to P (E) also increases and will eventually get arbitrarily close to 1. Formally this is
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stated as k(n)/n converges to P (E) with probability 1. Unfortunately this gives rise
to a circularity as the concept of probability is then used in defining probability.

Another problem with the frequentist approach is that there are many situations
where it is not applicable. Consider the betting odds in a horse race. If the odds on a
horse are, for instance, 3 : 1 this is equivalent to saying that the probability that the
horse will win is 0.25. This is certainly not the same as saying that the horse has won
1 in every 4 previous races. Instead it represents the bookies belief that the horse will
win which depends on many factors. This probability as belief interpretation is the
basis of the subjectivist’s understanding.

The error here may appear to be in associating probabilities with betting odds and
it could be argued that strictly speaking the probability of the horse winning should be
defined as the ratio of wins to overall races in the past, but this idea quickly becomes
inconsistent. Clearly it makes no sense to equally weigh every race the horse has been
in to find the probability of the horse winning this particular race. The races might
therefore be restricted to those held on the same track and against the same horses,
but since the weather and age of the horse might also be a factor there would be no
other races with which to compare. This choice of reference class poses a very real
problem in some practical situations such as medical diagnosis [Rei49]. The frequency
approach is only really applicable in situations where we can draw a large number of
samples from a distribution that is independent and identically distributed (i.i.d.) such
as flipping a coin.

3.2 Objectivist

The objectivist interpretation is that probabilities are real properties of objects and
of the world and therefore the objectivist believes that the world actually involves
inherently random processes. This point of view has been largely supported by the
success of quantum physics which states that there is true randomness present at a
sub-atomic level. The most widely accepted set of axioms for objective probabilities
are due to Kolmogorov [Kol33] and are given here.

Kolmogorov’s Probability axioms.

• If A and B are events, then the intersection A ∩ B, the union A ∪ B, and the
difference A \B are also events.

• The sample space Ω and the empty set {} are events.
• There is a function P that assigns non negative real numbers, called probabilities,
to each event.

• P (Ω) = 1 and P ({}) = 0.
• P (A ∪B) = P (A) + P (B)− P (A ∩B)
• For a decreasing sequence A1 ⊃ A2 ⊃ A3...of events with ∩nAn = {} we have
limn→∞ P (An) = 0

In addition to the axioms there is the important definition of conditional probability.
If A and B are events with P (A) > 0 then the probability that event B will occur
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under the condition that event A occurred is

P (B|A) =
P (A ∩ B)

P (A)

One of the problems with these axioms is that they only uniquely determine values for
the null event and the event of the entire probability space. Although there are general
principles for assigning values to other events, finding a universal formal method has
been problematic. Applying general principles often requires some degree of subjectiv-
ity which can lead to debate. Kolmogorov complexity which is examined later provides
a promising universal framework.

It has been argued [Hut05, Sch97] that the objective interpretation places too much
faith in the ultimate truth of the quantum physics model. A simple example of ran-
domness being incorrectly attributed to a process is the flipping of a coin. This is the
standard analogy used in almost any situation where two outcomes occur with prob-
ability 0.5 each, with heads and tails representing the respective outcomes. This is
because when we flip a coin the probability of heads is, for all practical purposes, 0.5.
Even in this article we used this example to represent a truly stochastic process, but in
reality the probability of heads is actually (close to) 1 or 0 the moment the coin leaves
your finger. This is because the process is not inherently random and if the exact ini-
tial conditions are known then the outcome can be calculated by applying the laws of
physics. This statement is somewhat questionable as we may debate that an unknown
breeze may affect the outcome or that our calculations would also need to consider the
exact point that the coin lands which, if it was caught, would depend on the person.
These objections are mute if we consider exact knowledge of initial conditions to in-
clude all local weather conditions and the persons state of mind. Without going into
the question of free will the point is simply that we often use randomness to account
for uncertainty in a model or a lack of adequate knowledge. Perhaps quantum physics
is analogous to this in that although the model is currently very successful, there may
be a time when the ‘inherent’ randomness can be deterministically accounted for by a
more accurate model.

In cases where the data is i.i.d., the objective probability is still identified with the
limiting frequency, which is why these interpretations coincide for these cases. It is
also possible to derive these axioms from the limiting frequency definition, however by
using these axioms as a starting point the issues encountered by the frequentist are
avoided.

3.3 Subjectivist

It is the subjectivist interpretation of probability that is most relevant in the context of
induction, particularity in relation to agent based learning. The subjectivist interprets
a probability of an event as a degree of belief in the event occurring and when any agent,
human included, is attempting to learn about its environment and act optimally it is
exactly this degree of belief that is important.

If a probability defines a degree of belief it must be subjective and therefore may
differ from agent to agent. This may seem unscientific or unsatisfactory but when
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examined philosophically this interpretation has a strong case. To see this, consider
Scott and Fred gambling in Las Vegas. While playing roulette they observe that the
ball lands on 0 an abnormally high number of times causing them to lose significantly.
Given that they are in a large well-known Casino, Fred thinks nothing of this abnor-
mality believing that they have probably just been very unlucky. Scott on the other
hand knows some of the employees at this particular Casino and has heard rumors
of corruption on the roulette tables. This extra information can be thought of as ob-
servations that when combined with the statistical abnormality of the roulette table
raises Scott’s belief that they have been victim to foul play. It is inevitable that, con-
sciously or not, our analysis and interpretation of any situation will be biased by our
own beliefs, experience and knowledge.

In a very formal sense this means that our probabilities are a function of our entire
previous personal history and this is exactly how Solomonoff’s prediction scheme can
be used. As a simple example consider Fred and Scott each independently drawing balls
from an urn, with replacement, which contains black and white balls in an unknown
ratio. Imagine that Fred draws 50 white balls and 20 black balls while Scott draws 30
white balls and 40 black balls. This is possible for any true ratio as long as there is
a positive fraction of both black and white. Clearly Fred will believe that the ratio of
white to black is approximately 5 : 2 while Scott will believe that it is approximately
3 : 4. The point is that both of these beliefs are completely valid given their respective
observations regardless of the true ratio.

Although we may accept that probabilities are subjective it is vital that there is a
formal system that specifies how to update and manipulate these belief values. It is
here that the subjective interpretation of probability has faced many criticisms as it
was argued that subjective belief values don’t obey formal mathematical rules or that
the rules they do obey are also subjective making formalization difficult or impossible.
It is a surprising and major result that any rational agent must update its beliefs
by a unique system which coincides with that of limiting frequencies and objective
probabilities.

The most intuitive justification for this is from a Dutch book argument which
shows that if an agent’s beliefs are inconsistent (contradict the axioms) then a set of
bets can be formulated which the agent finds favorable according to its beliefs but
which guarantees that it will lose. The Dutch book argument is however not rigorous
and there are several objections to it [Ear93]. The main issue rests on the implicit
assumption that belief states uniquely define betting behavior which has been called
into question since there are other psychological factors which can have an affect. For
example in a game of poker it is often rational for a player to bet an amount that
does not reflect his belief in winning the hand precisely because he is trying to bluff
or convey a weak hand [Sch86]. In 1946 Cox published a theorem that gave a formal
rigorous justification that “if degrees of plausibility are represented by real numbers,
then there is a uniquely determined set of quantitative rules for conducting inference”
[Jay03] and that this set of rules is the same as those given by the standard probability
axioms.

Cox’s axioms for beliefs.
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• The degree of belief in an event B, given that event A has occurred can be
characterized by a real-valued function Bel(B|A).

• Bel(Ω \B|A) is a twice differentiable function of Bel(B|A) for A 6= {}.
• Bel(B ∩ C|A) is a twice differentiable function of Bel(C|B ∩ A) and Bel(B|A)
for B ∩ A 6= {}.

This unification and verification of the probability axioms is a significant result which
allows us to view the frequentist definition as a special case of the subjectivist inter-
pretation. This means that the intuitively satisfying aspect of the frequentist interpre-
tation is not lost but now obtains a new flavor. Consider again the case of determining
the ratio of black to white balls in an urn through repeated sampling with replacement
where the true ratio is 1 : 1. As the urn is repeatedly sampled the relative frequency
and hence subjective belief that the next ball is white will converge with probability 1
to 0.5. Although this is the correct probability it is important to realize that it is still
a belief and not an inherent property. In the unlikely but possible event that a white
ball is sampled 1000 times the subjective probability/belief that the next ball will be
white would be very close to 1.

This understanding of probability can be troubling as it suggests that we can never
be certain of any truth about reality, however this corresponds exactly with the phi-
losophy of science. In science it is not possible to ever prove a hypothesis, it is only
possible to disprove it. No matter how much evidence there is for a hypothesis it will
never be enough to make its truth certain. What are often stated as physical laws are
actually only strongly believed and heavily tested hypotheses. Science is not impeded
by this fact however. On the contrary, it allows for constant questioning and progress
in the field and, although models may never be completely proven, it does not stop
them being usefully applied.

4 Bayesianism for Prediction

To fully appreciate the historical attempts to solve the problem of induction and the
corresponding discussions which fueled the field it is necessary to first understand the
Bayesian framework. But before explaining the mechanics of the Bayesian framework
it is worth having a brief look at what it means to be a Bayesian. Giving a precise ex-
planation is difficult due to the various interpretations of Bayesianism [Goo71, Goo83],
however all Bayesians share some core concepts.

Being a Bayesian is often simply associated with using Bayes formula but this is a
gross simplification. Although Bayes formula plays an important role in the Bayesian
framework it is not unique to Bayesians. The rule is directly derived from the axioms of
probability and therefore its correctness is no more debatable than that of the axioms
of probability.

More important to Bayesianism is Cox’s result that a rational belief system must
obey the standard probability axioms. This is because a Bayesian is a subjectivist,
believing that our beliefs and hence probabilities are a result of our personal history.
In other works, what we believe today depends on what we believed yesterday and
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anything we have learnt since yesterday. What we believed yesterday depends on
what we believed the day before, and so forth. Two individuals with very different
histories may therefore hold different beliefs about the same event. This means that
the probability of the event for each individual can be validly different from each other
as long as they both updated their beliefs in a rationally consistent manner.

This rational updating process is at the core of Bayesianism. It may seem unsci-
entific that different individuals can assign distinct yet valid probabilities but, as we
have seen in Subsection 3.3, this can be quite reasonable. There is a strong link to the
frequentist approach here. If the two individuals are given the same observations, or at
least observations from the same source, then their beliefs should eventually converge
because their frequentist estimate should converge. Philosophically speaking, however,
different individuals will never observe precisely the same observations. Each human
has a unique experience of the world around them and therefore their beliefs will never
be identical.

A Bayesian’s belief about events is governed by beliefs in the possible causes of
those events. Everything we see has many possible explanations although we may only
consider a few of them to be plausible. To be able to update beliefs consistently a
Bayesian must first decide on the set of all explanations that may be possible. When
considering a specific experiment this set of explanations, or hypotheses, need only
explain the observations pertaining to the experiment. For example when flipping a
coin to find its bias, the hypotheses may simply be all possible biases of the coin. For
universal induction, we are interested in finding the true governing process behind our
entire reality and to do this we consider all possible worlds in a certain sense. No
matter what the problem is we can always consider it to consist of an agent in some
unknown environment. In the coin example all irrelevant information is discarded and
the environment simply consists of observing coin flips. It is useful to keep this general
setup in mind throughout this article.

Lastly, the agent must have some prior belief in these explanations before the
updating process begins. In other words before any observations have been made.
Our beliefs today depend on beliefs yesterday which depend on the day before. But at
some point there is no ‘day before’ which is why some initial belief is required to begin
the process. Over a long enough period these initial beliefs will be ‘washed out’ but
realistically they are important and should be chosen sensibly.

Summing up, a Bayesian holds beliefs about any possible cause of an event. These
beliefs depend on all previously obtained information and are therefore subjective.
A belief system that is entirely consistent with the Bayesian framework is obviously
unrealistic as a model for human reasoning as this would require perfect logical updating
at every instance as we continuously receive new information. There are also emotional
and psychological factors that come into play for humans. Rather this is an idealized
goal, or gold standard, which a Bayesian thinks we should strive for if we are to be
completely rational.
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4.1 Notation

In order to examine some of the more technical content and results it is necessary to
first establish some notation. Throughout the article X will represent the alphabet of
the observation space being considered. This is simply the set of characters used to
encode the observations in a particular situation. For example when flipping a coin
and observing heads or tails, X = {Head, Tail} or {h, t} or {1, 0}. An observation
sequence is encoded as a string over the alphabet which is usually denoted x. In some
cases we are interested in the length of x or some subsection of x. x1:n denotes a string
of length n or, depending on context, the first n bits of x. xm denotes the mth bit of
x. x<n is the same as x1:n−1, meaning all bits before the nth bit. X ∗ denotes the set
of strings in this alphabet that have finite length. Therefore x ∈ X ∗ means x is any
possible finite observation sequence.

In the Bayesian framework we deal with various environments, the class of all
possible considered environments is denoted M. It is assumed that one of these envi-
ronments is the true environment which is denoted Hµ or simply µ. These hypotheses
each specify distributions over strings x in the corresponding alphabet. This means
that ν(x) := Hν(x) := P (x|Hν) can be thought of as the probability of x according to
environment Hν . The concept of conditional probability is the same for these distri-
butions with Hν(x|y) being the probability of observing x given that y was observed,
under hypothesis Hν . We have an initial belief in each of the environments Hν in
M which is denoted wν = P (Hν). Note that probability and belief are used inter-
changeably in the Bayesian framework due to its subjectivist perspective. We may
also be interested in our posterior belief in an environment Hν after observing x. This
is denoted wν(x) := P (Hν |x).

4.2 Thomas Bayes

Reverend Thomas Bayes is a highly enigmatic figure in the history of mathematics.
Very little is known of his life and few of his manuscripts survived. He only published
one mathematical paper in his life, yet was elected to be a fellow of the royal society of
London. On the 17th April 1761 Bayes died leaving unpublished an essay that would
have a profound impact on the minds and methodologies of countless future scientists.
This was not a discovery about the nature of our universe but rather a framework
for how we can draw inferences about the natural world, essentially about how to
rationally approach science. It wasn’t until two years later that Bayes’ friend Richard
Price posthumously published his “Essay towards solving a problem in the doctrine
of chances” [Bay63] and it wasn’t until many decades later that it began to have any
major influence.

The problem as Bayes explicitly states it at the beginning of his essay is this:
Given: The number of times in which an unknown event has happened and failed
Required: The chance of its happening in a single trial lies somewhere between any

two degrees of probability that can be named.
Intuitively Bayes was looking at the problem of inverse inference. At the time almost

all applications of probability were to do with direct inference [Zab89]. These were
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cases where the initial mechanism and probabilities were known and the probability
of some outcome was to be deduced. Bayes was instead interested in the case where
experimental evidence was known but the true nature of the environment was unknown.
In particular, given the number of successes and failures of an experiment what is the
probability of success on the next trial?

The history of the development of inductive reasoning stretches over centuries with
contributions from many great minds. It was actually through the apparently indepen-
dent work of Laplace a decade later that the techniques of inverse probability gained
widespread acceptance. Later we look at some of this history of inductive reasoning
but here the focus is on the mechanics of the Bayesian framework which underlies most
of the work in this field.

4.3 Models, Hypotheses and Environments

Whether we are testing hypotheses or modeling the world around us, science is funda-
mentally about understanding our environment in order to benefit from it in the future.
Admittedly this statement may not be universally accepted, but it is from this utili-
tarian perspective that this article is written. This perspective is certainly influenced
by the agent based setting of artificial intelligence. The entire field of economics, for
example, is based on this assumption. In any case this abstract view of science is useful
in order to see the relation with inductive inference. We can regard ourselves as agents
maximizing some unknown reward function or utility. It is the complete generality of
this utility that makes this assumption realistic. We may not be simply maximizing
our bank balance, but the very fact that we have preferences between outcomes implies
some inbuilt, possibly complex, reward function. Under this perspective, science is a
tool for prediction which allows us to make decisions that maximize our utility; and
models, environments and hypothesis are tools for science.

In looking at Bayesianism, it is important to realize that hypotheses, models and
environments all express essentially the same concept. Although they may seem in-
tuitively different they each express an explanation of some phenomenon at various
levels of abstraction. A hypothesis is generally in relation to a specific experiment and
is therefore quite a local explanation. A model is often used to explain a larger set of
observations such as the movement of celestial bodies or the flow of traffic in a city,
although models may be as comprehensive or specific as we like. Our environment may
be thought of as a comprehensive model of our world, yet we can also use the term in
reference to specific information relevant for some context such as a particular game
environment. For example a chess environment consists of the current configuration of
the pieces on the board and the rules that govern the game. The point here is that for
the purposes of Bayesian learning no distinction is made between models, environments
and hypotheses.

When thinking about a model or environment it is common to think of some mean-
ingful underlying mechanism or program that governs the output we receive in the
form of observations, however this is not necessary. At an abstract level, any complete
hypothesis can be thought of as specifying a probability distribution over some obser-
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vation set. In general the observations may not be independent so this distribution
must be with respect to any previous observations generated by the environment. We
consider this data to be encoded in a string over some finite alphabet which we denote
X , and the distribution is then over this alphabet. If the environment is deterministic
then this distribution is simply concentrated to a single character of the alphabet at
each step resulting in the probability of the correct string being one, or certain, and
the probability of any other string being zero.

To illustrate this consider the simple environment of a fair coin being flipped. There
are only two possible observations, either heads or tails so the alphabet X is {h, t}. In
this case the observations are independent, so regardless of the observations seen so far
the distribution given by this environment remains the same. For notation let E be
some history sequence over {h, t} and let HC be the distribution. Then we have, for
any history E, HC(h|E) = 0.5 and HC(t|E) = 0.5 . If we consider the environment to
instead be an ordered deck of cards HD then it is clear that if Z is some initial portion
of the deck and a is the card following Z then HD(a|Z) = 1 and HD(ā|Z) = 0 where
a is any other card in the deck. Since the card a following Z is obviously dependent
on Z, it is clear that this distribution changes with the history Z. We call data sets
that are drawn from independent distributions such as the coin flip, independent and
identically distributed data, or i.i.d. for short.

