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ABSTRACT

We present a detailed chemical composition analysis of 35 red giant stars in the globular cluster M 22. High resolution spectra for this
study were obtained at five observatories, and analyzed in a uniform manner. We have determined abundances of representative light
proton-capture, α, Fe-peak and neutron-capture element groups. Our aim is to better understand the peculiar chemical enrichment
history of this cluster, in which two stellar groups are characterized by a different content in iron, neutron capture elements Y, Zr and
Ba, and α element Ca. The principal results of this study are: (i) substantial star-to-star metallicity scatter (−2.0 � [Fe/H] � −1.6); (ii)
enhancement of s-process/r-process neutron-capture abundance ratios in a fraction of giants, positively correlated with metallicity;
(iii) sharp separation between the s-process-rich and s-process-poor groups by [La/Eu] ratio; (iv) possible increase of [Cu/Fe] ratios
with increasing [Fe/H], suggesting that this element also has a significant s-process component; and (v) presence of Na-O and C-N
anticorrelations in both the stellar groups.

Key words. techniques: spectroscopic – stars: abundances – stars: Population II – globular clusters: individual: M 22 (NGC 6656)

� Based on data collected at: Anglo-Australian Telescope with
the University College London Echelle Spectrograph, Apache Point
Observatory with the ARC Echelle Spectrograph, Lick Shane 3.0 m
Telescope with the Hamilton Echelle Spectrograph, McDonald Smith
2.7 m Telescope with the Robert G. Tull Coudé Spectrograph, and
European Southern Observatory with the FLAMES/UVES spectro-
graph.
�� Tables 3–6 are available in electronic form at
http://www.aanda.org

1. Introduction

In recent years, a large amount of observational evidence, both
from high resolution spectroscopy and from photometry, has es-
tablished that globular clusters (GC) can host more than one stel-
lar population. Photometric evidence of multiple stellar popula-
tions has been recently observed in many GCs in the form of
multiple main sequences (Bedin et al. 2004; Piotto et al. 2007;
Anderson et al. 2009; and Milone et al. 2010), split sub-giant
branches (Milone et al. 2008; and Piotto 2009), and multiple
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red-giant branches (e.g. Marino et al. 2008; Lee et al. 2009; Lind
et al. 2011a).

Spectroscopic clues, often easy to detect simply by in-
spection of high-resolution spectra, arise in derived elemental
abundance variations. Most GCs are mono-metallic (Carretta
et al. 2009a), i.e. they have no detectable dispersion in [Fe/H]1.
But all clusters studied to date with substantial stellar samples
exhibit star-to-star variations in the light elements C, N, O, Na,
Mg, and Al. These variations do not occur randomly, but have
obvious correlations and anticorrelations, which clearly point to
the actions of high-temperature proton fusion cycles that have
processed C and O into N, (unseen) Ne to Na, and Mg to Al.

Proton-capture reactions to effect Ne→Na conversion re-
quire fusion-region temperatures T >∼ 40 × 106 K, and Mg→Al
conversion can only occur with even higher temperatures. Such
conditions cannot be achieved in the H-fusion layers of the
presently observed low-mass (�0.8 M�) GC stars. This suggests
that the stars observed now were formed from cluster material
that had been polluted in proton-capture products by a prior gen-
eration of cluster stars. Today, it is widely accepted that the ob-
served variations in light elements provide strong evidence for
the presence of different generations of stars in GCs, with the
younger stars born in a medium enriched in the material ejected
by earlier generation stars. However the debate on the possible
polluters is still open (Ventura et al. 2001; D’Antona & Ventura
2007; Decressin et al. 2007).

The mono-metallicity of most GCs has excluded supernovae
from being responsible for the chemical enrichment of the intra-
cluster medium from which the second generation formed, be-
cause supernovae ejecta would be enriched in Fe-peak elements.
We know of some exceptions, most notably ω Centauri. This
most massive cluster is an anomaly among GCs because its Fe
variations are huge, spanning more than 1 dex. However, there
have been long-held suspicions that M 22 has metallicity vari-
ations. A large number of photometric and spectroscopic stud-
ies have attempted to verify or disprove this idea. For example,
Hesser et al. (1977) and Peterson & Cudworth (1994) showed a
significant spread along the RGB in M 22 in observed (B − V)
and Strömgren colours. Norris & Freeman (1983) used low-
resolution spectra of about 100 red giants (RGB) to demonstrate
the existence of star-to-star variations in the strengths of the Ca ii
H&K lines, which they interpreted as a ∼0.30 dex spread in Ca
abundances.

However, M 22 lies nearly in the Milky Way plane, toward
the Bulge ([(l, b) ∼ (10◦, 7◦)]). As such, it suffers significant
dust extinction, with probable reddening variations across the
face of the cluster. This has limited conclusions that could be
drawn from the photometric and spectroscopic variations present
in M 22. Early spectroscopic studies claiming a spread in metal-
licity, with −1.4 < [Fe/H] < −1.9, included those of Pilachowski
et al. (1982), based on 6 stars, and Lehnert et al. (1991), based
on 4 stars. On the other hand, neither Cohen (1981), nor Gratton
(1982) found a significant M 22 metallicity variation within the
three stars that each analyzed. These early studies are not nec-
essarily in contradiction because they all are conclusions from
small sample sizes.