In order to operate the Bayesian framework it is necessary to assume there is some
class of hypotheses M under consideration that contains the correct hypothesis Hµ.
We will see that a countable class is sufficient for universal induction. Therefore, unless
otherwise indicated, we (can) assume that M is countable. Each of these hypotheses
must be assigned some prior which represents the belief in this hypothesis before any
data has been observed. For each Hν ∈ M we denote this prior by wν = P (Hν).
This is something we do to a certain extent naturally. Imagine you see something
unusual on the way to work such as an apartment block surrounded by police cars and
an ambulance. Naturally you might consider a number of different explanations for
this. Perhaps there was a break in, or a murder, or a drug bust. There is essentially
a countless number of possible explanations you might consider which is analogous to
the model class. Presumably one of these is correct and you would not consider them
all to be equally likely. Your plausibility of each corresponds to the priors wν .

In order to be rigorous it is required that the hypothesis class be mutually exclusive
and that the priors sum to one. That is

∑
ν∈M wν = 1. These requirements are simply

equivalent to requiring that our belief system is rationally consistent. The prior belief
in a particular observation string is the weighted sum of the beliefs in the string given
by each hypothesis with weight proportional to the belief in that hypothesis. Formally
P (x1:n) =

∑
Hν∈M

P (x1:n|Hν)P (Hν) where P (Hν) = wν. This is a key concept, known
as Bayes mixture, or marginal likelihood, which will be explained further. Note that
the implicit dependence on “background knowledge” M.
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4.4 Bayes Theorem

Bayes theorem is used to update the belief in a hypothesis according to the observed
data. This formula is easily derived from the definition of conditional probability.

P (A|B) =
P (B|A)P (A)

P (B)

A set of events is mutually exclusive and complete when any event in the sample space
Ω must belong to one and only one event from this set. For example, any event E
along with it complement E = Ω \ E form a mutually exclusive and complete set.
Imagine you’re throwing a die and E is the event of a 6. Obviously any throw must
be in either the set {6} or its complement {1, 2, 3, 4, 5}. If Λ is a mutually exclusive
and complete countable set of events, then P (B) =

∑
C∈Λ P (B|C)P (C). This can be

derived by using all and only Kolmogorov’s axioms of probability and the definition of
conditional probability stated in Section 3.3. Therefore Bayes theorem can be given in
the form

P (A|B) =
P (B|A)P (A)∑

C∈Λ P (B|C)P (C)

Now let Hν be a hypothesis from class M, and x1:n is be observational data. Since the
model class M is required to be mutually exclusive and complete, Bayes formula can
be expressed as follows

P (Hν |x1:n) =
P (x1:n|Hν)P (Hν)∑

Hi∈M
P (x1:n|Hi)P (Hi)

This is the posterior belief in Hν conditioned on data x1:n is denoted wν(x1:n). The
term P (Hν) is the prior belief wν and the term P (x1:n|Hν) is known as the likelihood.
This likelihood is the probability of seeing the data x1:n if hypothesis Hν is the true
environment. But this is exactly how we defined the distribution given by hypothesis
Hν and therefore P (x1:n|Hν) = Hν(x1:n).

4.5 Partial Hypotheses

So far we have only considered complete hypotheses. These specify complete envi-
ronments and therefore uniquely determine a probability distribution. In many cases
however, we have hypotheses that only partially specify the environment. Instead they
represent the set of all environments that satisfy some property, such as the property
that some given statement is true.

For example consider a coin with some unknown bias θ, representing the probability
the coin will land heads. We now flip the coin repeatedly to find its exact bias. An
example of a complete hypothesis is the statement “the coin will land on heads 70%
of the time”, or θ = 0.7. An example of an incomplete hypothesis is the statement
“the coin will land heads somewhere between 50% of the time and 75% of the time”,
or θ ∈ (0.5, 0.75). It’s clear that the first hypothesis is a specific case of the second
hypothesis. Now consider the statement “all ravens are black”. This is a partial
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hypothesis that consists of any environment where all ravens are black, or where there
are no non-black ravens. This will be relevant when we examine the black ravens
paradox.

It is important to be careful when dealing with these partial hypotheses. We showed
that for a complete hypothesis Hν we have P (x1:n|Hν) = Hν(x1:n). For a partial
hypothesis Hp this no longer holds since Hp refers to a set of distributions and hence
Hp(x1:n) is undefined.

4.6 Sequence Prediction

From a metaphysical perspective it may be argued that our ultimate goal is to un-
derstand the true nature of the universe, or in this context to know which of the
environment distributions is the true distribution Hµ, which will simply be denoted
µ from now on. But since we are taking an agent based point of view, our aim is to
make optimal decisions in terms of maximizing some utility function. From this more
pragmatic perspective the primary concern is to make accurate predictions about the
environment. This is called a prequential or transductive setting. Since the optimal
predictions are given by the true distribution these approaches are not radically dif-
ferent; however, as we will see, it is not necessary to perform the intermediate step of
identifying the correct distribution in order to make good predictions.

In some sense it is predictive power that has always been the primary function of
science and reasoning. We know that realistically our scientific models may never be
completely correct, however they are considered successful when they yield predictions
that are accurate enough for our current purposes.

The goal is to make predictions that are optimal given the information available.
Ideally this information extends to knowledge of the true environment µ in which case
the optimal prediction is simply defined by this distribution, however this is rarely
the case. Instead predictions must be based on some estimate of the true distribution
which reflects an educated guess ρ of µ. Let all previous observational data be in the
form of the string x ∈ X ∗. Obtaining the posterior or predictive ρ-probability that
the next observation will be a ∈ X is given by the conditional probability under ρ.
Formally, ρ(a|x) := ρ(xa)/ρ(x). In the Bayesian framework this estimation is given by
Bayes mixture ξ.

4.7 Bayes Mixture

If our class of hypotheses is countable then we can use the weighted average of all
our hypotheses by their respective priors as our best guess estimation ρ of the true
environment µ. This can be thought of as the subjective probability distribution as
described above. Formally it is called Bayes Mixture and defined as follows

ξ(x) :=
∑

ν∈M

wν · ν(x)

This definition makes perfect intuitive sense. The contribution of an environment ν to
the prediction of an observation x is a combination of the prediction of x under this
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environment ν(x) and the belief in this environment wν . Imagine some environment
q predicts x with certainty but your belief in this environment wq is small, while all
other environments in M predict x with small probability. We would expect, as Bayes
mixture implies, that the resulting probability of x will remain small although larger
than if q was not considered at all.

Continuing with the poker example above, your opponent’s hand may be thought
of as the unknown environment. The opponent may hold any hand and each of these
corresponds to a particular hypothesis ν which you belief with probability wν . In this
case consider the observation x to be the event that you win the hand. If there are
still cards to be dealt then the prediction ν(x) may be uncertain depending on how
likely the remaining cards are to change the outcome. For example if you have three
aces and ν is the hypothesis that the opponent has four diamonds, with one card to
come, then ν(x) ≈ 3/4 since there is approximately 1/4 chance that the next card will
be a diamond which will make your opponents diamond flush beat your three aces. If
there are no remaining cards then ν(x) is simply one or zero depending on whether
your hand is better or worse than hand ν respectively. Your beliefs wν may depend on
psychological factors and previous betting but your final decision, if rational, should
involve the estimation ξ over the various possible environments. Even if you have a sure
belief that an opponent has a particular hand µ then this system remains consistent
since ξ simply becomes the distribution given by µ. This is because wµ = 1, wν = 0
for all ν 6= µ and therefore ξ(x) = µ(x).

The probability of some observation under this Bayes mixture estimation can be
thought of as its subjective probability since it depends on the priors which reflect
our personal belief in the hypotheses before any data has been observed. If our belief
wν = 0 for some ν, it does not contribute to ξ and could equally well be dropped from
M. Therefore, without loss of generality and consistent with Epicurus, we assume
wν > 0 from now on. An important mathematical property of this mixture model is
its dominance.

ξ(x) ≥ wν · ν(x) ∀x and ∀ν ∈ M, in particular ξ(x) ≥ wµ · µ(x)

This means that the probability of a particular observation under Bayes mixture is
at least as great as its probability under any particular hypothesis in proportion to
the prior belief in that hypothesis. This is trivial to see since the probability under
Bayes mix is simply obtained by summing the probabilities under each hypothesis
proportional to its prior and these are all non-negative. In particular this result applies
to the true distribution µ. This property is crucial in proving the following convergence
results.

4.8 Expectation

Since our predications deal with possibly stochastic environments, expectation is an
important concept in examining performance. When there is random chance involved
in what rewards are gained, it is difficult to make guarantees about the effect of a
single action. The action that receives a higher reward in this instance may not be
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optimal in the long run. As long as we have arbitrarily many tries, the best strategy is
to choose the action that maximizes the expected reward. This is particularly relevant
in relation to agent based learning,

In general, expectation is defined for some function f : X n → R, which assigns a
real value to an observation sequence of any length in the following way:

E[f ] =
∑

x1:n∈Xn

µ(x1:n)f(x1:n)

This can be thought of as the average value of a function under the true distribution.
When we talk about maximizing an agent’s expected reward the function being con-
sidered is the agent’s utility function and this is generally the most important value.
For example, when given the choice between a certain $10 or a 50% chance at $100 the
rational choice is to take the latter option as it maximizes one’s expectation, assuming
monetary value defines utility. Expectation is an essential concept for making good
decisions in any stochastic environment.

In poker, for example, a good player uses expectation continuously, although the
calculations may eventually become instinctual to a large degree. In general a player’s
decision to continue in a hand depends on whether the expected return is larger than
the amount the player must invest in the hand. In the case of Texas hold’em poker the
true environment is the distribution given by the shuffled deck and the function is the
expected return on some sequence of communal cards. It should also be noted that
this is not a stationary environment: the distribution changes conditioned on the new
information available in the communal cards.

4.9 Convergence Results

For the Bayesian mixture to be useful it is important that it performs well. As the
accuracy of predictions is the primary concern, the performance of a distribution is
measured by how close its predictions are to those of the true environment distribution.
The analysis of this performance varies depending on whether the true environment is
deterministic or stochastic.

Deterministic. In the deterministic setting the accuracy is easier to determine: As an
observation either will or won’t be observed, there is no uncertainty. For a deterministic
environment it is sufficient to know the unique observation sequence α that must be
generated, since it contains all the information of the environment. Formally µ(α1:n) =
1 for all n where α1:n is the initial n elements of α, and µ(x) = 0 for any x that is
not a prefix of α, i.e. there is no n such that x = α1:n. In this deterministic case the
following results hold

∞∑

t=1

|1− ξ(αt|α<t)| ≤ ln(w−1
α ) < ∞ and ξ(αt:n|αt) → 1 for n ≥ t → ∞

Although the true distribution is deterministic, and perhaps even all environments in
the hypothesis class M, this does not imply that Bayes mixture ξ will be deterministic
(see Subsection 7.2).
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Since an infinite sum of positive numbers can only be finite if they tend to zero, this
result shows that the probability that the next observation will be predicted correctly
under ξ, given all previous observations, converges rapidly to one. The sum of the
probabilities that an incorrect, or off sequence, observation is predicted is bounded
ln(w−1

α ) depending on our prior belief in the true environment α. If our prior belief
is one, the true environment is known, then this constant is zero, meaning that we
never make a mistake. This is not surprising as there is no uncertainty in our beliefs
or the environment. For very small prior beliefs this bound grows larger which is again
intuitive as the contribution of the true environment to the correct prediction will
initially be small. However as long as the prior is non zero, Bayes mixture performs
well.

The seconds result shows that Bayes mixture will eventually predict arbitrarily
many sequential observations correctly with probability approaching one. This means
it is also an excellent multi-step look-ahead predictor.

Non-deterministic. In non-deterministic environments there is always uncertainty
about the observation sequence so we need to generalize our criterion for good perfor-
mance. At each step the true environment is going to produce each observation with
some probability, so ideally we want to predict each observation with this same prob-
ability. Therefore, in order to perform well, we want the distribution given by Bayes
mixture to converge to the true distribution. To analyze this convergence a notion
of distance between the two predictive distributions is required. For this we use the
squared Hellinger distance.

ht(x<t) :=
∑

a∈X

(√
ξ(a|x<t)−

√
µ(a|x<t)

)2

This distance is dependent on the previously observed data x<t because the dis-
tributions given by the environments are also dependent on this data. Intuitively two
distributions are the same when they give equal probabilities to all possible observa-
tions, which is exactly the requirement for the Hellinger distance to be zero.

Even with this concept of distance the stochastic nature of the true environment
makes mathematical guarantees difficult. For example a very unlikely sequence of
observations may occur which causes Bayes mixture to be a lot further from the true
distribution than we would expect. Because of this, results are given in terms of
expectations. For example imagine a coin is flipped one hundred times and you are
given the choice to receive $1 for every heads and $0 for every tails or $0.30 every flip
regardless. In the first case the only guarantee is that you will receive between $0 and
$100, however you know that the expectation is $50 which is greater than the certain
$30 you would receive in the second case. Therefore expectation allows us to make
decisions that will be beneficial in the long run.

It was shown in [Hut03a, Hut05] that

∞∑

t=1

E[ht] ≤ ln(w−1
µ ) < ∞
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As before the upper bound is a constant dependent on the prior belief in the true en-
vironment and the intuition is the same. This result implies that ξ(xt|x<t) will rapidly
converge to µ(xt|x<t) with probability one as t → ∞. In a stochastic environment
“with probability one” is usually the strongest guarantee that can be made so this is a
strong result. Roughly it states that the expected number of errors will be finite and
Bayes mix will eventually be the same as the true predictive distribution.

4.10 Bayesian Decisions

We have seen that Bayes mixture acts as an excellent predictor and converges rapidly
to the true environment. It is therefore not surprising that making decisions based
on this predictor will result in excellent behavior. When making decisions however we
are not concerned with the accuracy of our decisions but rather with the resultant loss
or gain. We want to make the decision that will maximize our expected reward or
minimize our expected loss.

In general, not all wrong predictions are equally bad. When predicting the rise
and fall of stocks for example, a prediction that is off by only a fraction of a cent is
probably still very useful while a prediction that is off by a few dollars may be hugely
costly. As long as this loss is bounded we can normalize it to lie in the interval [0, 1].
Formally let Loss(xt, yt) ∈ [0, 1] be the received loss when yt has been predicted and xt

was the correct observation.
Given this loss function the optimal predictor Λρ for environment ρ after seeing

observations x<t is defined as the prediction or decision or action yt that minimizes
the ρ-expected loss. This is the action that we expect to be least bad according to
environment ρ.

y
Λρ

t (x<t) := argmin
yt

∑

xt

ρ(xt|x<t)Loss(xt, yt)

It should be noted that this optimal predictor may not give the prediction that is most
likely. Imagine we have some test T for cancer. The test result for a patient shows
that there is a 10% chance that the patient has cancer. In other words we can consider
T to be the distribution where T (positive|patient) = 0.1. The loss incurred by not
predicting cancer given that the patient does have cancer is 1 (after normalization), if
the patient doesn’t have cancer the loss is 0. On the other hand the loss incurred by
predicting cancer if the patient does have cancer is 0, while if the patient doesn’t have
cancer the loss is a nominal 0.01 for premature treatment or further testing.

Given these values the T -expected loss of predicting cancer is

T (+|patient)Loss(+,+) + T (−|patient)Loss(−,+) = 0.1×0+(1−0.1)×0.01 = 0.009

The T -expected loss of not predicting cancer is

T (+|patient)Loss(+,−) + T (−|patient)Loss(−,−) = 0.1× 1+ (1− 0.1)× 0 = 0.01

Therefore ΛT , the optimal predictor for T , would choose to predict cancer even though
there’s only a 10% likelihood, because it minimized the T -expected loss.
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Given this optimal predictor, the expected instantaneous loss at time t and the
total expected loss from the first n predictions are defined as follows.

loss
Λρ

t := E[Loss(xt, y
Λρ

t )] and LossΛρ

n :=
n∑

t=1

E[Loss(xt, y
Λρ

t )]

Obviously the best predictor possible is the optimal predictor for the true environment
Λµ, however as µ is generally unknown, the best available option is the optimal predictor
Λξ for Bayes mixture ξ for which the following result holds:

(√
Loss

Λξ
n −

√
Loss

Λµ
n

)2

≤
n∑

t=1

E

[(√
loss

Λξ

t −
√
loss

Λµ

t

)2
]

≤ 2 ln(w−1
µ ) < ∞

This means that the squared difference between the square roots of the total expected
losses for ξ and µ is also bounded by a constant dependant on our initial belief. This
result demonstrates that from a decision theoretic perspective the Bayesian mixture
as a predictor performs excellently because it suffers loss only slightly larger than the
minimal loss possible. The bound also implies that the instantaneous loss

Λξ

t of Bayes-
optimal predictor Λξ converges to the best possible loss

Λµ

t of the informed predictor
Λµ. In fact one can show that if a predictor performs better than Λξ in any particular
environment then it must perform worse in another environment. This is referred to
as Pareto optimal in [Hut03b].

4.11 Continuous Environment Classes

Although the results above were proved assuming that the model class is countable,
analogous results hold for the case that the model class M is uncountable such as
continuous parameter classes. For a continuous M the Bayesian mixture must be
defined by integrating over M.

ξ(x) =

∫

ν∈M

ν(x)w(ν)dν

where w(ν) is (now) a prior probability density over ν ∈ M. One problem with this
is that the dominance ξ(x) ≥ w(µ)µ(x) is no longer valid since the prior probability
(not the density) is zero for any single point. To avoid this problem the Bayesian
mixture is instead shown to dominate the integral over a small vicinity around the
true environment µ. By making some weak assumptions about the smoothness of the
parametric model class M, a weaker type of dominance makes it possible to prove the
following [CB90, Hut03b]:

n∑

t=1

E[ht] ≤ ln(w(µ)−1) +O(log(n))

This shows that even for a continuous M we get a similar bound. The added loga-
rithmic term means that the sum to n of the expected Hellinger distance is no longer
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bounded but grows very slowly. This is still enough to show that the distribution given
by ξ deviates from the true distribution µ extremely seldom. The main point is that
the effectiveness of the Bayesian framework is not significantly impaired by using a
continuous class of environments.