Recently, intrinsic Fe variations in M 22 have been con-
firmed definitively by Marino et al. (2009, hereafter M09) and
Da Costa et al. (2009, hereafter DC09). In particular M09, from

1 We adopt standard stellar abundance notation (Helfer et al. 1959):
for elements A and B, [A/B] ≡ log10(NA/NB)� − log10(NA/NB)�. We
also define log ε(A) ≡ log10(NA/NH) + 12.0, and and use [Fe/H] syn-
onymously with stellar overall metallicity.

the analysis of high resolution UVES spectra of 17 stars, found
that M 22 shows a complex chemical pattern that resembles the
extreme case of ω Cen (see also Da Costa & Marino 2010).
Stars in M 22 show intrinsic variations in Fe, albeit significantly
smaller than the ones observed in ω Cen, i.e. while the differ-
ence between the mean Fe abundances of different groups of
stars is 0.14 dex (M09), stars in ω Cen span a range of ∼1.5 dex.
Additionally, M09 argued for the presence of two different stel-
lar populations in this cluster characterized by significant dif-
ferences in neutron-capture (n-capture) elements Y, Ba, and Zr.
Light proton-capture elements vary in M 22 as they do in most
clusters as described above, but their abundance variations are
uncorrelated to those of the n-capture elements. The two M 22
populations also appear to have different [Ca/Fe] ratios, but no
linkage to the proton-capture elements is evident.

The multiple populations of M 22 are now clearly manifest
in a photometric split in the sub-giant branch (SGB) region re-
vealed in Hubble Space Telescope images (M09; Piotto 2009).
The split SGB points towards the presence of two stellar gener-
ations, which are likely related to chemical composition differ-
ences. However, M09 argued that evolutionary models cannot
entirely reproduce the size of the split by considering only the
metallicity spread (but see also DC09). Probably the origin of
the split is more complex, and could involve also variations in
the total CNO abundance, as proposed by Cassisi et al. (2008)
and Ventura et al. (2009) for NGC 1851, in contrast to the usual
assumption of constant C+N+O inside stars in a given GC.

Since the 1980’s we have known that large CO band strength
variations (Frogel et al. 1983) are present among M 22 stars,
and these are accompanied by often strong CN enhancements
(Cohen 1981; Norris & Freeman 1983). More recently, Kayser
et al. (2008) confirmed the presence of both CN-weak and CN-
strong stars in M 22, with the majority of stars being CN-weak
group. Their pager found no evidence for a CN-CH anticorrela-
tion. Indeed, Norris & Freeman had noted that in M 22, contrary
to normal GCs, CN strengths are positively correlated with those
of CH. They also found that CH and CN are correlated with Ca,
with the correlation being tighter between CH and Ca. This sug-
gests that a common source is responsible for the C and Ca en-
hancements, and a different mechanism is responsible for the N
enhancements. This further argues that a simple conversion of
C to N by CN cycling cannot be the unique cause of the spread
in CN index. Brown et al. (1990) studied CNO abundances in
seven M 22 RGB stars, and found evidence in two of the stars for
a large overabundance of N, corresponding to a higher CNO total
abundance. This behavior cannot be explained with enrichment
from material that simply has undergone the complete CNO cy-
cle.

The various chemical anomalies of M 22 stars indicate that
this GC has undergone a complex, and still unclear, chemical
enrichment history. Similarly to ω Cen, Fe and Ca variations
suggest that core-collapse supernovae have had a role in the pol-
lution of the intra-cluster medium from which the present gen-
eration of slightly Fe-enriched stars formed. At the same time,
the presence of two different groups in some n-capture elements
suggests that at the same epoch a number of low mass AGB stars
(∼3 M�, Ventura et al. 2009) experienced the third dredge-up
and polluted the intra-cluster medium with s-process and triple
α products.

In this study we present a new high-resolution spectroscopic
analysis of a larger sample of RGB stars in M 22 than has been
conducted to date. Altogether our sample now consists of 35
stars. Our aim is to study the chemical properties of different
stellar populations in this cluster in order to re-construct its
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Table 1. Sources of the spectroscopic data.

Instrumenta Rb λ range S/N S/N # stars Reference
Å @5000 Å @7000 Å

AAT-UCLES 38 000 5050−7300 50 100 10 Diego et al. (1990)
Norris et al. (1995b)

APO-ARCES 37 500 4000−9000 50 75 5 Wang et al. (2003)
MCD-2DC 60 000 4200−9000 70 120 6 Tull et al. (1995)

LICK-HAM 50 000 4800−8800 50 90 9 Vogt et al. (1987)
Valenti et al. (1995)

VLT-UVES 45 000 3300−4500 100 120 16 Dekker et al. (2000)
4800−6800 Marino et al. (2009)

Notes. (a) Short-hand notation adopted in this paper. (b) R ≡ λ/Δλ.

chemical enrichment history. The layout of this paper is as fol-
lows: Sect. 2 is a brief overview of the data set; Sects. 3 and 4
contain descriptions of model atmosphere parameter and abun-
dance derivations; Sect. 5 presents the abundance results; Sect. 6
demonstrates the links between our abundances and spectro-
scopic/photometric indices of M 22 giants; and Sect. 7 summa-
rizes and discusses our findings.

2. Data sources

High-resolution spectra of M 22 giants were obtained at five ob-
servatories. In Table 1 we summarize the properties of these in-
struments, giving their resolving powers, approximate spectral
range coverage, typical signal-to-noise values per pixel for the
reduced spectra, the number of observed stars and references to
information on the instruments. Here are some notes about the
observations and references to more detailed information.

– Anglo-Australian Telescope, University College London
Echelle Spectrograph (hereafter called AAT): observations
and reductions were described by Norris et al. (1995b). The
reductions were accomplished with a combination of tasks
from the IRAF2 and FIGARO3 software packages. That pa-
per also tabulates their equivalent widths, but we do not
use those measurements in this paper; for uniformity in our
analyses we re-measured equivalent widths from the original
spectra. Comparison of our equivalent widths with those of
Norris et al. shows good agreement, with a mean difference
of −1.8 mÅ (σ = 4.5 mÅ) and no trend with line strength.

– Apache Point Observatory, 3.5 m telescope, ARC Echelle
Spectrograph (hereafter, APO): observation and reduction
procedures were identical to those described by Laws &
Gonzalez (2003). In particular, the data were reduced using
standard routines in IRAF for flat fielding, wavelength cali-
bration and background subtraction.

– Lick Shane 3.0 m Telescope, Hamilton Echelle (here-
after, LICK): we followed the procedures outlined in Ivans
et al. (1999). The reductions were carried out using the
VISTA software package (Goodrich & Veilleux 1988).