4.12 Choosing the Model Class

The above results demonstrate that the Bayesian framework is highly effective and
essentially optimal given the available information. Unfortunately the operation and
performance of this framework is sensitive to the initial choice of hypothesis class and
prior. As long as they are non zero, the chosen priors will not affect the asymptotic
performance of the Bayesian mixture as the observations eventually wash out this initial
belief value. However in short-term applications they can have a significant impact.

The only restriction on the hypothesis class is that it must contain the true envi-
ronment. This means any hypothesis that may be true, however unlikely, should be
considered. On the other hand, having unnecessarily cumbersome classes will affect
the prior values as they must sum to one. This means adding unnecessary hypotheses
will subtract from the priors of relevant hypotheses. Since the bound of ln(w−1

µ ) is
proportional to the log inverse prior, having unnecessarily small priors leads to a high
error bound which may affect short-term performance.

For these reasons, the general guideline is to choose the smallest model class that
will contain the true environment and priors that best reflect a rational a-priori belief in
each of these environments. If no prior information is available then these priors should
reflect this lack of knowledge by being neutral or objective. In the case of universal
induction however, there is essentially no thinkable hypothesis we can disregard, so we
require a very large model class.

How to assign reasonable priors over model classes in general and the model class
of essentially all possible explanations in particular is at the heart of the induction
problem. We devote a whole own section to this intricate issue.

5 History

The history of the induction problem goes back to ancient times and is intimately tied
to the history of science as a whole. The induction principle is at the core of how we
understand and interact with our world and it is therefore not surprising that it was
a topic of interest for numerous philosophers and scientists throughout history, even
before the term induction was used or properly defined. It is however surprising that
a formal understanding of induction is not given greater emphasis in education when
it is, at least implicitly, of fundamental importance and relevance to all of science.
In the following we will look at some of the most important historical contributions
to inductive reasoning, including recent attempts at formalizing induction. We will
also examine some of the major problems that plagued these attempts and later these
will be re-examined in the context of universal induction to illustrate how Solomonoff
succeeds where others have failed.
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5.1 Epicurus

Some of the earliest writings on inductive reasoning are attributed to the ancient Greek
philosopher Epicurus born roughly 341BC. Epicurus founded the philosophical school
of Epicureanism which taught that observation and analogy were the two processes
by which all knowledge was created. Epicurus’s most relevant teaching in regard to
inductive reasoning is his principle of multiple explanations. This principle states that
“if more than one theory is consistent with the data, keep them all”. Epicurus believed
that if two theories explained some observed phenomenon equally well it would be
unscientific to choose one over the other. Instead both theories should be kept as long
as they both remain consistent with the data.

This principle was illustrated by one of his followers with the example of observing
a dead body lying far away [LV08]. In reasoning about the cause of death we may list
all possible causes such as poison, disease, attack etc, in order to include the one true
cause of death. Although we could reason that one of these must be the correct cause
there is no way of establishing the true cause conclusively without further examination
and therefore we must maintain a list of possible causes.

Similar reasoning is used in statistics to derive the principle of indifference which
assigns equal prior probabilities to all models when there is no reason to initially prefer
one over any other. Although there is clearly a certain validity in Epicurus’s reasoning,
it seems unsatisfactory to believe equally in any hypothesis that accounts for some
observed phenomenon. To see this consider that you have just looked at your watch
and it is showing the time as 1pm. It seems reasonable that you should therefore
believe in the hypothesis that the time is in fact 1pm and your watch is on time. But
the hypothesis that it is actually 3pm and your watch is two hours slow also explains
the observations. It is also possible that a friend set your watch forward three hours as
a joke and it is only 10am. In fact it is possible to come up with ever more implausible
scenarios which would equally account for your watch currently showing 1pm and which
would therefore, according to Epicurus, deserve equal consideration. So why then do
we maintain a strong believe that our watch is correct and the time is actually 1pm?
If we were entirely true to Epicurus’s principle then a watch would have no use to us
at all since any time would be equally possible regardless of the time shown. It is clear
that our belief in a hypothesis is directly related to its plausibility and it is this idea
of plausibility which we will further investigate.

Another problem with the principle of indifference is that it says nothing about
how we should choose between conflicting predictions given by the various consistent
models. Since our primary concern is making good predictions this is a serious issue.

5.2 Sextus Empiricus and David Hume

Sextus Empiricus was a philosopher born in 160 AD who gives one of the first accounts
of inductive skepticism. He wrote

When they propose to establish the universal from the particulars by means of in-
duction, they will effect this by a review of either all or some of the particulars. But if
they review some, the induction will be insecure, since some of the particulars omitted
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in the induction may contravene the universal; while if they are to review all, they will
be toiling at the impossible, since the particulars are infinite and indefinite. [Emp33]

This remains the simplest and most intuitive criticism of universal generalizations.
Put simply it states that no universal generalization can ever be rigorously proven
since it is always possible that an exception will be observed that will contradict this
generalization. There is no flaw in this reasoning, however to believe that this argument
invalidates induction is to misunderstand inductive reasoning. The argument does
demonstrate that our belief in any universal generalization should never be 100%, but
this is widely accepted and does not hinder the formalization of an inductive framework.
It does however give a sensible criterion which can be used to test the validity of an
inductive method.

Sextus also gave an argument that resembles a better known argument due to Hume.
Sextus wrote “Those who claim for themselves to judge the truth are bound to possess
a criterion of truth. This criterion, then, either is without a judge’s approval or has
been approved. But if it is without approval, whence comes it that it is truthworthy?
For no matter of dispute is to be trusted without judging. And, if it has been approved,
that which approves it, in turn, either has been approved or has not been approved, and
so on ad infinitum.” [Emp33]

Hume’s argument was that induction can not be justified because the only jus-
tification that can be given is inductive and hence the reasoning becomes circular.
Although Hume and Empiricus reach the same conclusion, that induction can never
be verified and is therefore inherently unreliable, they differ greatly in how they treat
this conclusion.

Sextus believed that since there is no way affirming or denying any belief, we must
give up any judgement about beliefs in order to attain peace of mind [AB00]. It is
worth mentioning that although he was a skeptic of induction, Empiricus’ philosophy
was in many respects similar to the school of Bayesianism. Bayesians would agree that
we should not hold any belief as certain (probability 1) or deny it entirely (probability
0; cf. the confirmation problem in Subsection 5.5), apart from logical tautologies or
contradictions, respectively. Empiricus also believed that an objective truth of reality
was unknowable and instead we can only be sure of our own subjective experiences.
This is similar to the subjective interpretation of probability.

Hume on the other hand admits that using inductive inference, or at least reasoning
by analogy, is an inevitable part of being human. He states “having found, in many
instances, that any two kinds of objects – flame and heat, snow and cold – have always
been conjoined together; if flame or snow be presented anew to the senses, the mind
is carried by custom to expect heat or cold, and to believe that such a quality does
exist, and will discover itself upon a nearer approach. This belief is the necessary result
of placing the mind in such circumstances” [Hum39]. Hume therefore concedes that
although it can not be verified, induction is essential to our nature.
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5.3 William of Ockham

The most important concept for inductive reasoning was famously posited byWilliam of
Ockham (or Occam) although the concept can not really be attributed to any person
as it is simply an aspect of human nature. In its original form Occam’s razor is
stated as “A plurality should only be postulated if there is some good reason, experience,
or infallible authority for it”. A common interpretation is “keep the simplest theory
consistent with the observations”. This principle is apparent in all scientific inquiry
and in our day to day experience.

It is important to understand that a disposition towards simpler, or more plausible,
explanations is simply common sense and should be entirely uncontroversial. For every
observation we make on a day to day basis there is a multitude of possible explanations
which we disregard because they are far too complex or unnecessarily convoluted to be
plausible.

This was made clear in the example given above which made the point that even
though there are various ways of accounting for a watch showing a certain time we
remain convinced that it is the correct time. This is because the watch being correct
is by far the simplest explanation. When Fred walks past some houses on a street
numbered 1, 2, 3 respectively it would be natural for him to belief they are numbered
in the standard manner however they may just as well be numbered according to the
prime numbers which would have the natural continuation 5 rather than 4.

If you observe a street sign when searching for a house you have never visited before
it is natural to assume it is correct rather than that it has been switched. It is even
conceivable that you are witness to a vast hoax or conspiracy and all the signs you
have seen have been changed. Perhaps the map you hold has itself been altered or
you are coincidentally holding the one section that was misprinted in this edition or
which Google maps got wrong. It is difficult to provide intuitive examples that do
not seem entirely absurd but this is actually the point in some sense. A disposition
towards simplicity is not only common sense, it is actually necessary for functioning
normally in our world which overloads us with huge amounts information and countless
conceivable explanations. People who place too much belief in unnecessarily complex
ideas are often the ones labeled paranoid or illogical.

Occam’s razor is an elegant and concise formulation of this natural disposition,
however it is still too vague to use formally. Both ‘simplest’ and ‘consistent’ require
precise definitions but this is difficult due to their inherent subjectivity. It is also
worth noting that even two people observing the same phenomenon with precisely the
same interpretation of Occam’s razor may draw different conclusions due to their past
history. Generally speaking the observations referred to in Occam’s razor are from a
specific experiment or phenomenon but philosophically they can be thought of as all the
observations that make up an individual’s life and are therefore inevitably unique for
each person. As a trivial example imagine Scott was walking with Fred down the street
as he had seen the numbers 1, 2, 3 on the houses but Scott had previously observed that
the next house on the street was numbered 5. Scott’s beliefs about the continuation
of the sequence would then be different to Fred’s. He would be more inclined than
Fred to believe the houses were numbered according to the primes. Having said this,

31



Scott may still have a higher belief that the houses are numbered normally with the 4
absent for some unknown reason. This is because he has more evidence for the prime
ordering than Fred but given his previous experience with house orderings the idea of
a street with a prime ordering still seems more complex and hence less plausible than
an explanation for the missing 4.

Few debate the validity of Occam’s razor, however it is exactly its subjective vague
nature which has made it difficult to formalize. Various approaches to machine learning
successfully apply a formal version of Occam’s razor relevant to the problem. For exam-
ple when fitting a polynomial to some unknown function based on some noisy sample
data we use a regularization term to avoid over-fitting. This means that the chosen
solution is a trade off between minimizing the error and minimizing the complexity of
the polynomial. This is not simply for aesthetic purposes; a polynomial that is chosen
only to minimize the error will generally be far from the function that generated the
data and therefore of little use for prediction. Unfortunately these methods are prob-
lem specific. Formalizing universal inductive reasoning requires a formal and universal
measure of simplicity. As we will see this is exactly what Kolmogorov provides.

5.4 Pierre-Simon Laplace and the Rule of Succession

Laplace’s most famous contribution to inductive inference is his somewhat controversial
rule of succession. For i.i.d. data where the outcome of each trial is either a success or
a failure, this rule gives an estimation of the probability of success on the next trial.
This is almost the same problem that Bayes formulated at the beginning of his essay.

Let s be the number of successes, f be the number of failures and n = s+ f be the
total number of trials, which is recorded in the binary string x. The length of x is the
number of trials and each bit is either a 1 if the corresponding trial was a success or a
0 if it was a failure. For example if we have had n = 4 trials that were success, success,
failure, success respectively then x = 1101, s = 3, and f = 1. The rule of succession
states that the probability of success on the next trial is

P (xn+1 = success = 1|x1:n) =
s+ 1

n + 2

The validity of this rule has been questioned but it follows directly from applying
the Bayesian framework with a uniform prior and i.i.d. environment assumed. The
derivation actually provides an informative illustration of how the Bayesian framework
can be applied in practice. To see this, consider some stationary and independent
experiments whose outcome we can categorize as either a success or a failure every
time it is run, e.g. flipping a (biased) coin with heads being a success. In this case our
model class M = {θ|θ ∈ [0, 1]} is the set of possible probabilities the experiment may
give to success on a single trial. Let θµ ∈ [0, 1] be the true probability of success on a
single trial. Since the experimental trials are stationary and independent, θµ remains
constant, although our belief about θµ changes.

According to the definition of conditional probability we have P (xn+1 = 1|x1:n) =
P (x1:n1)/P (x1:n) where x1:n1 is the string x1:n with 1 appended at the end. The
probability of any particular sequence x of failures and successes clearly depends on
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θµ and is given by P (x|θµ) = θsµ(1 − θµ)
f . The intuition behind this should be clear.

Imagine you have a biased coin which gives heads with probability θ and hence tails with
probability (1−θ). The probability of throwing heads s times is θs and the probability
of throwing tails f times in a row is (1− θ)f . Therefore, since the throws are i.i.d., the
θ-probability of any sequence of throws with s heads and f tails is θs(1 − θ)f . For a
regular, unbiased coin, the probability of heads is θ = 0.5 = (1 − θ) and therefore the
probability of a sequence is 0.5s+f . This means it depends only on the total number of
throws.

We are now interested in the probability of some observation sequence x. Since θ
is unknown we estimate the true probability using Bayes mixture which represents our
subjective probability. This involves integrating over our prior belief density w(θ) =
P (θ) to give

ξ(x) = P (x) =

∫ 1

0

P (x|θ)w(θ)dθ

Note that we can not sum because the model class M is continuous and hence un-
countable. Since we assume the prior distribution to be uniform and proper it must
satisfy the following constraints

∫ 1

0

w(θ)dθ = 1 and w(θ) = w(θ′) for all θ and θ′ ∈ M

This results in the density, w(θ) = 1 ∀θ ∈ [0, 1]. Therefore

P (x) =

∫ 1

0

P (x|θ)dθ =

∫ 1

0

θs(1− θ)fdθ =
s!f !

(s+ f + 1)!

The final equality is a known property of the Beta function. To find the conditional
probability of success given this sequence we need to consider the sequence x1:n with
another success appended at the end. This is denoted x1:n1. The probability of this
sequence P (x1:n1) follows analogously from above since this sequence contains the same
number of failures as x1:n plus one more success. Therefore

P (xn+1 = 1|x1:n) =
P (x1:n1)

P (x1:n)
=

(s+1)!f !
(s+1+f+1)!

s!f !
(s+f+1)!

=
s+ 1

s+ f + 2
=

s+ 1

n+ 2

The controversial and perhaps regretful example Laplace originally used to illustrate
this rule was the probability that the sun will rise tomorrow given that it has risen in
the past. Laplace believed that Earth was 5000 years old and hence that the sun had
risen 1826213 times previously. Therefore by his rule the probability that the sun will
rise tomorrow is 1826214

1826215
or equivalently the probability that it won’t rise is 1/1826215. In

his original statement of the problem Laplace appended the example immediately with
a note that this is only applicable if we knew nothing else about the mechanism of the
sun rising, but since we know a lot about this mechanism the probability would be far
greater. Unfortunately many ignored this accompanying explanation and claimed that
the rule was invalid because this estimate for the sun rising was simply absurd. One
counter example claimed that by the same reasoning the probability that a 10 year old
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child will live another year is 11
12

compared with an 80 year old man having probability
81
82

[Zab89] even though this clearly is a case where previous knowledge and lack of
independence make the rule inapplicable.

5.5 Confirmation Problem

The confirmation problem involves the inability to confirm some particular hypothesis
in the hypothesis class regardless of the evidence we observe for it. Usually the hypothe-
ses considered when examining this problem are universal generalizations. Dealing with
universal generalizations remains one of the most persistent challenges for systems of
inductive logic.

As Empiricus argued, verifying any universal generalization is difficult because re-
gardless of how many instances of something we observe, it is always possible that
some unobserved instance will contradict any conclusions we may have drawn thus far.
Therefore, finding a system that gives complete certainty in a universal generalization
cannot be the actual goal since we know that this could not be justified unless we
have observed every possible instance of the object about which the generalization was
made. The problem is in finding a system that agrees with our intuition in all aspects of
inductive logic. However satisfactory behavior regarding the confirmation of universal
generalizations has evaded most proposed systems.

It should be noted that in this section and throughout the article we have used the
term confirmation as it appears commonly in the literature [Mah04]. The meaning in
this context is similar to what an unfamiliar reader may associate more closely with the
term ‘supports’. To make this clear, some evidence E is said to confirm a hypothesis
H if the posterior probability of H given E is greater than before E was observed.
Unfortunately, as is illustrated in the next subsection, this definition is unsatisfactory
in certain circumstances. An arbitrarily small increment in belief may not deserve to
be labeled as confirmation, and so we call it weak confirmation. The confirmation
problem is illustrated here using the above rule of succession.

When applicable, Laplace’s rule of succession seems to produce a reasonable esti-
mate. It converges to the relative frequency, it is defined before any observations have
been seen (for s = f = 0) and it is symmetric. It also isn’t over-confident meaning that
it never assigns probability 1 to an observation. This satisfies Epicurus’s argument that
no induction can ever be certain. Unfortunately there are some significant draw-backs,
namely the zero prior problem. This zero prior problem is a specific instance of the
more general confirmation problem.

The zero prior problem occurs because of the prior factor present in Bayes rule. For
some hypothesis H and evidence E Bayes rule states P (H|E) = P (E|H)P (H)/P (E).
Therefore it is clear that if P (H) = 0 then regardless of the evidence E our posterior
evidence P (H|E) must remain identically zero. This is why any hypothesis which is
possible, no matter how unlikely, must be assigned a non-zero prior. When approxi-
mating the probability of success in the biased coin-flip example above, the hypothesis
H corresponds to a particular θ, and the evidence E is the observation sequence x.
Although the densities w(θ) are non zero for all θ, the probability of any particular
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θ is P (θ = c) =
∫ c

c
w(θ)dθ = 0. Any proper density function must have zero mass

at any point. This means that for any θ, the posterior P (θ|x) = 0 no matter what
the observation sequence. Imagine we are observing the color of ravens and θ is the
percentage of ravens that are black. The hypothesis “All ravens are black” therefore
might be associated with θ = 1, but even after observing one million black ravens and
no non-black ravens P (θ = 1|x) = 0, which means we are still certain that not all
ravens are black: P (θ < 1|x) = 1. This is clearly a problem.