– McDonald Smith 2.7 m Telescope, Robert G. Tull Coudé
Spectrograph (hereafter, MCD): observations and reductions
were identical to those employed by Ivans et al. (1999) for
their high-resolution study of stars in the GC M 4.

– ESO Very Large Telescope, Ultraviolet and Visual Echelle
Spectrograph (programmes: 68.D-0332 and 71.D-0217;

2 IRAF is distributed by NOAO, which is operated by AURA, under
cooperative agreement with the US National Science Foundation.
3 http://www.aao.gov.au/figaro/

hereafter UVES): see M09 for a discussion of the observa-
tions and reductions.

Equivalent widths (EWs) were measured by fitting Gaussian
profiles to isolated stellar absorption lines. For each line, we
selected a region of 10 Å centered on the line itself to esti-
mate continuum placement. This value is a good compromise
between having enough points to build reasonable statistics, and
avoiding regions where the spectrum is not sufficiently flat. Then
we built the histogram of the distribution of the flux where the
peak is a rough estimation of the continuum. We refined this
determination by fitting a parabolic curve to the peak and us-
ing the vertex as our continuum estimation. Finally, the contin-
uum determination was revised by eye and corrected by hand if
a clear discrepancy with the spectrum was found. We rejected
the EW of a transition if any of the following problems were de-
tected: non-Gaussian line profile; central observed wavelength
mismatch with the expected line list wavelength; line breadth ei-
ther substantially broader or narrower with respect to the mean
FWHM. We verified that the Gaussian shape was a good ap-
proximation for our spectral lines, so no Lorentzian correction
was applied.

In Table 2 we provide a list of basic data for each observed
star, together with the instrument source. The different spectro-
scopic data sets were analyzed separately, but the results are
combined in the abundance discussion. The table lists magni-
tudes and colours as observed (no corrections for dust extinc-
tion), and the adopted extinction AV for each star. The broad-
band V , B, and I magnitudes are from Stetson’s photometric
database4 while the K magnitudes are from the 2MASS Point
Source Catalog (Skrutskie et al. 2006). The Strömgren colours
b − y and m1 are taken from Richter et al. (1999).

We computed extinction values AV in the following man-
ner. M 22 has large mean reddening, E(B − V) = 0.34 (Harris
1996). Additionally, there is evidence for differential reddening
at a level of nearly a tenth of a magnitude in E(B − V) across
the face of the cluster as evidenced by a spread in the colours
and magnitudes of its evolutionary sequence. We corrected the
cluster mean E(B − V) for differential reddening with a method
that will be described by Milone et al. (2011). This technique
is similar to the ones adopted by Sarajedini et al. (2007) and
Milone et al. (2009). Briefly, we first defined the fiducial main
sequence for the cluster. Then for each star we estimated how
much other observed stars in its cluster spatial vicinity system-
atically lie to the red or the blue of the fiducial sequence. This
systematic colour offset is indicative of the local differential red-
dening. We applied the M 22 mean E(B−V) plus the differential

4 Available at http://www3.cadc-ccda.hia-iha.nrc-cnrc.gc.
ca/community/STETSON/
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Table 2. M 22 targets: instruments, positions, and photometric data.

IDa ID(M09) SOURCEb α(2000) δ(2000) Bc Vc Ic Kd b − ye m1
e AV

I-12 200031 AAT, MCD,UVES 18:36:27.36 −23:51:26.1 13.177 11.672 10.000 7.893 0.999 0.173 0.998
I-27 200083 APO, UVES 18:36:30.58 −23:52:48.7 13.662 12.393 10.903 8.952 0.480 −0.001 1.017
I-36 LICK 18:36:30.07 −23:53:37.5 13.342 11.931 10.320 8.337 0.961 0.120 1.024
I-37 LICK 18:36:30.02 −23:53:50.1 13.450 12.008 10.372 8.279 0.969 0.148 1.025
I-53 200101 UVES 18:36:38.36 −23:54:01.3 14.051 12.690 11.155 9.207 0.910 0.178 1.068
I-57 AAT, APO 18:36:38.27 −23:53:13.0 13.578 11.981 10.290 8.089 1.039 0.371 1.034
I-80 88 UVES 18:36:36.06 −23:50:16.1 13.910 12.527 11.011 9.064 0.900 0.251 1.066
I-85 200080 UVES 18:36:32.82 −23:51:10.9 13.747 12.473 10.978 9.117 0.867 0.065 1.083
I-86 200068 AAT, UVES 18:36:32.13 −23:51:31.4 13.749 12.328 10.689 8.660 0.969 0.103 1.064
I-92 LICK 18:36:33.28 −23:52:32.5 13.141 11.561 9.828 7.654 1.050 0.232 1.019
II-1 LICK 18:36:23.89 −23:52:43.5 13.585 12.043 10.367 8.204 1.003 0.321 1.089
II-31 LICK 18:36:09.93 −23:52:52.6 13.436 11.927 10.234 8.124 1.015 0.210 1.026
II-96 MCD 18:36:17.24 −23:54:11.3 13.134 11.604 9.879 7.786 1.033 0.219 1.042
II-104 71 UVES 18:36:07.72 −23:50:55.4 13.764 12.336 10.696 8.658 0.959 0.124 1.083
III-3 200006 APO, MCD, UVES 18:36:17.51 −23:54:26.2 12.912 11.107 9.188 6.783 1.175 0.563 1.039
III-12 AAT, MCD 18:36:14.26 −23:54:31.1 13.236 11.540 9.723 7.401 1.106 0.452 1.024
III-14 AAT, LICK 18:36:15.10 −23:54:54.6 12.964 11.134 9.145 6.743 1.201 0.445 1.034
III-15 LICK 18:36:15.61 −23:55:01.2 13.057 11.362 9.484 7.138 1.106 0.403 1.007
III-25 200104 UVES 18:36:20.16 −23:55:53.9 13.873 12.688 11.207 9.397 0.850 0.026 1.014
III-33 61 UVES 18:36:20.13 −23:56:45.4 13.640 12.249 10.632 8.618 0.964 0.117 1.018
III-35 200076 UVES 18:36:20.51 −23:56:24.4 13.738 12.404 10.828 8.854 0.930 0.098 1.042
III-47 APO 18:36:14.80 −23:55:15.7 13.699 12.385 10.848 8.979 0.904 0.128 0.992
III-50 224 UVES 18:36:13.54 −23:54:54.5 14.699 13.493 12.066 10.319 0.819 0.115 0.981
III-52 200025 LICK, UVES 18:36:10.18 −23:54:21.8 13.238 11.526 9.732 7.459 1.081 0.549 1.016
III-96 AAT 18:36:02.20 −23:56:50.1 13.511 12.138 10.575 8.583 ... ... 0.996
IV-20 51 AAT, UVES 18:36:25.99 −23:55:58.3 13.622 12.071 10.383 8.164 1.021 0.336 1.036
IV-59 200043 UVES 18:36:32.16 −23:56:03.9 13.408 11.927 10.233 8.152 1.002 0.144 1.139
IV-68 221 UVES 18:36:32.97 −23:54:59.0 14.682 13.490 ... 10.222 0.833 0.041 1.065
IV-76 AAT 18:36:35.41 −23:54:39.9 13.709 12.299 10.790 8.852 0.916 0.289 1.066
IV-88 AAT 18:36:44.97 −23:54:57.3 13.718 12.228 10.608 8.500 ... ... 1.065
IV-97 200083 UVES 18:36:41.06 −23:58:18.9 12.799 11.043 9.065 6.759 ... ... 1.102
IV-102 AAT, LICK, MCD 18:36:36.19 −23:59:38.9 12.881 11.051 9.111 6.769 ... ... 0.986
V-2 LICK 18:36:28.02 −23:55:01.6 13.260 11.498 9.674 7.276 1.160 0.494 1.036
C MCD 18:36:10.21 −23:48:44.0 13.309 11.309 9.253 6.737 ... ... 0.989
C513 APO 18:35:50.02 −23:57:40.6 13.052 11.356 9.567 7.359 ... ... 1.072

Notes. (a) When available, we used the identification scheme of Arp & Melbourne (1959) or its extension by Lloyd-Evans (1975), with Roman
numerals I–IV for the quadrants and V for the center. If no other name is available, we used identifications from Cudworth (1986), preceded by C.
These names are entered into the SIMBAD database (http://simbad.u-strasbg.fr/simbad/) as “NGC 6656 abbb”, where “a” is the roman
numeral and “bbb” is the number; for example, star IV-97 can be found as NGC 6656 4097 in SIMBAD. (b) See text for definitions. (c) Stetson
photmetric database. (d) 2MASS database. (e) Richter et al. (1999).

correction to the observed (B − V) values of red giant(s) that
occur near the same spatial location in the cluster. Finally, we
adopted the Cardelli et al. (1989) recommended ratio of total to
selective extinction, RV = 3.1, to convert E(B − V) to AV val-
ues. We also used the Cardelli et al. extinction curve to perform
extinction corrections to the other colours.

3. Model atmosphere parameters

Our spectroscopic analysis of M 22 giant stars was conducted
with the local thermodynamic equilibrium (LTE) line analysis
code MOOG (Sneden 1973). In order to keep the present anal-
ysis consistent with that of M09, we used interpolated model
atmospheres from the grid of Kurucz (1992). Those models in-
clude convective overshooting, which is not part of subsequent
grids in this series (e.g., Castelli & Kurucz 2004). In Sect. 4.2
we will comment on the (small) effect of using these overshoot
models in our analysis.

Atmospheric parameters for these models were estimated
from Fe spectral lines. Effective temperatures Teff were derived
by removing trends in Fe i abundances with excitation potential,
and the microturbulent velocities ξt were set by removing trends

with EW. Gravities were determined by satisfying the ionization
equilibrium between Fe i and Fe ii abundances. This process was
done iteratively until a final interpolated model was obtained. In
this manner we specified model atmosphere parameters entirely
based on the spectra; thus they are independent of photomet-
ric information. This is an important advantage when analyz-
ing M 22, with its star-to-star reddening variations. More details
about the line list, atmospheric parameters determination, and
abundance measurements can be found in Marino et al. (2008)
and M09.

The adopted atmospheric parameters for the program stars,
together with the telescope source of the spectra, are listed in
Table 3. By comparing the atmospheric parameters for the same
stars observed with different sources, no evidence for systematic
offsets have been found.

To investigate internal uncertainties related to the atmo-
spheric parameters we applied the same procedure used in
Marino et al. (2008) and M09 to which we refer the reader for a
more detailed description. The procedure was applied separately
for spectra taken with different instruments because of the differ-
ent quality of the data. Briefly, first we calculated, for the stars,
the errors associated with the slopes of the best least squares fit

A8, page 4 of 24

http://simbad.u-strasbg.fr/simbad/


A. F. Marino et al.: The two metallicity groups in M 22

Fig. 1. Adopted Teff and log g as a function of (B − V) colour and V mag respectively. Different data-sets were represented by different symbols
(as quoted in the left panel).

in the relations between Fe i abundance vs. E.P. The average of
the errors corresponds to the typical error on the slope. Then,
we selected, for each set of data observed at different telescopes,
a star at intermediate temperature. For these stars, we fixed the
other parameters and varied the temperature until the slope of
the line that best fits the relation between abundances and E.P.
became equal to the respective mean error. These differences in
temperature represent an estimate of the error in temperature it-
self. A similar procedure was applied for ξt, but using the re-
lation between abundance and EWs. For gravities, determined
by imposing the ionization equilibrium for iron, we considered
the averaged uncertaintiesσstar[FeII/H] and σstar[FeI/H] (where
σstar[Fe/H] is the dispersion of Fe i and Fe ii abundances de-
rived by the various spectral lines in each spectrum as given by
MOOG, divided by

√
Nlines − 1), and varied the gravity of the

representative stars such that the relation:

[FeI/H] − σstar[FeI/H] = [FeII/H] + σstar[FeII/H] (1)

was satisfied.
The resulting atmospheric parameter uncertainties for differ-

ent data sets are listed in Table 4 together with the abundance
uncertainties (see Sect. 4.2).