If we instead consider the composite or partial hypothesis θp = {θ|θ ∈ (1 − ε, 1]}
for any arbitrarily small ε, then P (θ|x) converges to 1 as the number of observed black
ravens increases. This is called a soft hypothesis and intuitively it is the hypothesis
that the percentage of black ravens is 1 or very close to 1. The reason our belief in this
hypothesis can converge to 1 is that the probability is now the integral over a small
interval which has a-priori non-zero mass P (θp) = ε > 0 and a-posteriori asymptotically
all mass P (θp|1n) → 1.

Instead of θ = 1 it is also possible to formulate the hypothesis “all ravens are black”
as the observation sequence of an infinite number of black ravens, i.e. H ′ = x = 1∞

where a 1 is a black raven. This purely observational interpretation might be considered
philosophically more appropriate since it considers only observable data rather than an
unobservable parameter. However the same problem occurs. If x1:n = 1n is a sequence
of n black ravens, then P (x1:n) = n!/(n+ 1)! = 1/n+1. Therefore

P (1k|1n) =
P (1n+k)

P (1n)
=

n

n + k

This means that for any finite k our belief in the hypothesis that we will observe k more
black ravens converges to 1 as the number of observed ravens n tends to infinity, which
is not surprising and conforms to intuition. Once we have seen 1000 black ravens we
strongly expect that we will observe another 10 black ravens. However for the above
hypothesis of “all ravens are black” k is infinite and the probability P (1k=∞|1n) will
be zero for any number n of observed ravens. By making the reasonable assumption
that the population of ravens is finite, and therefore that k is finite, we may expect to
fix the problem. This is the approach taken by Maher [Mah04]. However it still leads
to unacceptable results which we examine further in the next subsection.

Since both forms of the universal generalization fail to be confirmed by the rule of
succession, there seem to be only two reasonable options. We can simply accept that
hypotheses corresponding to exact values of θ can not be confirmed, so instead soft
hypotheses corresponding to small intervals or neighborhoods must be used. While we
can successfully reason about soft hypotheses, we still have to decide what to do with
the universal hypotheses. We would somehow have to forbid assigning probabilities to
all-quantified statements. Assigning probability zero to them is not a solution, since
this implies that we are certain that everything has exceptions, which is unreasonable.
We can also not be certain about their truth or falsity. Bare any semantic, we could
equally well eliminate them from our language. So focussing on soft hypotheses results
in a language that either does not include sentences like “all ravens are black” or if
they exist have no meaning. This makes the soft hypothesis approach at best inelegant
and impractical if not infeasible.
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The other solution is to assign a non-zero weight to the point θ = 1 [Zab89].
This point mass results in an improper probability density however it does solve the
confirmation problem. One such improper distribution is a 50:50 mixture of a uniform
distribution with a point mass at 1. Mathematically we consider the distribution
function P (θ ≥ a) = 1 − 1

2
a with a ∈ [0, 1], which gives P (θ = 1) = 1/2. Using this

approach results in the following Bayesian mixture distribution, again with s successes,
f failures and n = s+ f trials:

ξ(x1:n) =
1

2

(
s!f !

(n + 1)!
+ δs,n

)
where δs,n =

{
1 if s = n

0 otherwise

Therefore, if all observations are successes, or black ravens, the Bayesian mixture gives
ξ(1n) = 1

2
( n!0!
(n+1)!

+ 1) = 1
2
· n+2
n+1

, which is much larger than the ξ(1n) = 1/n+1 given by

the uniform prior. Because of this both the observational hypothesis H ′ := (x = 1∞)
and the physical hypothesis θ = 1 can be confirmed by the observation of a reasonable
number of black ravens. Formally, the conditional distribution of seeing k black ravens
after seeing n black ravens is given by

P (1k|1n) = ξ(1k|1n) =
ξ(1n+k)

ξ(1n)
=

n + k + 2

n + k + 1
· n+ 1

n+ 2

Therefore P (H ′|1n) = P (1∞|1n) = lim
k→∞

P (1k|1n) =
n + 1

n + 2

and hence the observational hypothesis H ′ is confirmed with each new observation.
Our confidence in the hypothesis that all ravens are black after having observed 100
black ravens is about 99%. The first line also shows confirmation occurs for any finite
population k. As we would expect the physical hypothesis similarly gets confirmed
with P (θ = 1|1n) = n+1

n+2
. The new prior also has the property that once a non-black

raven is observed, the posterior Bayesian distribution becomes the same as it would
have been if a uniform prior had been assumed from the start, since δs,n = 0 in this
case.

So far we have considered a binary alphabet, but the idea of assigning prior point
masses has a natural generalization to general finite alphabet. For instance if we
instead consider the percentage of black, white and colored ravens, the results remain
analogous.

It is immediately clear that the chosen “improper density” solution is biased towards
universal generalizations, in this case to the hypothesis “all ravens are black”. The
question is then why not design the density to also be able to confirm “no ravens
are black”, or “exactly half the ravens are black”? It would be possible to assign a
point mass to each of these values of θ but then why only these values? These values
correspond to hypotheses that seem more reasonable or more likely and therefore which
we want to be able to confirm. But ideally we want to be able to confirm any reasonable
hypothesis, so the question becomes which points correspond to reasonable hypotheses?

It seems that we are intuitively biased towards hypotheses corresponding to simpler
values such as rational numbers but we can argue that significant irrational fractions
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such as 1/π are also very reasonable. Deciding where to draw the line is clearly prob-
lematic but the universal prior which is described later provides a promising solution.
It assigns non-zero probability to any computable number, and the class of computable
numbers certainly contains any reasonable values θ. A non-computable θ corresponds
to a non-computable hypothesis, which are usually not considered (outside of math-
ematics). It should also be noted that even if θ is incomputable, there are always
arbitrarily close values which are computable and hence can be confirmed. Formally
this means that the set of computable numbers is dense in the real numbers. The
universal prior can therefore be seen as a logical extension of the above method for
solving the confirmation problem.

Since this class of computable values is infinite it may be asked why we don’t go one
step further and simply assign every value a non-zero point mass. The reason is that
it is not mathematically possible. The reason comes down to the difference between
countably infinite and uncountably infinite. Without going into depth consider the
infinite sum

∑∞
n=1 2

−n = 1. The property of creating an infinite sum that gives a finite
value is only possible for countably infinite sums and since the set of real numbers in
the interval [0, 1] is uncountably infinite it is not possible to assign values that form an
everywhere non-zero prior.

5.6 Patrick Maher does not Capture the Logic of Confirma-

tion

In his paper “probability captures the logic of scientific confirmation” [Mah04] Patrick
Maher attempts to show that by assuming only the axioms of probability it is possible
to define a predicate that captures in a precise and intuitively correct manner the
concept of confirmation. Maher chooses to use a conditional set of probability axioms
based on that of von Wright, presumably for convenience.

Maher’s definition of confirmation is

Definition: C(H,E,D) iff P (H|E.D) > P (H|D)

Intuitively meaning that some evidence E confirms a hypothesisH when the probability
of H given E and some background knowledge D is greater than the probability of
H given D alone. It is generally agreed that any attempt to define confirmation
must consider background knowledge. This is illustrated in the following example by
I.J. Good [Goo60].

Suppose our background knowledge is that we live in one of two universes. In the
first there are 100 black ravens, no non-black ravens and 1 million other birds. In the
second there are 1000 black ravens, 1 white raven and 1 million other birds. Some bird
a is selected at random from all the birds and is found to be a black raven. It is not
hard to see that in this case the evidence that a is a black raven actually lessens our
belief that ‘all ravens are black’ since it increases the probability that we are in the
second universe where this is false.

Maher successfully shows that the above definition satisfies several desirable prop-
erties regarding our intuition of confirmation and scientific practice such as verified
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consequences and reasoning by analogy. Unfortunately this definition fails to satis-
factorily solve the problem of universal generalizations. To illustrate this problem we
again consider confirmation of the universal generalization “all ravens are black”. In
particular, given that we have observed n black ravens what is our belief that all ravens
are black?

Consider Theorem 9 from Maher’s paper. For this example we assume that a is
drawn at random from the population of ravens and we take the predicate F (a) to
mean that a is black.

Theorem 9: If P (E) > 0 then P (∀xF (x)|E) = 0

This means that regardless of the evidence, as long as its logically consistent, our
belief in the universal generalization ∀xF (x) remains zero. This is clearly a problem
since although our belief in this generalization should not be 100% certain it should
be greater than zero as long as the evidence does not contradict the generalization. In
particular it should be possible to observe some evidence E, such as many x for which
F (x) holds, which leads to a significant posterior belief in this universal generalization.

The reason for this problem, under Maher’s construction, is that the probability
that the next observed raven is black converges to one too slowly. After seeing a long
enough sequence of black ravens our belief that the next one is black will become
arbitrarily close to one but it is the rate of this convergence that is a problem. Because
of this, the probability that all ravens are black remains zero regardless of our initial
belief. A corollary of this is Maher’s Theorem 10 which, for any logical truth T , states

Theorem 10: ∀n ∈ N ¬C(∀xF (x), F (a1)...F (an), T )

Intuitively this means that there is no evidence that can be said to confirm a universal
generalization. Consider F (a1), ...F (an) to be the evidence E in Theorem 9. Since
the posterior belief in the universal generalization must always remain zero for any
evidence it is clear that this evidence can not increase the belief. Therefore it can not
satisfy Maher’s above definition of confirmation.

In observing that the zero probability of universal generalizations stems from the
infinite product in the proof of Theorem 9, Maher attempts to rectify the problem by
considering only a finite population which he states is sufficient. Even if we accept
the finiteness assumption, the solution he provides differs dramatically from accepted
intuition. Theorem 11 is where we see the major flaw in Maher’s reasoning.

Theorem 11: ∀n,N ∈ N C(F (a1)...F (aN), F (a1)...F (an), T )

If there are only N ravens in existence then the universal generalization ∀xF (x) is
equivalent to N individual observations F (a1)...F (aN). In other words, as long as
there is some finite population N of ravens any observed subset n of ravens confirms
the universal generalization. This is technically correct but we see from the following
numerical example that it is unacceptable. In order to be fair to Maher the example
is constructed similar to his own numerical example.

Let the population of ravens in the world be N = 1′000′000 and the number of
observed ravens be n = 1000. The learning rate is λ = 2 and we assume the initial
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belief that some raven is black to be an optimistic γF = 0.5. By Maher’s Proposition 19,
the degree of belief in the black raven hypothesis can be computed as follows:

P (F (a1)...F (aN)) =

N−1∏

i=0

i+ λγF
i+ λ

=
1

N + 1
.
= 0.000001

P (F (a1)...F (an)) =
n−1∏

i=0

i+ λγF
i+ λ

=
1

n+ 1
.
= 0.001

Therefore P (F (a1)...F (aN )|F (a1)...F (an)) =
P (F (a1)...F (aN))

P (F (a1)...F (an))
=

n + 1

N + 1
.
= 0.001

This means that after observing 1000 ravens which were all black our belief in the
generalization ‘all ravens are black’ is still only 0.1%. In other words we are virtually
certain that non-black ravens exist or equivalently that not all ravens are black. This is
a clear contradiction to both common sense and normal scientific practice and therefore
we must reject Maher’s proposed definition. This model of confirmation is too weak
to achieve a reasonable degree of belief in the black ravens hypothesis. In contrast, in
Section 7.4 we show that Solomonoff exhibits strong confirmation in the sense that P
tends to 1. It may be believed that this result is due to this particular setup of the
problem, however any continuous prior density and reasonable parameter values will
encounter the same problem. In particular this includes Maher’s more sophisticated
model for two binary properties, which mixes a Laplace/Carnap model for blackness
times one for ravenness with a Laplace/Carnap model where the properties are com-
bined to a single quaternary property. Observing a small fraction of black ravens is
not sufficient to believe more in the hypothesis than in its negation, since the degree
of confirmation in Maher’s construction is too small.

5.7 Black Ravens Paradox

We have used the typical example of observing black ravens to demonstrate the flaws of
both Laplace and Maher in relation to confirmation but the full ‘black ravens paradox’
is a deeper problem. It is deeper because even in a system that can confirm universal
hypotheses, it demonstrates a further property that is highly unintuitive.

The full black ravens paradox is this: It has been seen that one desirable property of
any inductive framework is that the observation of a black raven confirms the hypothesis
that “all ravens are black”. More generally we would like to have the following property
for arbitrary predicates A and B. The observation of an object x for which A(x)
and B(x) are true confirms the hypothesis “all x which are A are also B” or ∀x
A(x) ⇒ B(x). This is known as Nicods condition which has been seen as a highly
intuitive property but it is not universally accepted [Mah04]. However even if there
are particular situations where it does not hold it is certainly true in the majority of
situations and in these situations the following problem remains.

The second ingredient to this paradox is the interchangeability of logically equiva-
lent statements in induction. In particular, consider two logically equivalent hypotheses
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H1 and H2. If some evidence E confirms hypothesis H1 then it logically follows that E
also confirms H2, and vice versa. But any implication of the form A ⇒ B is logically
equivalent to its contrapositive ¬B ⇒ ¬A. Therefore, taking the predicate R(x) to
mean “is a raven” and B(x) to mean “is black”, this gives the following: The hypothesis
∀(x)R(x) ⇒ B(x), or “all ravens are black”, is logically equivalent to its contrapositive
∀(x)¬B(x) ⇒ ¬R(x), or “anything non-black is a non-raven”.

The fact that any evidence for ∀(x)¬B(x) ⇒ ¬R(x) is also evidence for
∀(x)R(x) ⇒ B(x) leads to the following highly unintuitive result: Any non-black
non-raven, such as a white sock or a red apple confirms the hypothesis that “All ravens
are black”.

This may be seen as evidence that there is a fundamental flaw in the setup being
used here, but on closer examination it is not entirely absurd. To see this, consider the
principle in a more localized setup. Imagine there is a bucket containing some finite
number of blocks. You know that each of these blocks is either triangular or square
and you also know that each block is either red or blue. After observing that the first
few blocks you see are square and red you develop the hypothesis “all square blocks are
red”. Following this you observe a number of blue triangular blocks. According to the
above principle these should confirm your hypothesis since they confirm the logically
equivalent contrapositive, “All non-red (blue) blocks are non-square (triangular)”. If
the statement were false then there must exist a counter example in the form of at least
some blue square block. As you observe that a growing number of the finite amount of
blocks are not counter examples your probability/belief that they exist decreases and
therefore the two equivalent hypotheses should be confirmed.

In this simplified case it is also easier to see the intuitive connection between the
observation of blue triangular blocks and the hypothesis “all square blocks are red”.
Even if there were an infinite number of blocks, which means the chance of a counter
example does not obviously diminish, the confirmation of the hypothesis “all square
blocks are red” by a blue triangular block seems reasonable. The reason for this is
the following. If there is an infinite number of objects then there is always the same
infinite number of objects that may be counter examples, but the longer we go without
observing a counter example the more sure we become that they do not exist. This
human tendency is implicity related to the assumption of the principle of uniformity
of nature which is discussed briefly later. We expect that eventually the sample we
see will be representative of the entire population and hence if there are no counter
examples in this sample they should be unlikely in the wider population.

In our real-world example of black ravens we can argue for this principle analogously.
When we see a white sock it is technically one more item that can no longer be a
counter example to the hypothesis “all ravens are black”. And although there may be
an incomprehensively huge number of possible objects in our universe to observe, there
is still only a finite amount of accessible matter and hence a finite number of objects.
But this does not seem to change our strong intuition that this result is ridiculous. No
matter how many white socks or red apples we observe we don’t really increase our
belief that all ravens are black. The solution to this problem lies in the relative degree
of confirmation. The above result only states that the belief in the hypothesis must
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increase after observing either a black raven or a white sock, it says nothing about
the size of this increase. If the size of the increase is inversely proportional to the
proportion of this object type in the relevant object population then the result can
become quite consistent and intuitive.

Consider again the bucket of blocks. First imagine the number of square and trian-
gular blocks is the same. In this case observing a red square block or a blue triangular
block should provide roughly the same degree of confirmation in the hypothesis “all
square blocks are red”. Now imagine that only 1% of the blocks are square and 99%
are triangular. You have observed 20 blue triangular blocks and suddenly you observe
a red square block. Intuitively, even if the blue triangular blocks are confirming the
hypothesis “all red blocks are square”, it seems the observation of a red square block
provides substantially more evidence and hence a much greater degree of confirmation.
The higher the proportion of blue triangular blocks, the less confirmation power they
have, while the smaller the proportion of blue blocks, the higher their confirmation
power.

This also solves the problem of our intuition regarding black ravens. Black ravens
make up a vanishingly small proportion off all possible objects, so the observation of
a black raven gives an enormously greater degree of confirmation to “all ravens are
black” than a non-black non-raven. So much so that the observation of a non-black
non-raven has a negligible affect on our belief in the statement.

Unfortunately no formal inductive system has been shown to formally give this
desired result so far. It is believed that Solomonoff Induction may be able to achieve
this result but is has not been shown rigorously. Later we will argue the case for
Solomonoff induction.

5.8 Alan Turing

In 1936 Alan Turing introduced the Turing machine. This surprisingly simple hypothet-
ical machine turned out to be the unlikely final ingredient necessary for Solomonoff’s
induction scheme as it allows for a universal and essentially objective measure of sim-
plicity.

Turing’s aim was to capture the fundamental building blocks of how we undertake
a task or procedure in a way that was general enough to describe a solution to any
well defined problem. The final product is very minimal consisting of only a few core
components. A Turing machine has a single work tape of infinite length which it can
read from and write to using some finite number of symbols. The reading and writing
is done by a read/write head which can only operate on one symbol at a time before
either halting or moving to a neighboring symbol. The rest of the Turing machine is
specific to the task and consists of the procedural rules. These rules can be represented
by internal states with transitions that depend on what tape symbol is read and which
in turn determine which tape symbol is written. These states can also be replaced by
a look-up table that store the equivalent information. A comprehensive understanding
of precisely how Turing machines work is not necessary for the purpose of this article
as they are only dealt with on an abstract level. It is important however to have an
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intuitive understanding of their capabilities and properties.

It turns out that this simple construction is incredibly powerful. The Church-
Turing Thesis states that “Everything that can be reasonably said to be computed by a
human using a fixed procedure can be computed by a Turing machine”. There have been
various attempts at defining precisely what a ‘fixed procedure’ is, however all serious
attempts have turned out to describe an equivalent class of problems. This class of
computable functions or problems is actually large enough to include essentially any
environment or problem encountered in science. This is because every model we use is
defined by precise rules which can be encoded as an algorithm on a Turing machine.
At a fundamental level every particle interaction is determined by laws that can be
calculated and hence the outcome of any larger system is computable. The quantum
mechanics model is problematic as it implies the existence of truly random natural
processes but as long as a Turing machine is given access to a truly random source of
input then even this model can be captured.

Although a Turing machine can be constructed for any computable task it is far
from unique. For every task there is actually an infinite number of Turing machines
that can compute it. For example there are an infinite number of programs that print
“hello world”.

Strictly speaking Turing machines are hypothetical because of the requirement of an
infinite work tape. Nevertheless we can think of a Turing machine as a computer with
finite memory but which can be arbitrarily extended as it is required. Then the analogy
of Turing machines and real computers actually becomes an equivalence. There are
actually two valid analogies that can be drawn, which illustrates an interesting property
of Turing machines. First consider the entire memory of the computer to be analogous
to the work tape of the Turing machine and the program counter to be the position of
the read/write head. Under this analogy the hardware makes up the procedural rules
that govern how memory is written to and read from. Secondly consider some program
running on this computer. Now only some of the physical memory corresponds to the
work tape and the memory that holds the program instructions corresponds to the
procedural rules. Not only are both of these analogies valid, they can both be true at
the same time. A program can be thought of as a Turing machine for a specific task
which is itself encoded in some language (ultimately binary) and a computer can be
thought of as a Turing machine that simulates these encoded Turing machines.

This ability to create a Turing machine to simulate any other Turing machine is
crucial to Solomonoff’s framework. Turing machines with this property are called
Universal Turing machines and just as with any other task, there is an infinite number
of them corresponding to the infinitely many ways of encoding a Turing machine as a
string.

5.9 Andrey Kolmogorov

The same Kolmogorov who introduced the by now standard axioms of probability was
also interested in universal notions of information content in or complexity of objects.
Kolmogorov complexity quantifies the troublesome notion of complexity and hence also
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simplicity, which is crucial for a formal application of Occam’s razor. Before looking
at Kolmogorov’s formal definition it is useful to review our intuitive understanding of
simplicity.

Simplicity. The idea of simplicity is extremely broad as it can be applied to any
object, model, function or anything that can be clearly described. It is exactly this
idea of a description which is useful in finding a general definition. Let A be some
arbitrary object, it could be as simple as a coffee mug. Let B be the same as A except
with some added detail or information such as a word printed on the mug. Now it is
natural to think of A as simpler than B because it takes longer to precisely describe B
than A. This idea of description length turns out to be the most general and intuitive
method for quantifying complexity.

Consider two strings x and y where x is a random thousand digit number and
y is one thousand 9s in a row. At first it may seem these two strings are just as
complex as each other because they each take a thousand digits to describe however
“one thousand 9s in a row” is also a complete description of y which only requires
twenty five characters. There are many possible descriptions of any string so a decision
must be made as to which description to associate with the string’s complexity. Since
there are always arbitrarily long descriptions the answer is to take the length of shortest
possible description as the complexity measure. It is clear then that y is simpler than
x since it has a far shorter description. x was also described with the short sentence
“a random thousand digit number” but this was not a complete description. There are
many numbers that could be a random thousand digit number but only one number is
one thousand 9s in a row. The shortest complete description of any 1000 digit random
string is the string itself, hence about 1000 digits long.

Accepting that the simplicity of an object is given by its shortest possible description
the issue of subjectivity remains in the choice of description language used. It is clear
that the length of a description may be different in different languages and in the
extreme case an arbitrarily complex string c can have an arbitrarily short description
in a language constructed specifically for the purpose of describing c. This problem
can be avoided by choosing a single unbiased language to use for all descriptions.

Kolmogorov Complexity. Kolmogorov’s idea was to use Turing machines to for-
mally address the problem of subjectivity in the choice of description language. This
is because a description of an object can be thought of as a procedure for producing
an unambiguous encoding of that object. In other words a description is a program.
Coming back to the previous example, a formal coding of “one thousand 9s in a row”
may be “for(i=0;i<1000;i++) printf(“9”);”.

There may of course be shorter descriptions but this at least gives an upper bound
on the shortest description. The random number x = 01100101...10011 on the other
hand would still have to be written out entirely which would result in a much longer
shortest description “printf(“01100101...10011”);”. If x could be specified by a shorter
description, then it would contain some structure, so by definition it would not be
random.

By using programs we are again faced with the problem of choosing the program-
ming language, however all programming languages are compiled to the native assembly
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language before being interpreted by the computer. Assembly (at least for RISC or
Lisp processors) provides a rather unbiased, and surely universal language. This is
now close to Kolmogorov’s formal definition. It is worth noting here that the extreme
cases of languages tailored for a specific description is practically prevented by using
assembly language. Consider the case where we attempt to ‘cheat’ the system by hard-
coding a long complex string such as c as a simple variable j in some new programming
language. Although “print j” is now a simple description of c in this new language,
when compiled to assembler the complexity of c becomes clear since the assembly code
for this program will still need to contain its full description of the hard-coding of j.

A specific program in any language can be thought of as an encoding of a Turing
machine and likewise a Turing machine can be thought of as a program. A Universal
Turing machine can be used to simulate these encoded Turing machines or programs.
This means that if a program/Turing machine p produces y when given x, then a
universal Turing machine will also produce y when given x and p. Since native assembly
language can represent any program it can be thought of as a particular Universal
Turing machine. Therefore, taking the description with respect to assembly language
is essentially the same as taking the description with respect to this particular Universal
Turing machine. Since native assembly is written in binary we consider the description
alphabet to be binary also.

Formally the Kolmogorov complexity of a string x is defined as

K(x) := min
p
{length(p) : U(p) = x}

Where U is the Universal reference Turing machine, and length(p) is the length of p in
binary representation.

In other words, the Kolmogorov complexity of x is the length of the encoding of
the shortest program p that produces x when given as input to the Universal reference
Turing machine.

Conditional Kolmogorov complexity. In some cases it is necessary to measure the
complexity of an object or environment relative to some given information. This is
done using the conditional Kolmogorov complexity. Let x be some string and imagine
we want to measure the complexity of x in relation to some previous knowledge, or
side information, y. The conditional Kolmogorov complexity is defined as follows

K(x|y) := min
p
{length(p) : U(y, p) = x}

In other words it is the length of the shortest program to output x given y as extra
input. This means that the information or structure present in y may be used to shorten
the shortest description of x. If y is uninformative or unrelated to x then K(x|y) will
be essentially the same as K(x). However if y contains a lot of the information relevant
to x then K(x|y) will be significantly smaller. As an example consider an environment
h = yn that simply repeats a long complex sequence y over and over. K(h) will
therefore be proportional to the complexity of y. If, however, the side information z
contains at least one iteration of y then it is easy to construct a simple short program
that takes the relevant substring of y and copies it repeatedly. Therefore K(h|y) will
be very small.
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This introduction to Kolmogorov
complexity was necessarily cursory. Kol-
mogorov complexity possesses many
amazing properties and relations to al-
gorithmic randomness and Shannon en-
tropy. There are also many variations,
and indeed throughout this work, K
stands for the prefix/monotone version
if applied to finite/infinite strings. The
differences are technically important, but
are of no concern for us. The definition of K has natural extensions to other non-string
objects x, such as natural numbers and functions, by requiring U to produce some bi-
nary representation of x. See [Hut07a, LV08] for a list of properties and a discussion
of the graphical sketch of K on the right.

Natural Turing Machines. The final issue is the choice of Universal Turing machine
to be used as the reference machine. The problem is that there is still subjectivity
involved in this choice since what is simple on one Turing machine may not be on
another. More formally, it can be shown that for any arbitrarily complex string x
as measured against the UTM U there is another UTM machine U ′ for which x has
Kolmogorov complexity 1. This result seems to undermine the entire concept of a
universal simplicity measure but it is more of a philosophical nuisance which only
occurs in specifically designed pathological examples. The Turing machine U ′ would
have to be absurdly biased towards the string x which would require previous knowledge
of x. The analogy here would be to hard-code some arbitrary long complex number
into the hardware of a computer system which is clearly not a natural design.

To deal with this case we make the soft assumption that the reference machine is
natural in the sense that no such specific biases exist. Unfortunately there is no rigorous
definition of natural but it is possible to argue for a reasonable and intuitive definition
in this context. A universal Turing machine should be considered natural if it does not
contain any extreme biases. In other words if it does not make any arbitrary, intuitively
complex strings, appear simple. It is possible to make a reasonable judgement about
this but it is preferable if there is a formal criterion which can be applied.

One possible criterion is that a reference machine is natural if there is a short in-
terpreter/compiler for it on some predetermined and universally agreed upon reference
machine. If a machine did have an inbuilt bias for any complex strings then there could
not exist a short interpreter/compiler. If there is no bias then we assume it is always
possible to find a short compiler.

A bit more formally this is known as the short compiler assumption [Hut05] and
can be stated as follows. “Given two natural Turing-equivalent formal systems F1 and
F2 there always exists a single short program I on F2 that is capable of interpreting
all F1 programs”. This assumption is important in establishing the universality of
Kolmogorov’s complexity measure. If string x has Kolmogorov complexity KF1(x)
relative to system F1 then the upper bound of KF2(x) is KF1(x) + length(I) where
length(I) is the length of the short interpreter. This follows simply from the fact that
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any x can be encoded/described on F2 by using the encoding for F1 followed by the
interpreter. There may of course be shorter descriptions but the shortest description is
clearly at most this length. Analogous reasoning shows that KF1(x) ≤ KF2(x) +O(1).
This means that the Kolmogorov complexity of a string with respect to some system
F will be the same for any natural F , within a reasonably small constant which is
independent of the string being measured.

To make the above criterion formal it is necessary to quantify this concept of short.
The larger it is the more flexible this definition of natural becomes. But there is a still
a serious problem. The definition relies on the existence of “some predetermined and
universally agreed on reference machine” which there is currently no consensus about.
In deciding on which UTM to use for this definition it seems reasonable to choose
the ‘most’ natural UTM but this is obviously a circular endeavor. It may be argued
[Hut05] that the precise choice of machine is not of critical importance as long as it is
intuitively natural since, by the short compiler assumption, the complexity will remain
approximately equal. From this perspective the practical and theoretical benefit of
having some final fixed reference point outweighs the importance of making this fixed
reference point ‘optimal’ in some sense, since it has little practical impact and appears
to be philosophically unsolvable.

This issue is one of the outstanding problems in algorithmic information theory
[Hut09]. Fixing a reference machine would fix the additive and multiplicative constants
that occur in many results and draw criticism to the field. Although it by no means
solves the problem there is another useful way to view the issue.

The Kolmogorov complexity of a string depends only on the functionality of the
universal reference machine and not its exact construction. That is, if there are two
machines that, given the same input, always produce the same output, then they are
said to be functionally equivalent and will result in the same Kolmogorov complexity
for any string. The purpose of a universal Turing machine is only to simulate the Turing
machine that is encoded as input and therefore the output of a universal Turing machine
is uniquely defined by the Turing machine it is simulating (and the input for this Turing
machine). This means that if two different UTM’s simulate the same Turing machine
then they must produce the same output. If they both use the same encoding scheme
then simulating the same Turing machine corresponds to having the same input and
hence they must be functionally equivalent since the same input will always produce
the same output. Since we only care about functionality, this observation shows that
the choice of universal reference machine is equivalent to a choice of encoding scheme.
The significance of this is that it is easier to argue for an intuitively natural encoding
scheme than an intuitively natural Turing machine.

6 How to Choose the Prior

As previously shown, the Bayesian framework results in excellent predictions given a
model class M that contains the true environment and a reasonable prior wν assigned
to each hypothesis ν ∈ M. Unfortunately the framework gives no rigorous general
method for selecting either this class or the priors. In the Bayesianism section we
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briefly discussed how to make a reasonable choice of model class and prior. Here we
examine the prior in further detail; specifically general approaches and possible issues.

6.1 Subjective versus Objective Priors

A good prior should be based on reasonable and rational beliefs about all possible
hypotheses before any evidence for them has been seen. This statement is somewhat
ambiguous however since it is debatable which observations can be considered evidence.
When looking at universal induction, every observation we make is potentially relevant;
for particular experiments it can be hard to know in advance what is relevant. This
stems fundamentally from the subjective interpretation of probability at the heart of
Bayesianism. Because of this, a choice of prior often belongs to one of two categories.
Firstly there are objective priors based on rational principles which should apply to
anyone without any prior relevant knowledge. Secondly there are subjective priors that
attempt to capture an agent’s personal relevant experience or knowledge. For example
a subjective prior for some experiment may be significantly influenced by experience
with similar experiments.

Solomonoff induction can deal with both approaches, leading to a model of universal
induction. Obviously we require some form of objective prior before any observations
have been made, since there is no available information to create a subjective prior.
From this point on every observation is used to update beliefs and these new beliefs
could be interpreted as subjective priors based on past experience, used for the next
problem.

Consider again drawing black or white balls from an urn with some unknown ratio.
Assume you start with a prior biased towards believing the ratio is 50 : 50. After
observing 10 black balls in a row initially you may interpret the situation in two equiv-
alent ways. Either you are 10 balls into this experiment and your belief has changed,
or you are starting the experiment again but now your prior is skewed to a ratio with
more black balls. More generally your posterior belief P (H|E) about each hypothesis
H after observing E becomes your new prior wE(H) for the observations following E.

6.2 Indifference Principle

Quantifying Epicurus’s principle of multiple explanations leads to the indifference prin-
ciple which assumes that if there is no evidence favoring any particular hypothesis then
we should weight them all as equally likely. When told that an urn contains either all
black balls or all white balls and no other information, it seems natural to assign a
probability of 0.5 to each hypothesis before any balls have been observed. This can be
extended to any finite hypothesis class by assigning probability 1/|M| to each hypothesis
where |M| is the number of hypotheses in M.

For a continuous hypothesis class the analogous approach is to assign a uniform
prior density which must integrate to 1 to be a proper probability density. This means
that if the fraction of black balls in the urn is θ ∈ [0, 1] with no extra information,
we assign a uniform density of w(θ) = 1 to all θ, as seen in the derivation of the
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rule of succession. This does not mean that the agent is certain in any parameter,
rather for any interval (a, b) ⊆ [0, 1] the belief that θ ∈ (a, b) is given by the integral∫ b

a
w(θ)dθ = b− a. Specifically, the belief in any exact value θ is zero which gives rise

to the zero prior problem and hence the confirmation problem as discussed previously.

Furthermore, in some situations this indifference principle can not be validly applied
at all. For a countably infinite class M, the probability 1/|M| is zero which is invalid
since the sum is identically zero. Similarly, for a continuous parameter over an infinite
(non-compact) range, such as the real numbers, the density must be assigned zero which
is again invalid since the integral would also be zero. Even when it can be applied,
two further issues that often arise are reparametrization invariance and regrouping
invariance.

6.3 Reparametrization Invariance

The idea of indifference and hence uniformity in a prior seems quite straight forward
but a problem occurs if a different parametrization of a space is used. The problem is
that if there are multiple ways of parametrizing a space then applying indifference to
different choices of parametrization may lead to a different prior.

Imagine 1000 balls are drawn, with replacement, from an urn containing black
and white balls. The number of black balls drawn out of these 1000 samples must
obviously lie somewhere between 0 and 1001 and we denote this number k. It may
be argued that since we know nothing it is reasonable to assume indifference over
the 1000 possible values of k. This would result in a roughly equal prior over all
values of θ. More specifically it would assign a prior of 1/n+1 to every value in the set
{θ = i/n|i ∈ {0, ..., n}}, where n is the total number of trials, in this case 1000.

On the other hand it may be argued that it is equally plausible to have a prior that is
indifferent over every observable sequence of 1000 black or white balls. However, if each
of these 21000 possible sequences are assigned equal probability then a very different
prior is created. The reason for this is that there are far more possible sequences which
contain approximately 500 black balls than there are sequences that contain nearly
all black balls or nearly no white balls. In the extremes there is only one possible
sequence for which k = 0 and one possible sequence for which k = 1000, but there
are

(
1000
500

)
= 1000!

500!2
≈ 10300 possible sequences for which k = 500. This means that

indifference over every possible sequence leads to a prior over θ that is strongly peaked
around θ = 0.5. This peak is sharper for a higher number of trials.

Similarly it may seem equally valid to assume indifference over either θ or
√
θ

which would again lead to different priors. In some situations the ‘correct’ choice of
parametrization may be clear but this is certainly not always the case. Some other
principles do not have this issue. Principles that lead to the same prior regardless
of the choice of parametrization are said to satisfy the reparametrization invariance
principle (RIP). Formally the criterion for the RIP is as follows.