In order to understand the uncertainties associated with our
spectroscopically-derived temperatures and gravities, we first
tested the assumption that RGB stars with the same photomet-
ric properties ought to have the same Teff and log g values. In
Fig. 1 we plot our adopted Teff as a function of the (B − V)
colour, and log g as a function of V . The mean trends were com-
puted with linear least square regressions. The rms of the differ-
ences between individual points and the mean curve is quoted in
each panels of Fig. 1, and are not dissimilar from our estimated
Teff and log g uncertainties. These values are an estimate of the
differences that we expect in temperatures and gravities among
stars with similar magnitude and colours.

In Fig. 2 we compare our spectroscopically-derived model
atmosphere parameters with these quantities derived by other
methods. In the upper-left panel we show the comparison
of our effective temperatures, determined from Fe i excitation
equilibrium (Teff), with the ones obtained from photometry.
Photometric temperatures T(V−K) have been derived from the
colours (V−K) corrected for differential reddening (as explained
in Sect. 2), by using the calibrations of Alonso et al. (1999,
2001), assuming a mean reddening of E(B − V)=0.34 (Harris
1996). The scatter of the points around the line of perfect agree-
ment is ∼50 K, that is what we expect from observational errors.

Fig. 2. Upper-left panel: adopted temperatures derived from the excita-
tion potential equilibrium (Teff spec) as a function of photometric temper-
atures obtained from colours (V −K). Upper-right panel: adopted grav-
ities from ionization equilibrium (log gadopted) as a function of gravities
obtained from the estimated mass (log gphotometry), radius, and adopting
a distance modulus of (m − M)V = 13.60 (Harris 1996). Lower-left
panel: adopted gravities versus the calibrated Teff-logg relation from
Kučinskas et al. (2006). The dashed line in these three panels indicates
perfect agreement. The mean difference between the adopted values and
the comparison ones has been quoted in each panel (as Δ(comparison-
adopted)). Lower-right panel: distances Δ(log g) of each point in the
upper panel, in the log gphotometry-log gadopted plane, from the line of per-
fect agreement, as a function of the adopted Teff .

Since we used colours corrected for differential reddening, we
have minimized this effect in the derivation of T(V−K).

The upper-right panel shows our spectroscopic gravities de-
termined from Fe i/Fe ii ionization equilibrium (log gadopted) as
a function of gravities log gphotometry that were obtained with
standard relations by using T(V−K), bolometric corrections from
Alonso et al. (1999), and a distance modulus of (m − M)V =
13.60 (Harris 1996). The dispersion around the line of perfect
agreement is ∼0.20 dex, and is in both axis, i.e. partly in (V −K)
due to uncertain reddening (which is much more in (V −K) than
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(B − V)) and the uncertainty introduced by the NLTE effects in
Fe i/Fe ii as discussed by Kraft & Ivans (2003). Indeed, while
there are good reasons to base [Fe/H] on the lines of Fe ii (Kraft
& Ivans 2003) our resolution limits the number of unblended
Fe ii lines so that it is necessary to base [Fe/H] on lines of Fe i.
However, the scatter of points in the gravity plane in the up-
per panel of Fig. 2 from the line of perfect agreement exhibits
no obvious Teff dependence. This is emphasized in the gravity
difference plot in lower-right panel of the figure. Finally, in the
lower-left panel we show our adopted spectroscopic log g values
compared with estimates based on spectroscopic gravity calibra-
tions of GCs provided by Kučinskas et al. (2006).

These tests demonstrate that our estimates of the atmospheric
parameters are quite reliable and that NLTE effects may not be
important in determining these quantities. Of course, some off-
sets between the photometric and spectroscopic parameters may
be present, as it seems for temperature with spectroscopic values
∼20–30 K higher than TV−K , but these offsets are comparable
with our uncertainties.

4. Abundance derivations

Using the model atmospheres and analysis code described in
Sect. 3, we determined abundances for Fe, α elements (Mg, Si,
Ca, Ti), p-capture elements (C, N, O, Na, and Al), Fe-peak ele-
ments Cu and Zn, and several n-capture elements (Y, Zr, Ba, La,
Nd, Eu). To accomplish this we employed EWs for Fe, the α el-
ements, Y, Ba, and Nd. For C, N, O, Na, Zr, La, Eu, Zn and Cu,
because of significant atomic blends, isotopic/hyperfine struc-
ture issues, or weak molecular band (CN) contamination, we de-
rived abundances by comparing synthetic and observed spectra.
We list the results for light and heavy elements in Tables 5 and 6
respectively. In this section we comment on the transitions that
we used, and on uncertainties in the resulting abundances.

4.1. Spectral features

Proton-capture elements: We determined Na abundances from
spectral synthesis of the Na i doublets at 5680 Å and 6150 Å,
and O abundances from the synthesis of the forbidden [O i] line
at 6300 Å. Aluminum was determined from EWs of the doublet
at 6667 Å. For the UVES data, the O, Na, and Al abundances are
those reported in M09. We applied NLTE corrections from Lind
et al. (2011b) to the Na abundances. These corrections are not
available for gravities �1.00. However our Na i line strengths are
relatively insensitive to gravity. We determined NLTE correc-
tions for the lowest gravity stars using the Lind et al. corrections
for log g = 1.0, but future NLTE corrections for Na abundances
will be welcome. In the following discussion both NLTE and
LTE Na abundances will be presented.