By applying some general principle to a parameter θ of hypothesis class M we
arrive at prior w(θ). For example θ ∈ [0, 1] as above leads to w(θ) = 1 by indifference.
We now consider some new parametrization θ′ which we assume is related to θ via some
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bijection f . In this case we consider θ′ = f(θ) =
√
θ. Now there are two ways to arrive

at a prior which focuses on this new parameter θ′. Firstly we can directly apply the same
principle to this new parametrization to get prior w′(θ′). For the indifference principle
this becomes w′(θ′) = 1. The second way is to transform the original prior using this
same bijection. When the prior is a density this transformation is formally given by
w̃(θ′) = w(f−1(θ′))df−1(θ′)/dθ′. For θ = f−1(θ′) = θ′2 this leads to w̃(θ′) = 2

√
θ. If

w′ = w̃ then the principle satisfies the reparametrization invariance principle. It is
clear from the example of θ′ =

√
θ that the indifference principle does not satisfy RIP

in the case of densities.

It does however satisfy RIP for finite model classes M. This is because for a finite
class the prior wν = 1/|M| for all ν ∈ M and hence w(ν) = 1/|M| for any reparametriza-
tion f . A reparametrization in a finite class is essentially just a renaming that has no
affect on the indifference.

6.4 Regrouping Invariance

Regrouping invariance can be thought of as a generalization of the concept of
reparametrization invariance. This is because reparametrization involves a function
that is a bijection and hence every instance of the transformed parameter corresponds
to one and only one instance of the original parameter. Regrouping on the other hand
involves a function that is not necessarily bijective and hence can lead to a many to
one or one to many correspondence.

For example, the non-bijective function θ′ = f(θ) = θ2 for θ ∈ [−1, 1] leads to
the regrouping {+θ,−θ} ❀ {θ2}. A more intuitive example can be seen if we again
consider the observation of ravens. Previously only the binary information of a black
or a non-black raven was recorded but we might also be interested in whether the raven
was black, white or colored. In this case the population can not be parametrized with
only one parameter θ as before. For i.i.d. data in general there needs to be as many
parameters (minus one constraint) as there are possible observations. These parameters
specify the percentage of the population that is made up by each observation. For the
binary case only the percentage of black ravens θ was used but since the parameters
must sum to one the percentage of non-black ravens is implicity defined by (1 − θ).
Formally, for an i.i.d. space with d possible observations the parameter space is△d−1 :=
{~θ ≡ (θ1, ..., θd) ∈ [0, 1]d :

∑d

i=1 θi = 1}. In the binary case, the probability of a string
x1:n with s successes and f failures was given by P (x1:n|θ) = θs(1−θ)f . In the case of d
observations the probability of x1:n, with ni occurrences of observation i, is analogously
given by P (x1:n|~θ) =

∏d

i=1 θ
ni

i .

The regrouping problem arises when we want to make inferences about the hy-
pothesis “all ravens are black” when the setup is now to record the extra information
of whether a raven is colored or white. Intuitively recording this extra information
should not affect the outcome of reasoning about black ravens but unfortunately it
does if we apply the principle of indifference. When we make an inference that only
looks at the ‘blackness’ of a raven, the observations are collapsed into blackness or non-
blackness as before by mapping black to success and either white or colored to failure.
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We can then use the binary framework as before with P (x1:n|θ) = θs(1 − θ)f . How-
ever, since we assumed indifference over the parameter vectors in △2 this regrouping
means that the prior belief is skewed towards higher proportions of non-black ravens
and is therefore no longer indifferent. Indeed, w(~θ) =constant for ~θ ∈ △2 leads to
w̃(θ′) = 2(1− θ′) 6= 1 = w′(θ′) for θ′ ∈ [0, 1]. This means that the indifference principle
is not invariant under regrouping.

Because the function f is not bijective anymore, the transformation of the prior
w(θ) to some new parametrization θ′ now involves an integral or sum of the pri-
ors over all value of θ for which f(θ) = θ′. Formally, for discrete class M we
have w̃θ′ =

∑
θ:f(θ)=θ′ wθ, and similarly for continuous parametric classes we have

w̃(θ′) =
∫
δ(f(θ) − θ′)w(θ)dθ. As with reparametrization invariance before, for a

principle to be regrouping invariant, we require that w̃(θ′) = w′(θ′) where w′(θ′) is
obtained by applying the same principle to the new parametrization.

It is generally considered highly desirable that a principle for creating priors is
regrouping invariant but intuitively it seems that this invariance is a difficult property
to satisfy. Attempting to satisfy it for all possible regrouping leads to a predictor that is
unacceptably overconfident. Formally this means that ξ(1|1n) = 1 which, as Empiricus
argued, is an illogical belief unless we have observed every instance of a type. In fact,
it was shown [Wal05] that there is no acceptable prior density that solves this problem
universally.

Luckily the universal prior is not a density and one can show it approximately
satisfies both, reparametrization and regrouping invariance [Hut07b].

6.5 Universal Prior

The universal prior is designed to do justice to both Occam and Epicurus as well as
be applicable to any computable environment. To do justice to Epicurus’ principle
of multiple explanations we must regard all environments as possible, which means
the prior for each environment must be non zero. To do justice to Occam we must
regard simpler hypotheses as more plausible than complex ones. To be a valid prior it
must also sum to (less than or equal to) one. Since the prefix Kolmogorov complexity
satisfies Kraft’s inequality, the following is a valid prior.

wU
ν := 2−K(ν)

This prior is monotonically decreasing in the complexity of ν and is non-zero for all
computable ν.

This elegant unification of the seemingly opposed philosophies of Occam and Epi-
curus is based only on these universal principles and the effective quantification of
simplicity by Kolmogorov. The result is a prior that is both intuitively satisfying and
completely objective.

When the bounds for Bayesian prediction of Subsection 4.9 are re-examined in the
context of the Universal Prior we see that the upper bounds on the deviation of the
Bayesian mixture from the true environment are ln(w−1

µ ) = ln(2K(µ)) = K(µ) ln(2).
This means it is proportional to the complexity of the true environment which is
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not surprising. In simple environments the convergence is quick while in complex
environments, although the framework still performs well, it is more difficult to learn
the exact structure and hence convergence is slower.

The universality of Kolmogorov complexity bestows the universal prior wU
ν with

remarkable properties. First, any other reasonable prior wν gives approximately the
same or weaker bounds. Second, the universal prior approximately satisfies both,
reparametrization and regrouping invariance [Hut07b]. This is possible, since it is not
a density.

7 Solomonoff Universal Prediction

Ray Solomonoff, born July 25th 1926, founded the field of algorithmic information
theory. He was the first person to realize the importance of probability and information
theory in artificial intelligence. Solomonoff’s induction scheme completes the general
Bayesian framework by choosing the model class M to be the class of all computable
measures and taking the universal prior over this class. This system not only performs
excellently as a predictor, it also conforms to our intuition about prediction and the
concept of induction.

It should be appreciated that according to the Church-Turing thesis, the class of all
computable measures includes essentially any conceivable natural environment. John
von Neumann once stated “If you will tell me precisely what it is that a machine cannot
do, then I can always make a machine which will do just that”. This is because, given
any “precise” description of a task we can design an algorithm to complete this task
and therefore the task is computable. Although slightly tongue in cheek and not quite
mathematically correct, this statement nicely captures the universality of the concept
of computability. There are of course imprecise ideas such as love or consciousness
which can be debated, but if a system consists of clear-cut rules and properties then
it is usually computable. According to the laws of physics our world is governed by
precise, although not necessarily deterministic, rules and properties and indeed any
physical system we know of is computable.

Unfortunately this is actually a slight simplification and the concept of infinity
causes some technical issues. This is because, for a task to be formally computable
it is required not only that it can be described precisely but also there is a program
that completes this task in finite time, in other words it will always terminate. Due to
the fundamentally finite nature of our universe this is not usually an issue in physical
systems. However, in a more abstract environment such as the platonic world of math,
the existence of infinite sets, infinite strings and numbers with infinite expansions means
that this termination becomes more of an issue. In particular the sum over an infinite
set of environments present in Bayes mixture can be incomputable and therefore one
has to introduce a slightly broader concept of semi-computable. For a task to be
semi-computable there must exist a program that will monotonically converge to the
correct output but may never terminate. More formally, there is a Turing machine
that outputs a sequence of increasing values which will eventually be arbitrarily close
to the correct value, however we don’t know how close it is and it may never output
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the correct value and/or may never halt.

7.1 Universal Bayes Mixture

Due to technical reasons it is convenient to choose M to be the class of all semi-
computable so-called semi-measures. This extension of the class does not weaken its
universality since any computable environment is also semi-computable. In fact we
could further extend it to include all non-computable environments without changing
the result because the universal prior for any non-computable environment is zero and
therefore the prediction from any non-computable environment does not contribute.
From here on this universal class is denoted MU and the Bayesian mixture over this
class using the universal prior, called the universal Bayesian mixture, is denoted ξU .
Formally this is defined as before

ξU(x) =
∑

ν∈MU

wU
ν ν(x)

where wU
ν = 2−K(ν) is the universal prior. Since the class MU is infinite, the Bayesian

mixture ξU contains an infinite sum and therefore it is not finitely computable. It
can however be approximated from below which means it is a semi-computable semi-
measure and therefore a member of MU itself. This property is one of the reasons
that the extended model class was chosen. The proof that ξU is semi-computable is
non-trivial and is important in establishing its equivalence with the alternative repre-
sentation M below.

7.2 Deterministic Representation

The above definition is a mixture over all semi-computable stochastic environments
using the universal prior as weights. It is however possible to think about ξU in a
completely different way. To do this we assume in this subsection that the world is
governed by some deterministic computable process. Since it is computable this process
can be described by some program p which is described using less than or equal to ℓ
bits. This is possible since every program must have finite length, however ℓ may be
arbitrarily large. This upper bound ℓ on the length of p must of course be in relation to
some universal reference Turing machine U , since each UTM uses a different encoding
scheme which may affect the length of p.

As before the aim is to make the best possible predictions about observations x.
Again this is done using a universal distribution over all binary strings x which reflect
our beliefs in seeing those strings, even though the true environment p produces only
one predetermined output string under this interpretation. In order to make the dis-
tribution universal it is important that there is no bias or assumptions made about the
structure of the world. The string x represents the current observations or equivalently
the initial output string of the true environment. At any point however we can not
know whether the program has halted and the output string is complete or whether
there is more output to come. More generally we say that a program p produces x
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if it produces any string starting with x when run on U . Formally this is written as
U(p) = x∗. For this purpose programs that never halt are also permitted. Once it has
produced a string starting with x it may continue to produce output indefinitely.

The probability of observing x can be computed using the rule P (x) =∑
p P (x|p)P (p). This sum is over all programs of length ℓ. To remain unbiased, Epicu-

rus’s principle is invoked to assign equal prior probability to each of these environments
a priori. Since there are 2ℓ of these programs they each get assigned probability (1

2
)ℓ,

so P (p) = 2−ℓ for all p of length ℓ. As each of these programs p is deterministic the
probability P (x|p) of producing x is simply 1 if it does produces x or 0 if it doesn’t.
Because P (x|p) = 0 for any p where U(p) 6= x∗ these programs can simply be dropped
from the sum in the expression for P (x) so it now becomes

P (x) =
∑

p:U(p)=x∗

2−ℓ

This sum is still only over programs of length ℓ, but there may be many shorter
programs which also produce x. Since the assumption was only that the world is
governed by some program with less than or equal to ℓ bits there is no reason not to
also consider these shorter programs. Fortunately these programs are automatically
accounted for due to the technical setup of the definition. If there is a program p with
length less than ℓ then we can simply pad it out until it has length ℓ without affecting
how it operates and hence what it outputs. This padding can consist of any arbitrary
binary string and therefore, importantly, the shorter p is the more ways there are to
pad it out to the full length. To be precise, for any program p with length(p) ≤ ℓ
there are exactly 2ℓ−length(p) different ways to extend it and each of these 2ℓ−length(p)

programs now have length ℓ and output x. This means that any program p of length
length(p) contributes 2ℓ−length(p) × 2−ℓ = 2−length(p) to the above sum. This property
means that the sum is actually over any program with length less than or equal to ℓ
and the contribution of a program depends on its true length.

Now since ℓ can be arbitrarily large we extend this sum to be over any program of
any length. Also, in order to avoid counting the same ‘core’ programs multiple times
we introduce the concept of a minimal program p that outputs a string x. A program
is minimal if removing any bits from the end will cause it to not output x, and hence
programs with arbitrary padding are clearly not minimal. We can therefore rewrite
the above sum as

M(x) :=
∑

p:U(p)=x∗

2−length(p)

where the sum is now over all minimal programs p of arbitrary length. We call M(x)
the universal probability of x. M(x) can also be seen as the frequentist probability
of x as it corresponds to the total number of programs (minimal or non-minimal) of
length ℓ that produce x, divided by the total number of programs of length ℓ, in the
limit as ℓ → ∞.

This is a highly technical explanation of M(x) but there is a simpler way to think
about it. The set of these arbitrary programs, without the restriction that they must
produce x, is actually the set of all possible binary strings. This is because any binary
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input string for a universal Turing machine is considered to be a program, even though
the vast majority of these programs will not produce any useful or meaningful result.
The contribution of any particular program p with length length(p) is 2−length(p). It is
no coincidence that this corresponds to the probability of producing this program by
simply flipping a coin for each bit and writing a 1 for heads and a 0 for tails. This
means that the contribution of a particular program corresponds to the probability
that this program will appear on the input tape when the Universal Turing machine is
provided with completely random noise. Now the set of programs that produce x is the
set of programs which contribute to M(x). Therefore M(x) is actually the probability
of producing x when random noise is piped through some universal reference Turing
machine U . This alternative representation of M(x) leads to some interesting insights.

Firstly, this entirely different approach to finding a universal probability of x turns
out to be equivalent to ξU . Even though M(x) considers only deterministic environ-
ments and ξU(x) sums over all semi-computable stochastic environments, they actually
coincide, within a multiplicative constant which can be eliminated and henceforth will
be ignored [Hut05]. The intuitive reason for this is that, roughly speaking, the stochas-
tic environments lie in the convex hull of the deterministic ones. To see this consider
the two points on the real line between 1 and 2. The convex hull of these two points is
the set of points c such that c = a ·1+ b ·2 where a+ b = 1 and a, b ≥ 0. In other words
any point in the convex hull is a mixture of 1 and 2 where the mixing coefficients, like a
probability distribution, must sum to 1. This set of points is simply the interval [1, 2].
Given three points in a plane, the convex hull is the filled-in triangle with vertices
at these points. In the more abstract setting of deterministic environments the same
intuition holds. As a simple example imagine you must open one of two doors and
you know for a fact that one door has a cat behind it and the other door has a dog
behind it. You are unsure which door holds which animal however, but you have a
60% belief that the first door is the door with the cat. This means that under your
own Bayesian mixture estimation your belief that the first door holds a cat is 0.6. This
may seem trivial but it illustrates that by mixing deterministic environments, such as
the two possibilities for the doors, the resulting estimation may be stochastic. The
same principle holds for all computable deterministic environments. Every stochastic
environment is equivalent to some mixture of deterministic environments. Also, since
any mixture of stochastic environments is itself a stochastic environment, it is also
equivalent to some mixture of deterministic environments.

The equivalence of ξU and M is particularly surprising considering that ξU(x) uses
the universal prior, which favors simple environments, while M(x) is based on Epicu-
rus’s principle which is indifferent. On closer examination however, there is an inter-
esting connection. In M(x) the shortest program p which produces x clearly has the
greatest contribution to the sum, since 2−length(p) is maximal when length(p) is minimal.
In fact another program q which has length only 1 bit greater contributes only half
as much since 2−(length(p)+1) = 1

2
× 2−length(p). In general a program with only n more

bits contributes only 2−n as much as the shortest. It turns out that the contribution
from this shortest program actually dominates the sum. But the length of the shortest
program p that produces x is the Kolmogorov complexity K(x) and therefore M(x)
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is approximately equal to 2−K(x) which is the universal prior for x. It is interesting
that by starting with the indifference principle and using only logical deduction in the
framework of Turing machines we arrive at a predictor that favors simple descriptions
in essentially the same way as advocated by Occam’s razor. This can be seen as both
an intuitively appealing characteristic of M(x) and as a fundamental justification for
Occam’s razor [Hut10].

7.3 Old Evidence and New Hypotheses

One of the problems with the Bayesian framework is dealing with new hypotheses H
that were not in the original class M. In science it is natural to come up with a new
explanation of some data which cannot be satisfactorily explained by any of the current
models. Unfortunately the Bayesian framework describes how to update our belief in
a hypothesis according to evidence but not how to assign a belief if the hypothesis was
created to fit the data. Several questions come to mind in trying to solve this problem
such as “should old evidence be allowed to confirm a new hypothesis?” or “should we
try to reason about our belief as if the evidence did not exist?”.

By choosing the universal classMU this problem is formally solved. Theoretically it
can no longer occur since this class is complete in the sense that it already contains any
reasonable hypothesis. Since the full mixture is however incomputable it is likely that
an approximation will only consider a subset of this class, but this is not a problem as
the universal prior is unaffected. If a ‘new’ hypothesis H is considered then it is simply
assigned its universal prior 2−K(H), and the evidence can then be used to update this
prior as if it had been in the original approximation class. Although hypotheses can
still be constructed to fit data they will automatically be penalized if they do so in a
complex way. This is because if H is naively used to account for E then K(H) ≥ K(E)
and hence, if E is complex, 2−K(H) will be small. A hypothesis that naively accounts
for E is similar to a program that ‘hard codes’ the string corresponding to E.

For example in the ancient Greek’s geocentric model of planetary motion it was
discovered that using perfect spheres for the orbits of the planets did not fit with
the observed data. In order to maintain the highly regarded perfect sphere and the
ideological point of the earth being the center of the universe, complex epicycles were
added to the model to fit all observations. Finally, in the year of his death in 1543,
Nicolaus Copernicus published a far more elegant model which sacrifices perfect spheres
and placed the sun at the center of the solar system. Despite resistance from the church
the undeniable elegance of this solution prevailed.

Generally, by following this method, a new hypothesis that accounts for some data
in an elegant and general manner will be believed far more than a new hypothesis that
is overly biased towards this particular data. This seems reasonable and corresponds
with common practice.
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7.4 Black Ravens Paradox Using Solomonoff

We will now look at the black raven’s paradox in relation to Solomonoff induction.
First we will show that Solomonoff induction is able to confirm the hypothesis “all
ravens are black”. We will then comment on the relative degree of confirmation under
Solomonoff.