For 14 (out of 35) stars we were able to determine C and
N abundances. Carbon was measured from spectral synthesis
of the CH G-band (A2Δ − X2Π) heads near 4314 and 4323 Å.
Nitrogen was derived from synthesis of the 2–0 band of the CN
red system (A2Π − X2Σ) near 8005 Å (available for the MCD
spectra), and from the CN blue system (B2Σ − X2Σ) bandhead
at ∼4215 Å (for UVES data). The synthesis linelist for the blue
CN band is described in Hill et al. (2002). The linelists for the
CH band and the CN red system were provided by B. Plez (CH
band, priv. comm.), and V. Smith (CN band, priv. comm.). As an
example of the molecular band calculations, in Fig. 3 we show
synthetic/observed spectral matches of the CN red system for
two stars IV-102 and III-3 that have nearly identical atmospheric

Fig. 3. Spectral region around the CN features at 8000 Å from McD
data for the two stars IV-102 (upper panel) and III-3 (lower panel). The
observed spectrum is shown as points. Synthetic spectra with N value of
best fit (black line), with no N (magenta line), and with Δ(N)=± 0.2 dex
deviations from the best fit (blue and red lines) are superimposed to the
spectrum of the stars.

parameters Teff, log g, and ξt. Superimposed on the observed
spectra are synthetic models at constant C, O, while varying N
around the best fit value of ΔN = ±0.20 dex. The star IV-102,
similarly to some other stars in our sample, has very weak fea-
tures of CN bands; hence we could estimate only an upper limit
to its N abundance.

Of course, in the C abundance computations we used the
previously-determined O contents of each star, and for N,
both observed C and O abundances needed to be employed.
Unfortunately we could measure C and N only for MCD and
UVES data. Spectra obtained with several of the other instru-
ments do not have sufficient S/N in the spectral region around
the CH bands to determine meaningful values or limits for C.
For UVES only a sub-sample of six stars have available data in
the spectral range covering molecular bands of CN and CH.

Isotopic ratios 12C/13C were derived for the six MCD stars,
since relatively strong and isolated features of 12CN and 13CN
are available for the 2–0 band of the CN red system. First, several
iterations of synthesis were done to obtain a satisfactory match
to the strengths of the 12CN features, after which syntheses were
calculated with different values of the 12C/13C ratio. The isotopic
ratio was derived from several 13CN features, with the highest
weight given to the blended triplet of lines at 8004.7 Å. Other
features in the same “window” provide a check on the ratio.
α elements: We determined abundances from EWs of the

same Si, Mg, Ca, and Ti (I and II) lines used in M09. We mea-
sured Ca and Ti from usually about 10 transitions, while for Mg
and Si we had few lines, typically about four for Si, and one or
two for Mg.

Heavy Fe-peak elements: We determined abundances for
Cu from synthesis of the Cu i lines at 5105, 5218, and 5782 Å.
Both hyperfine and isotopic splitting were included in the anal-
ysis, with well-studied spectral line component structure from
the Kurucz (2009)5 compendium. Solar-system isotopic frac-
tions were assumed in the computations: f (63Cu) = 0.69 and

5 Available at: http://kurucz.harvard.edu/
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Fig. 4. Observed and synthetic spectra around the La lines at 6262 Å
and 6390 Å for the s-poor star III-14 observed at LICK (left panels),
and the s-rich star III-52 observed with UVES (right panels). In each
panel the points represent the observed spectrum. The magenta line is
the spectrum computed with no contribution from La ii; the black line is
the best-fitting synthesis (with the La abundance given in Table 6); and
the red and blue lines are the syntheses computed with La abundances
altered by ±0.2 dex from the best value.

f (65Cu) = 0.31. For Zn we analyzed the Zn i lines at 4722 and
4810 Å. These lines have no significant hyperfine or isotopic
substructures, and were treated as single absorbers in our syn-
theses. However, the S/N of our spectra that extend down to
4722 Å is poor, thus yielding larger abundance uncertainties.

Neutron-capture elements: For UVES data, Y and Ba are
from M09, to which we add new measurements for Zr, La, Nd,
and Eu. Zirconium abundances for UVES data were calculated
by M09 from EWs. Here we determine Zr from spectral syn-
thesis of just the 5112 Å Zr ii line. Hence, to homogeneously
analyze our data, the UVES Zr abundances were re-determined
with syntheses.

We determined Y, Ba, and Nd contents from EWs of isolated
spectral lines. For Ba abundances we employed the 5853, 6141,
and 6496 Å Ba ii lines. Since these lines have (very narrow) hy-
perfine and isotopic substructures, and suffer blending by other
atomic species to greater or lesser degrees, we used a blended-
line EW analysis option in our synthesis code.

Lanthanum abundances were derived from spectral synthesis
of the La ii lines at 6262, 6390, and 6774 Å. Hyperfine splitting
for the 6262 and 6390 Å lines was taken into account with the
laboratory data from Lawler et al. (2001a). Hyperfine data are
not available for the 6774 Å line, but it is weak enough that no
substantial abundance error results from treating the line as a
single absorber. As examples of La syntheses, in Fig. 4 we show
the 6262 and 6390 Å lines in the LICK spectrum of star III-
14 (left panels) and in the UVES spectrum of star III-52 (right
panels). These stars were chosen for display because they have
nearly the same Teff and log g values, but have contrasting La
line strengths.

For Eu we computed spectral syntheses of the Eu ii line at
6645 Å, considering the hyperfine and isotopic splitting struc-
ture given in Lawler et al. (2001b). We did not obtain Eu from
AAT data since those spectra do not cover the 6645 Å spectral
region. Due to the poor S/N (<30) and line crowding we could
not obtain reliable abundances from stronger Eu ii lines in the
blue-violet region.

4.2. Abundance uncertainties

Stars with repeated observations, for which we reported model
atmospheres and abundances derived from different sources,
suggest good agreement (within observational errors) of their
results. For these stars, we will employ the averaged abundance
results in subsequent discussions.