Laplace looked at the binary i.i.d. case of drawing balls from an urn. The confirma-
tion problem in this case arose from the zero prior in any complete hypothesis due to
the use of a prior density over the continuous class of hypotheses M = {θ|θ ∈ [0, 1]}.
Confirmation for the hypothesis θ = 1 was made possible by assigning an initially
non-zero point probability mass to w(θ) for θ = 1. In this case there are only two
possible observations, a white ball or a black ball. The parameter θ represents the pro-
portion of black balls but we also have another parameter representing the proportion
of white balls. This second parameter is implicity given by (1−θ) due to the constraint
that they must sum to one. The two constraints on these parameters, that they must
sum to one and lie in the interval [0, 1], can be thought of as a one-dimensional finite
hyperplane which is equivalent to a unit line.

In the black ravens paradox we have to define two predicates, Blackness and Raven-
ness. There are four possible observations: These are a black raven BR, a non-black
raven BR, a black non-raven BR and finally a non-black non-raven BR, i.e. the ob-
servation alphabet is X = {BR,BR,BR,BR}. Each of these types has an associated
parameter that represents the proportion of the entire population which belong to each
of the respective types. These parameters are denoted ~θ ≡ (θBR, θBR, θBR, θBR) respec-
tively. This makes the setup significantly more complex to work with. Since any object
must belong to one and only one of these types the corresponding parameter values
must sum to one. A complete hypothesis is given by any valid assignment of each of
these four parameters and therefore the model class is given by the following:

M△3 := {~θ ∈ [0, 1]4 : θBR + θBR + θBR + θBR = 1}

�

��

����

��

This space can be visualized as a three-dimensional fi-
nite hyperplane which is equivalent to a 3-simplex, as in
the figure on the right, where each vertex corresponds to
the hypothesis that one of the parameters make up all ob-
servations. Vertex BR corresponds to the hypothesis that
all objects are black ravens, Vertex BR corresponds to the
hypothesis that all objects are non-black non-ravens and
so forth. The point in the very center of the probability
simplex corresponds to the hypothesis θBR = θBR = θBR = θBR = 1/4. Since non-
black non-ravens make up the vast majority of objects in the real world, the correct
hypothesis corresponds to a point very close to the vertex given by θBR = 1.

We are now interested in the partial hypothesis Hb given by the statement “all
ravens are black”. This represents the set of any points where the statement is true.
But the statement “all ravens are black” is logically equivalent to the statement “there
are no non-black ravens”, and this occurs exactly when θBR = 0. Therefore our partial
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hypothesis represents the set Hb = {~θ ∈ M△3 : θBR = 0}. In the figure above this
corresponds to the entire face H of the simplex that lies opposite the vertex at BR.

The question remains whether we are able to confirm this hypothesis using the
universal prior. This requires that the hypothesis Hb is assigned a non-zero prior. The
universal prior in this case depends on the complexity of the values of each of the
parameters. Intuitively, the integers 0 and 1 are the simplest numbers in the interval
[0, 1]. Therefore the universal prior P (~θ) = wU

~θ
= 2−K(~θ) is going to favor hypothesis

that have parameter values of 0 or 1. The hypotheses corresponding to each vertex have
one parameter set to one and the rest set to zero, e.g. (θBR, θBR, θBR, θBR) = (1, 0, 0, 0).
These are the simplest valid assignments of the parameters and therefore have the
highest prior. If a hypothesis lies on the face of the simplex then it implies that one
of the parameters must be zero, as in Hb. Therefore hypotheses lying on a face are
also implicitly favored. Specifically, there are hypotheses corresponding to points on a
face that are assigned a non-zero prior and therefore, wb = P (Hb) =

∫∑
h∈Hb

P (h) =∑
~θ∈Hb

2−K(~θ) > 0. This means Hb is assigned a non-zero prior as required. In fact
any hypothesis that has computable values assigned to its parameters has a non-zero
prior. Since these ‘computable’ hypotheses are dense in the simplex, essentially any
reasonable subset of this model class is assigned a non-zero prior.

The choice of class M△3 implicitly assumes that observations are sampled i.i.d:
The probability of observing a sequence of n (non)black (non)ravens objects x1:n ∈ X n

if ~θ is the true parameter is P (x1:n|~θ) =
∏

x∈X θnx
x , where nx is the number of times, x

has been observed. This i.i.d. assumption will be relaxed below.
The physical hypothesis Hb refers to the unobservable parameters ~θ. Similarly as

in the binary confirmation problem in Section 5.5, we can introduce an equivalent
observational hypothesis H ′

b := {x1:∞ : ∀t xt 6= BR} ≡ {BR,BR,BR}∞ that consists
of all possible observation sequences consistent with the hypothesis that all ravens are
black. One can show that Hb as well as H

′
b asymptotically get fully confirmed, i.e.

P (Hb|x1:n) = P (H ′
b|x1:n)

a.s.−→ 1 if x1:∞ is sampled from any ~θ ∈ Hb

Let us now consider the universal mixture ξU = M , which is not limited to i.i.d.
models. Clearly MU includes all i.i.d. environments with computable parameter ~θ,
hence M should be able to confirm the black raven hypothesis too. Indeed, consider
any computable probability distribution µ consistent with H ′

b, i.e. µ(x) = 0 for x 6∈
{BR,BR,BR}∗. Let x1:∞ be a sequence sampled from µ, which by definition of µ does
not contain any non-black ravens. Then the convergence in total variation result from
Subsection 8.1 (choose A = H ′

b and exploit µ(H ′
b|x1:n) = 1) implies

M(H ′
b|x1:n) −→ 1 with µ probability 1

That is, M strongly confirms the black raven hypothesis under any reasonable sampling
process, of course provided no non-black ravens are observed. No i.i.d. or stationarity
or ergodicity or other assumption is necessary. This is very favorable, since real-life
experience is clearly not i.i.d. What remains to be seen is whether M also gets the
absolute and relative degree of confirmation right. But the fact that Solomonoff in-
duction can confirm the black raven hypothesis under very weak sampling assumptions
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even in infinite populations containing ravens and other objects is already quite unique
and remarkable.

8 Prediction Bounds

Since Solomonoff;s approach is simply the Bayesian framework with the universal model
class and prior, the bounds for Bayes mixture from Section 4 remain valid for ξU ,
although it is now possible to say a little more. Firstly, since the bounds assume that
µ ∈ M we can now say they hold for any computable environment µ. Also, since M
and ξU coincide, the same bounds for ξU also hold for M . This means that ξU and M
are excellent predictors given only the assumption that the sequence being predicted
is drawn from some computable probability distribution which, as discussed, is a very
weak assumption, and even this can be relaxed further.

8.1 Total Bounds

In particular the deterministic total bound from the Bayesianism section holds with ξ
replaced byM . This means that in the case that the true distribution µ is deterministic
the following bound holds.

∞∑

t=1

|1−M(xt|x<t)| ≤ ln(w−1
µ ) = K(x1:∞) ln 2

Since an infinite sum of positive numbers can only be finite if they tend to zero, this
means that M(xt|x<t) → 1. In other words, the predictions converge to the correct
predictions. Indeed, convergence is rapid in the sense of 1−M(xt|x<t) <

1/t for all but a
vanishing fraction of t, which implies fast convergence in practice as long as the sequence
is not too complex. The property of being able to predict the next observation of any
deterministic computable sequence with high probability after viewing a relatively short
initial segment of this sequence is a strong result.

Solomonoff’s stronger result [Sol78] generalizes this to sequences x sampled from
any arbitrary unknown computable distribution µ. In particular the following bound
holds

∞∑

t=1

∑

x1:t∈Bt

µ(x<t)
(
M(xt|x<t)− µ(xt|x<t)

)2

< K(µ) ln 2 +O(1) < ∞

which implies that if x is sampled from any µ, the universal predictor M rapidly
converges to the true computable environment µ with µ-probability 1.

Both results consider one-step lookahead prediction but are easily extendible to
multi-step lookahead prediction [Hut05]. Exploiting absolute continuity of µ w.r.t.
M , asymptotic convergence can be shown even for infinite lookahead [BD62] and any
computable µ:

sup
A⊆X∞

∣∣M(A|x<t)− µ(A|x<t)
∣∣ −→ 0 with µ-probability 1
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All three results illustrate that eventually M will recognize any structure present in
a sequence. This sequence may be as simple as an infinite string of 1’s or as complex
as every 74th digit in the binary expansion of π which even a human would find very
difficult to recognize. In the context of observing ravens, or days when the sun rises,
the observation string can be thought of as a string of 1’s where 1 represents a black
raven, or sun rise, and 0 represents a white raven, or no sun rise. In this case the
convergence M(1|1n) → 1 is particularly fast because K(1∞) is very small. Again this
is not surprising: the more obvious or simple the structure in a sequence the better M
performs.

8.2 Instantaneous Bounds

The previous bounds give excellent guarantees over some initial n predictions but say
nothing about the nth prediction itself. In classes of environments that are independent
and identically distributed (i.i.d.) it is also possible to prove good instantaneous bounds
but in the general case this is more difficult. In many cases it is reasonable to think
of the data as i.i.d. even if it is not strictly true. For example when observing ravens
there are many factors that affect which raven gets observed, at the very least your
location, however thinking of the observations as being drawn randomly from the entire
population is a reasonable approximation. Sometimes it is useful to interpret uncertain
or minor factors as noise over otherwise i.i.d. data. Unfortunately there are also many
cases where it is not at all reasonable to consider the data as i.i.d. and for these more
general cases the following bound for computable x was proven in [Hut07b]:

2−K(n) ≤ (1−M(xn|x<n)) ≤ C · 2−K(n)

where C is a constant which depends on the complexity of the environment but not on
n.

This means that the probability of an incorrect prediction depends on how much of
the sequence has been seen as well as the complexity of the sequence. For simple strings
this probability will quickly become small but for complex strings only a very weak
guarantee can be given. If the string is very simple, in the sense that K(x1:∞) = O(1),
then C will be small and hence the lower and upper bound will coincide within an

irrelevant multiplicative constant, denoted by
×
= below. In particular for x1:∞ = 1∞ we

get

M(0|1n) ×
= 2−K(n)

Due to the non-monotonic nature of K(n) this results in an interesting property. Be-
cause K(n) dips when n is simple, M(0|1n) spikes up. In other words M expects a
counter example to a universal generalization after a simple number of observations
more than after a comparatively random number of observations. Although this may
seem absurd there is a certain validity to being “cautious” of simple numbers.

When we examine the world around us there is structure everywhere. Countless
patterns and regularities in what we see and hear, even if most of it evades our conscious
attention. This may seem like a vague and subjective claim but it is actually verifi-
able. This underlying structure is the reason why fractal compressors, which operate
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by extracting simple recursive regularities from images, work so successfully [BH93].
Interestingly they work particularly well on images of natural scenery because they
contain large amounts of fractal structure. In fact there is a lot of structure in the
sequences governing many natural processes such as the growth of a human embryo
which doubles with each generation, or the arrangement of petals and leaves on certain
plants which often obey simple mathematical rules such as the Fibonacci sequence. Not
surprisingly this underlying structure is also found in the technological world. It has
been verified, using Google to measure frequencies of integers [CV06], that numbers
with low Kolmogorov complexity occur with high probability on the internet.

Structure is closely related to Kolmogorov complexity. If a process or object is
highly structured then this means we can write a short program to predict it or produce
it. If a process has very little structure then it is closer to a random string and requires
a much more verbose description or encoding. In the context of binary prediction with
error probability bounded by C · 2−K(n), as above, this structure is reflected by the
simplicity of n. The abundance of structure in the world means that simple numbers
are more likely to be significant, which corresponds with the non-monotonic nature
of K(n). It should also be noted that although the above example considers binary
prediction, analogous results hold for more general alphabets.

The non-monotonic bound of 2−K(n) may still seem strange but it is important to
realize that even at simple numbers our belief does not suddenly switch from a low
belief in one observation to a high belief. Even for large simple n, 2−K(n) is still quite
small, so our belief in seeing a zero after 1′000′000 ones is still almost negligible, but
higher than after 982′093 ones, a relatively random number of the same magnitude. In
any case, the total bound

∑∞
n=0M(0|1n) ≤ O(1) ensures that the size and frequency

of these ‘peaks’ are quite limited.

It should also be noted that we have made the implicit assumption that we know
exactly how many observations we have made so far. In reality however we often don’t
know n precisely. Consider all the black ravens you have ever observed. It’s likely
that you know you have observed many black ravens but not likely you could recall
the exact number. This means that if you were to apply the above method strictly
you would have to formalize some prior distribution about your belief in the exact
number of ravens you have observed and then take the average of the above method
according to this prior. This averaging would smooth out the above mentioned peaks,
so our belief in observing a different object would decrease more uniformly. In many
real world situations where the above bound seems absurd, uncertainty in our precise
observation history would cause a more uniform decrease as these peaks are washed
out by Bayesian averaging.

8.3 Future Bounds

When looking at an agent’s performance it is often important to consider not only the
total and instantaneous performance but also the total future performance bounds. In
other words it can be important to estimate how many errors it is going to make from
now on. Consider a general agent learning how to play chess from scratch. Obviously
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it will make a large number of errors initially as it does not even know the rules of the
game so most of its moves will be invalid. More interesting is to examine the expected
number of errors once it has learnt the rules of the game. There are many situations
were it is reasonable for an agent or predictor to have some grace or learning period.

Formally, for a given sequence x1:n and the Hellinger distance ht defined in Subsec-
tion 4.9 between M and the true environment µ, the future expected error is written
as follows:

∞∑

t=n+1

E[ht|x1:n]

In general, there is no way of knowing how similar the future will be to the past.
The environment may give the agent a long simple sequence of observations which it
predicts well and then suddenly change to a complex unpredictable pattern. Here it is
worth mentioning the relation to what Hume called the principle of uniformity of nature
[Hum39]. He argued that induction implicitly assumes this principle which states that
the future will resemble the past. But the only way to verify this principle is through
induction which is circular reasoning and therefore induction cannot be proven. As we
will see however, the future bound does not assume this principle but rather accounts
for it through a factor that measures the divergence of the future from the past.

In the total bound (n = 0), a sudden switch to a more complex sequence is ac-
counted for by the Kolmogorov complexity of the true environment K(µ). For these
surprising complex environments, K(µ) is obviously large and hence the bound is
weaker which automatically accounts for errors that will be made after the environ-
ment switches. A finite total number of errors only implies that the number of future
errors eventually converges to zero. The purpose of the following future bound however
is to use the information obtained so far in x1:n to give a tighter, more useful bound.

In the case of future errors, the bound is again in terms of the Kolmogorov complex-
ity of the true environment but now it is conditioned on the past observation sequence
x1:n. Formally it can be shown [CHS07] that

∞∑

t=n+1

E[ht|x1:n] ≤ (K(µ|x1:n) +K(n)) ln 2 +O(1)

This bound is highly intuitive. The dominant term, K(µ|x1:n), depends on the rela-
tionship between what has been seen so far and what will be seen in the future. As
described previously, this Kolmogorov complexity measures the complexity of environ-
ment µ in relation to side information x1:n. Therefore if the principle of uniformity
holds and the future does resemble the past, then this term is small. This means that
once a sample has been seen which is large enough to be representative of the entire
population or the future sequence, then the future number of prediction errors is ex-
pected to be relatively small. On the other hand if the future is going to be vastly
different from the past then this history x1:n is not much help at all for understanding
µ, so the future bound K(µ|x1:n) will be almost as high as the initial total bound K(µ).
In other words, the bound measures the value of the history x1:n for learning the future.

Consider for instance a sequence of identical images I of high complexity K(I) ≈
106. Since the true environment µ simply repeats this image it also has complexity
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K(µ) ≈ 106. After making even just one observation of I the dramatic difference
between the total bound and the total future bound becomes apparent. The total
bound on the number of errors is proportional to the complexity of the true environment
K(µ), so all this tells us is that the total number of errors will be approximately one less
than 106. But since this sequence is simply a repetition of the image I we expect a much
smaller number of errors. The bound above tells us that the total number of future
errors is bounded by (K(µ|I) +K(1)) ln 2 after seeing I once. But the complexity of
µ in relation to I is O(1) since µ only needs to copy and paste I repeatedly. Therefore
the total number of future errors will be very small which agrees with intuition. This
example illustrates the potential value of this future bound.

8.4 Universal is Better than Continuous M
It has been argued that the universal class and prior are an excellent choice for complet-
ing the Bayesian framework as they lead to Solomonoff’sM = ξU , which we have shown
to be (Pareto) optimal and to perform excellently on any computable deterministic or
stochastic environment µ. Although this assumption of computability is reasonable,
the question of its performance in incomputable environments remains interesting. For
example, we may want to know how it compares with other methods in predicting a
biased coin being flipped where the bias θ is an incomputable number. Intuitively this
should not be a major problem as the computable numbers are dense in the reals and
therefore there are computable hypotheses θ′ that are arbitrarily close to θ.

It is indeed possible to formally prove that M does as good as any Bayesian mixture
ξ over any model class M, continuous or discrete, and prior function w() over this
class. The reason for this is that although a specific environment ν in M may be
incomputable and its prior wν may be zero, the prior function w() and the overall
mixture ξ generally remain computable. This is precisely what occurs in Laplace’s rule
for i.i.d. data. In this case the model class is M = {θ : θ ∈ [0, 1]} and the prior density
w(θ) = 1 for any θ. The majority of the values of θ ∈ M are incomputable since M is
uncountable. Since w() is a density it assigns a prior of zero to any particular value,
but for any partial hypothesis θp = (a, b) ⊆ [0, 1] where b − a is incomputable, w(θp)
is also incomputable. But the function w() is itself computable, in fact very simple,
and the Bayesian mixture ξ(x) = s!f !

(s+f+1)!
(for s successes and f failures in x) is also

computable and quite simple. This computability of ξ implies the following general
result for any, possibly incomputable, environment µ:

KLn(µ||M) < KLn(µ||ξ) +K(ξ) ln 2 +O(1)

The Kullback-Leibler divergence KLn(µ||ρ) := E[ln(µ(x1:n)/ρ(x1:n))] itself upper
bounds the various total losses defined in Section 4. For here it suffices to know
that small KL implies small total error/loss. If ξ is computable, which is usually the
case even for continuous classes, then K(ξ) ln 2 is finite and often quite small. The
importance of this result is that it implies that classical Bayesian bounds for ξ based
on continuous classes like the one in Subsection 4.11 also hold for the universal pre-
dictor M even for the incomputable µ in continuous classes M. This means that M
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performs not much worse than any Bayesian mixture ξ (and often much better). In-
deed, even more general, if there exists any computable predictor that converges to
µ in KL-divergence, then so does M , whatever µ. This means that if there is any
computable predictor that performs well in some incomputable environment µ, then
M will also perform well in this environment.

9 Approximations and Applications

Solomonoff’s universal probabilityM as well as Kolmogorov complexity K are not com-
putable, hence need to be approximated in practice. But this does not diminish at all
their usefulness as gold standards for measuring randomness and information, and for
induction, prediction, and compression systems. Levin complexity Kt is a down-scaled
computable variant of K with nice theoretical properties, the context tree weighting
(CTW) distribution may be regarded as a very efficient practical approximation of
M , and the minimum encoding length principles (MDL&MML) are effective model
selection principles based on Ockham’s razor quantifying complexity using practical
compressors. K and M have also been used to well-define the clustering and the AI
problem, and approximations thereof have been successfully applied to a plethora of
complex real-world problems.

9.1 Golden Standard

“in spite of its incomputability, Algorithmic Probability can serve as a kind
of ‘Gold standard’ for inductive systems” - Ray Solomonoff, 1997.

It is useful to keep this above attitude in mind when looking at how Solomonoff
induction can be applied. This idea of a ‘gold standard’ is certainly not new. There
are various problems or scientific areas where an ‘optimal’ solution or model is known
but for practical purposes it must be approximated.

A simple example of this concept can be seen in the problem of playing optimal
chess. It is known that a min-max tree search approach extended all the way to the end
of a game will yield optimal play, but this is entirely infeasible due to the huge branching
factor and extremely large depth of the tree. The magnitude of the tree required to
solve chess is truly massive, with more possible chess games than there are atoms in
the universe. Instead this approach is approximated using much smaller trees and
heuristics for pruning the tree and evaluating board positions. These approximations
can however perform very well in practice which was comprehensively demonstrated in
1997 when the chess computer Deep Blue finally defeated the reigning world Champion
Gary Kasparov.

Even given the exponentially increasing processing power of computers there is no
foreseeable future in which the computation of a complete chess min-max tree will be
feasible. An infeasible problem is a problem that can not be practically computed and
therefore must be approximated. An incomputable problem such as Solomonoff induc-
tion can also not be practically computed but can only be asymptotically computed
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given infinite resources. But when looking at practical applications we only consider
feasible approximations and therefore it may be argued that there is little difference
between an incomputable problem and an entirely infeasible problem. Rather it is im-
portant to find approximations that are useful, although this may often be more likely
for problems that are only infeasible rather than incomputable.

Another example of a ‘golden standard’ is quantum electrodynamics in relation
to chemistry and physics. Quantum electrodynamics was called the ‘jewel of physics’
by Richard Feynman because of its ability to make extremely accurate predictions of
various phenomena. Theoretically this theory is able to accurately predict essentially
any atomic interactions which of course extends to all chemical processes. However
applying this theory to almost any non-trivial interactions requires extremely complex
or infeasible calculations. Because of this, other methods are generally used which are,
or can be considered, approximations of quantum electrodynamics, like the extremely
successful Hartree-Fock approximation.

Even competitive Rubik’s cube solving may be seen as human approximation of a
known, and computable, gold standard. It has been shown that a standard Rubik’s
cube can be solved, from any position, in 20 moves. This is the theoretically best that
can be achieved but any human attempt is still far from this. The level of planning
and visualization necessary to compute this optimal solution is infeasible for a human
but it does give a lower bound or ‘gold standard’ on what is possible.

Even if a ‘gold standard’ idea or theory cannot be implemented in practice, it is
still valuable to the concerned field of study. By demonstrating a theoretically opti-
mal solution to universal induction, Solomonoff is useful both as a guide for practi-
cal approximations and as a conceptual tool in understanding induction. By adding
theoretically optimal decision making to this framework, the second author shows in
[Hut05] that the resulting AIXI model can similarly be considered a ‘gold standard’
for Artificial Intelligence.

Just as in the examples above, Solomonoff induction and Kolmogorov complexity
can and have been successfully approximated.

9.2 Minimum Description Length Principle

The Minimum Description Length (MDL) principle is one such approximation of
Solomonoff induction which is based on the idea that inductive inference can be
achieved by finding the best compression of data since this requires learning and un-
derstanding the underlying structure of the data. Put simply it predicts data that
minimizes the compression of this new data with the old data. MDL achieves com-
putational feasibility by restricting the hypotheses, which are the methods of data
compression, to probabilistic Shannon-Fano based encoding schemes [Grü07]. This
principle is actually based on a similar earlier concept known as the minimal message
length principle which considers a message to consist of the size of a model plus the
size of the compressed data using this model [Wal05].
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9.3 Resource Bounded Complexity and Prior

Levin Complexity is a direct variant of algorithmic complexity which is computable
because it bounds the resources available to the execution. Specifically it uses a time-
bounded version of Kolmogorov complexity defined as follows:

Kt(x) = min
p
{length(p) + log(time(p)) : U(p) = x}

This avoids the problem of short programs p that run indefinitely and hence may or
may not produce x. Eventually the time factor will invalidate them as candidates and
hence they can be terminated [LV08]. The speed prior S(x) similarly approximates
M(x) by limiting the time available [Sch02].

Even off-the-shelf compressors such as Lempel-Ziv [LZ76] can be considered ap-
proximations of Kolmogorov complexity to varying degrees. The more advanced the
techniques used to extract the structure from and hence compress a file, the better the
approximation. In fact, one of the key insights by Solomonoff was that induction and
compression are essentially equivalent problems.

The Kolmogorov complexity is an extremely broad concept which applies to any
effectively describable object. In practice however we often only need to measure
the complexity of an object relative to a specific class of objects, and this can make
approximations much easier.

9.4 Context Tree Weighting

For example in the Context Tree Weighting (CTW) algorithm, described below, we
want to find the complexity of a specific suffix tree measured against the class of
all prediction suffix trees. Using a simple encoding scheme it is easy to create a set
of binary prefix-free strings that are in one to one correspondence with the set of
prediction suffix trees. These are therefore short unambiguous descriptions of each
tree/environment and can be used to give an effective approximation of Kolmogorov
complexity. If z is the prefix-free string that describes the prediction suffix tree p,
the Kolmogorov complexity of p is approximated by length(z). This approximation is
also intuitive, since simpler trees have shorter descriptions and the corresponding prior
2−length(z) when summed over all trees gives 1.

The context tree weighting algorithm, originally developed as a method for data
compression [WST95], can be used to approximate Solomonoff’s universal prior M(x).
It is worth particular mention due to its elegant design and efficient performance. Uni-
versal induction is incomputable both because of the Kolmogorov complexity necessary
to establish the priors and because of the infinite sum over Turing machines. It is of-
ten possible to establish an intuitively satisfying approximation of an environment’s
complexity, as mentioned above with prediction suffix trees. However it is much more
difficult to think of an efficient method of summing over a large, or infinite, class of
environments. It is this property that makes the CTW algorithm noteworthy.

The CTW algorithm considers the class of all prediction suffix trees up to some
fixed depth d (it can also be implemented to use arbitrarily deep trees). The number
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of these grows double exponentially with the depth d, so this quickly becomes a very
large class. Remarkably the mixture model over this entire class, weighted according
to the Kolmogorov complexity approximation above, turns out to be exactly equal to
the probability given by a single structure called a context tree. This context tree can
be implemented and updated very efficiently and therefore leads to a computationally
feasible and effective approximation. Although this class is massively reduced from the
universal class of all computable distributions, it is sufficiently rich to achieve excellent
compression and has been shown to perform well in many interesting environments
[VNH+11].

9.5 Universal Similarity Measure

One interesting application of Kolmogorov complexity is in the constructions of a uni-
versal similarity measure. Intuitively two objects can be considered similar if it takes
little effort to transform one into the other. This is precisely the concept captured us-
ing conditional Kolmogorov complexity since it measures the complexity of one string
given another string. Formally, for objects x and y, the similarity metric is defined by
symmetrizing and normalizing K(x|y) as follows:

S(x, y) :=
max{K(x|y), K(y|x)}
max{K(x), K(y)}

Since it takes no effort to change an object into itself it is clear that K(x|x) ≈ 0
and hence S(x|x) ≈ 0. If there is no similarity between x and y then K(x|y) ≈
K(x) and K(y|x) ≈ K(y) and therefore S(x, y) ≈ K(x)/K(x) = K(y)/K(y) = 1.
Although the Kolmogorov complexity is incomputable, it is possible to achieve an
effective approximation of this metric by approximating K with a good compressor
such as Lempel-Ziv, gzip, bzip, or CTW.

When comparing many objects, a similarity matrix is created by comparing each
object to each other using the above metric. This matrix can then be used to construct
trees based on the similarity of objects. This method has been used to achieve some
astounding results [Li 04]. For example, it was used to accurately construct the exact
evolutionary tree of 24 mammals based only on the structure of their DNA. It was
also used to construct a tree of over 50 languages showing the common roots and
evolution of these languages. Other successes include correctly categorizing music by
their composers and files by their type [CV05].

9.6 Universal Artificial Intelligence

Universal artificial intelligence involves the design of agents like AIXI that are able to
learn and act rationally in arbitrary unknown environments. The problem of acting
rationally in a known environment has been solved by sequential decision theory using
the Bellman equations. Since the unknown environment can be approximated using
Solomonoff induction, decision theory can be used to act optimally according to this
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approximation. The idea is that acting optimally according to an optimal approxima-
tion will yield an agent that will perform as well as possible in any environment with
no prior knowledge.

This unification of universal induction and decision theory results in the AIXI agent
[Hut05]. According to Legg and Hutter’s definition of intelligence, which they argue
to be reasonable [LH07], this AIXI agent is the most intelligent agent possible. Since
this is an extension of Solomonoff induction it is clearly also incomputable, but again
practical approximations exist and have produced promising results.

The MC-AIXI-CTW approximation builds on the context tree weighting algorithm
described above by incorporating actions and rewards into the history and using an
efficient Monte-Carlo tree search to make good decisions. Just as the context tree
weighting algorithm is an efficient approximation of Solomonoff, MC-AIXI-CTW is an
efficient approximation of AIXI [VNH+11].

10 Discussion

Solomonoff [Sol64] created a completely general theory of inductive inference. Subse-
quent developments [Hut07b] have shown that his system solves many of the philo-
sophical and statistical problems that plague other approaches to induction. In the
same/similar sense as classical logic solves the problem of how to reason deductively,
Solomonoff solved the problem of how to reason inductively. No theory, be it universal
induction or logic or else, is ever perfect, but lacking better alternatives, over time peo-
ple often get used to a theory, and ultimately it becomes a de-facto standard. Classical
logic is there already; Bayesian statistics and universal induction are slowly getting
there. In this final section we briefly discuss the major pro’s and con’s of Solomonoff
induction before concluding.

10.1 Prior Knowledge

Philosophically speaking our predictions of the future are dependent on a lifetime of
observations. In practice we need only consider relevant information to make useful
prediction but this question of relevance is not always straightforward.

One of the problems with Solomonoff induction is that relevant background knowl-
edge is not explicitly accounted for. There are two ways to modify Solomonoff induction
to account for prior background knowledge y.

The first method is to judge the complexity of each environment ν in relation to this
prior knowledge y. Formally this is done by providing y as extra input to the universal
Turing machine when computing K(ν) which leads to the conditional Kolmogorov
complexity K(ν|y). One of the properties of the conditional Kolmogorov complexity
K(a|b) is that it can be no bigger than the Kolmogorov complexity K(a) alone. This is
because the extra input b can simply be ignored. This means that all environments, in
particular the true environment, are weighted at least as high as they would be without
the prior knowledge y. By biasing the prior towards environments that can be more
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easily expressed using our prior knowledge this method should intuitively never lead
to worse convergence and often to faster convergence.

The second method is to prefix the observation sequence x, which we wish to
predict, with the prior knowledge y. We are therefore predicting the continuation of the
sequence yx. This method treats background knowledge as previous observations. In
the case of an ideal agent that applies Solomonoff’s method as soon as it is initialized,
or from ‘birth’, all previous knowledge is always contained in its history, so this method
of prefixing x with y occurs implicitly.

In practice, the best method may depend on the type of background knowledge
y that is available. If y is in the form of previous observations, perhaps taken from
similar experiments or situations in the past, then it would be natural to prefix x with
y. On the other hand, if y is a partial hypothesis which we know, or strongly suspect to
be correct, it would be more appropriate to judge the complexity with the conditional
Kolmogorov complexity given y. This can be thought of as looking at the complexity of
different methods of completing the partial model we currently have. Although these
different methods are conceptually useful due to different possible types of background
knowledge, they are theoretically nearly equivalent. Intuitively this is because in both
cases any information present in the background knowledge y is being used to simplify
the model for x and it may not matter if this knowledge is provided with x or separately.

10.2 Dependence on Universal Turing Machine U

A common criticism of both Solomonoff’s universal predictor and the Kolmogorov
complexity is the dependence on the choice of universal reference machine U . As we
discussed in Section 5.9, the major problem is the difficulty of agreeing on a formal
definition of a ‘natural’ Turing machine. We argued that this is equivalent to agreeing
on the definition of a natural encoding scheme which may seem simpler intuitively
however the core problem remains. In any case, the choice of U is only an issue for
‘short’ sequences x. This is because for short x and any arbitrary finite continuation
y we can always choose U that predicts y to follow x. However as the length of x
increases, the predicted continuation of x will become independent of U .

It is worth noting that this problem of arbitrary predictions for short sequences
x is largely mitigated if we use the method of prefixing x with prior knowledge y.
The more prior knowledge y that is encoded, the more effective this method becomes.
Taken to the extreme we could let y represent all prior (scientific) knowledge, which is
possibly all relevant knowledge. This means that for any x the string yx will be long
and therefore prediction will be mostly unaffected by the choice of universal reference
machine.

10.3 Advantages and Disadvantages

As we have seen, the universal Solomonoff approach has many favorable properties
compared to previous methods of induction. In particular these include:
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• General total bounds for generic class, prior and loss function as well as instan-
taneous and future bounds for both the i.i.d. and universal cases.

• The bound for continuous classes and the more general result that M works well
even in non-computable environments.

• Solomonoff satisfies both reparametrization and regrouping invariance.
• Solomonoff solves many persistent philosophical problems such as the zero prior
and confirmation problem for universal hypotheses. It also deals with the problem
of old evidence and we argue that it should solve the black ravens paradox.

• The issue of incorporating prior knowledge is also elegantly dealt with by pro-
viding two methods which theoretically allow any knowledge with any degree of
relevance to be most effectively exploited.

These significant advantages do however come at a cost. Although it seems Solomonoff
provides optimal prediction given no problem-specific knowledge, the persistent mul-
tiplicative or additive constants in most results mean this optimality may only occur
asymptotically. For short sequences and specific problems, Solomonoff may not perform
as well as other methods, but an automatic remedy is to take into account previous or
common knowledge. Of course the most significant drawback to this approach is the
incomputability of the universal predictors M and ξU . Although approximations do
exist, with some very interesting results, they are still either infeasible or fairly crude
or limited approximations.

10.4 Conclusion

In this article we have argued that Solomonoff induction solves the problem of inductive
inference. Not only does it perform well theoretically and solves many problems that
have plagued other attempts, it also follows naturally from much of the significant work
in induction that precedes it.

Initially we explained how the subjectivist interpretation of probability is appropri-
ate for dealing with induction since induction concerns our beliefs about the unknown.
Cox’s demonstration that the standard axioms of probability are a necessary conse-
quence of any rational belief system provides strong theoretical justification for using
the standard axioms while maintaining a subjectivist approach.

Bayes theorem is derived directly from these standard probability axioms and, when
combined with the reasonable setup of holding some class of possible explanations, each
with some prior plausibility, we arrive at the Bayesian framework. This framework
provides a rational method of updating beliefs and in some sense it provides the optimal
method of predicting future observations based on current beliefs and evidence. We
argued that the concept of prediction is general enough to encompass all relevant
problems of inductive inference and therefore this Bayesian framework is also optimal
for inductive inference.

This framework requires that we have some pre-conceived beliefs about the possible
causes for our observations. Ideally these beliefs are formed before any evidence has
been observed so they must be based on an objective and universally acceptable princi-
ple. By combining the ideas of Occam and Epicurus we are at such a principle which is
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both intuitive and philosophically appealing and applies to the largest reasonable class
of possible environments. A strict formalization of this principle is achieved through
contributions of Turing and Kolmogorov.

Completing the Bayesian framework with this universal model class and prior pro-
duces Solomonoff induction. In a very loose sense this demonstrates that Solomonoff
induction follows as a natural consequence of rationality. Although incomputable, this
universal method for inductive inference can be used to guide practical implementations
and also gives us new insights into the mechanics of our own thinking.

By refuting Maher’s invalid claim that probability alone can solve the problem of
confirmation, we have shown that these failings of other systems of induction remain
present, while Solomonoff deals with confirmation successfully by assigning non-zero
priors to all computable hypotheses. We have also looked briefly at how Solomonoff
induction deals with the black ravens paradox and argued that it should give the desired
result.

We hope that this accessible overview of Solomonoff induction in contemporary and
historical context will bring an appreciation and awareness of these ideas to a larger
audience, and facilitates progress in and applications of this exciting and important
field.
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