To verify how model atmosphere uncertainties influence
the derived chemical compositions, we repeated the abundance
derivations for one representative star at intermediate tempera-
ture for each set of data. For this exercise we changed only one
atmospheric parameter each time. Results of these calculations
are listed in Table 4. Assuming that the atmospheric parame-
ter uncertainties are uncorrelated, we estimate total sensitivities
for absolute abundances to be typically ∼0.15–0.20. The abun-
dance ratios [X/Fe] have sensitivities of ∼0.05–0.10 for LICK
and MCD spectra, and slightly higher for APO and AAT data
due to their lower resolution (see Table 4).

An additional source of abundance internal errors is the un-
certainty in the EW measurements. In the case of Fe this con-
tribution is small since a large number of transitions (typically
NFe 1 � 40) are available. The uncertainty can be estimated as
σEW /

√
NFe i − 1, which on average we estimated as ∼0.02 dex

for all data sources. However, for those species with only few (or
even one) transitions, such as Mg i and Si i, the error introduced
by EWs measurements became important, ∼0.10 dex. Particular
caution should also be noted for Ba abundances that have been
measured from only strong and blended lines.

In Table 4 we do not list the sensitivities of either C or N
on the atmospheric parameters. The dominant source of uncer-
tainty for the abundances derived from molecular bands is the
continuum placement. For C the values we obtained for the two
CH bandheads generally agree with each other within ∼0.15 dex,
and we adopted the average of the two measurements as our fi-
nal C abundance. In the case of N, the continuum placement er-
rors are not critical in the the CN red system available for MCD
data. It could became important for the CN band at ∼4215 Å that
we used for the UVES spectra, however the relatively high S/N
(∼50–60) around the CN band of these data served to reduce
such problems. Random uncertainties for [C/Fe] and [N/Fe] are
estimated to be 0.10 and 0.20 dex, respectively.

Recall from Sect. 3 that we have used model atmospheres
from the Kurucz (1992) grid, which include convective over-
shooting. To test the sensitivity of our abundances to this ef-
fect, we repeated the analysis using models without overshoot-
ing (Castelli & Kurucz 2004) for few stars representative of
the entire range in temperature. The main systematic results
of this exercise are: (a) a decrease of �0.10 in log g values;
(b) a decrease in [Fe/H] of ∼0.05; (c) an increase in [N/Fe] of
∼0.10 dex; and (d) negligible effect on other [X/Fe] abundance
ratios. Overshooting in the model atmospheres does not materi-
ally affect our results.

As a final estimate of errors associated with each abundance
measurement, we assume the rms of the abundances of stars with
the same chemical properties. This error includes both the errors
introduced by atmospheric uncertainties, and errors due to EW
measurements. Further details on how the stars with the same
chemical properties were selected are given in Sect. 5.

5. Abundance results

In this section, we consider our abundance results of n-capture,
light, and α elements in M 22, expanding on the discussion of
M09.
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Fig. 5. Correlations of derived [Fe/H] metallicities as functions of ef-
fective temperature (top panel) and gravity (bottom panel). The dashed
line in each panel indicates the mean from the complete 35-star sample,
〈[Fe/H]〉 = −1.76 .

For our entire 35-star sample, we obtain a mean metallicity
of [Fe/H] = −1.76 ± 0.02 dex (σ = 0.10). However, this simple
mean obscures the fact that the total metallicity spread is more
than a factor of two: −1.57 ≥ [Fe/H] ≥ −1.97, a range that can-
not be explained by observational/analytical uncertainties. This
point was demonstrated previously in M09 and in DC09. There
are four stars in common between this work and DC09, who
used intermediate resolution spectra at the Ca ii triplet to derive
[Fe/H] values for 41 M 22 red giants. For these stars the mean
difference in [Fe/H], in the sense of this paper minus DC09, is
small: −0.01± 0.04 dex (sigma 0.09 dex). In Fig. 5 we plot in-
dividual [Fe/H] values as functions of Teff and log g. It is clear
that there are no metallicity trends with either parameter; the
scatter is the same at all M 22 giant branch positions. Below we
consider the metallicity spread in concert with other M 22 abun-
dance anomalies.

A summary of our results for the 18 non-Fe species is dis-
played in Fig. 6, where we show relative abundances [X/Fe] as
a function of [Fe/H]. The numerical ranges of both quantities
are the same in all panels of this figure so that one can com-
pare the variations of different elements with changing metallic-
ity in M 22. The figure organization differentiates between the
“lighter” elements (Z < 26, shown in the two left-hand columns
of panels), and the “heavier” elements (shown in the two right-
hand columns). We have represented stars belonging to two dif-
ferent metallicity groups in M 22 with different symbols: blue
crosses for more metal-poor stars, and red filled circles for less
metal-poor stars. We will justify and expand this distinction in
Sect. 5.1. The error bar in each panel (and in the next figures of
this paper) is an estimate of the uncertainty associated with in-
dividual abundance measures, calculated as the rms of the abun-
dances of stars in the same metallicity group (see Sect. 4.2). For
this estimate we used values from the more metal-poor group
only. Of course, this is an overestimate of the error if intrinsic
abundance variations are present in each group. The light proton-
capture elements (C, N, O, Na, and Al) exhibit intrinsic abun-
dance variations within each metallicity group (see Sect. 5.4).
For these elements, we calculated the rms for stars in metal-poor
group that have [Na/Fe] < +0.2 dex.

Among the elements investigated in this paper, we found a
small abundance trend with temperature for Cu, Zn, and Y rel-
ative to Fe. However, they affect in a similar way both M 22
metallicity groups, and may possibly explain the some of the
internal scatter of these abundances in the two groups, but they

do not influence our basic results. In the next few subsections we
consider the abundance trends among and between elements of
different nucleosynthetic groups.

5.1. The neutron-capture elements

As described in the previous section, we follow M09 in us-
ing different symbols in Fig. 6 and subsequent figures to seg-
regate stars into two metallicity groups. But Fig. 6 clearly sug-
gests that relative n-capture abundances also vary with metal-
licity. Abundances of just Y, Zr, and Ba were reported in our
earlier work. The solar-system abundances of these three el-
ements are due overwhelmingly to the s-process: Y 72%; Zr
81%, and Ba 85% (e.g., Table 10 of Simmerer et al. 2004).
Therefore M09 called stars “s-rich” if [Y/Fe] > 0 and “s-poor” if
[Y/Fe] < 0. This suggested link between n-capture-rich stars in
M 22 with the s-process is sensible but not definitive, because Y,
Zr, Ba also can be synthesized in the r-process (e.g, see the re-
view by Sneden et al. 2008, which has references to individual
r-process-rich stars).

Here we can make a cleaner test by comparing the
abundances of elements with sharply contrasting solar-system
s-process/r-process origins: La (75% s-process) and Eu (only
3% s-process). In Fig. 7 we show abundance ratios [Eu/Fe],
[La/Fe], and [La/Eu] as functions of [Fe/H]. Panels (a) and (b)
are enlargements of their respective panels shown in Fig. 6. From
these data one sees that relative abundances of Eu have no depen-
dence on metallicity, while those of La exhibit a positive corre-
lation. Therefore, in agreement with Da Costa & Marino (2010),
there is no doubt that the variations in [La/Fe] are due to varia-
tions in amounts of s-process material.

We have employed spectrum syntheses to derive the La
and Eu abundances, because the spectral features of both La ii
and Eu ii have significant hyperfine substructure, and the Eu ii
lines also have isotopic splitting. However, the differences be-
tween the s-rich and s-poor groups as defined by M09 can
be easily seen in the spectra without any detailed analyses. In
Fig. 8 we show the La and Eu transitions in stars with sim-
ilar atmospheric parameters but very different derived [Fe/H]
and [La/Eu] ratios. The s-rich star III-3 (Teff/log g/ξt/[Fe/H] =
4000/0.30/2.20/−1.72, Table 3) clearly has much stronger La
lines than does the s-poor star IV-102 (4020/0.20/2.20/−1.97),
while its Eu lines are perhaps even weaker than those of IV-102.
Inspection of other contrasting pairs of stars yields the same con-
clusion. The La/Eu ratios are very different in the s-poor and
s-rich stars.

In panel (c) of Fig. 7 we plot the [La/Eu] ratios of our sam-
ple; here the separation between s-rich and s-poor stars is even
more clear than in the [La/Fe] ratios shown in panel (b). For
the entire M 22 sample, 〈[La/Eu]〉 = −0.30 (Table 7), and the
gap between the smallest [La/Eu] value of the s-rich stars and
the largest [La/Eu] value of the s-poor stars is nearly 0.2 dex.
Therefore for the remainder of this paper we redefine s-rich stars
as those with [La/Eu] > −0.3; filled red circles will be used to
identify them in the figures. Similarly, the s-poor stars hereafter
are those with [La/Eu] < −0.30; they will be plotted with blue
crosses in the figures. This empirically-set dividing line between
the two groups is indicated in panel (c) of Fig. 7. All s-rich
stars also have [La/Fe] ≥ +0.2, as we indicate with the line in
panel (b).

With this defined division by [La/Eu] ratio, 14 stars
(40% of the total sample) are s-rich and 21 stars (60%) are
s-poor. In Table 7 we give the mean abundances for the
whole sample and for the s-rich and s-poor subsets. For two
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Fig. 6. Summary of the abundance results. For all 18 non-Fe species, their [X/Fe] relative abundances are plotted versus their [Fe/H] metallicities.
The horizontal and vertical ranges are identical in all panels. Filled circles are used for stars with s-process enhancements and × symbols are for
stars without such enhancements; see Sect. 5.1 for definitions of these two stellar groups. Error bars in each panel represent estimated errors for
single measurements.

elements A and B, we can define the difference in their abun-
dance ratio between the s-rich and s-poor stars as Δrich

poor[A/B] ≡
[A/B]s-rich − [A/B]s-poor. For La, Δrich

poor[La/Fe] = +0.32± 0.02
(Table 7). Nearly identical results are obtained for the other
four s-process-dominated elements in our survey: Δrich

poor[Y/Fe] =
+0.41± 0.04, Δrich

poor[Zr/Fe] = +0.34± 0.05, Δrich
poor[Ba/Fe] =

+0.36± 0.05, and Δrich
poor[Nd/Fe] = +0.32± 0.04. This consistency

is illustrated in Fig. 9, whose four panels show correlations of
[La/Eu] versus [Y/Eu], [Zr/Eu], [Ba/Eu], and [Nd/Eu]. Note the
relatively large star-to-star scatter in Ba abundances compared to
other elements. This is due to difficulties associated with deriv-
ing reliable abundances for this species which, as described in
Sect. 4.1, is represented by three lines that have hyperfine and
isotopic splitting and are general saturated in M 22 giant star
spectra.

For each star we have formed average s-process-element
abundance ratios [s-process/Fe] and [s-process/Eu], where
s-process here represents the five elements Y, Zr, Ba, La, and
Nd in most cases. In some cases we were not able to de-
rive abundances for one or more of the s-process-elements;
their means were formed from the available abundances. In

Fig. 10 we display these results. For the s-rich stars we
derive 〈[s-process/Fe]〉 = +0.35 ± 0.02 (σ = 0.06) and
〈[s-process/Eu]〉 = −0.07 ± 0.02 (σ = 0.06), while for the s-poor
stars we derive 〈[s-process/Fe]〉 = −0.01 ± 0.01 (σ = 0.06) and
〈[s-process/Eu]〉 = −0.49 ± 0.01 (σ = 0.05). These means and
σ values are also shown in Fig. 10. All the n-capture abundance
data displayed in the bottom panel of Fig. 10 strongly support
the notion of a bimodal separation between the s-rich and s-poor
groups, as suggested by M09, with a typical [s-process/Eu] dif-
ference of ∼0.4 between the groups.

Taking the [La/Y] abundance ratio as a [heavy-s/light-s] in-
dicator, we find that the s-rich stars show also slightly lower
[La/Y] abundance: Δrich

poor[La/Y] = −0.12± 0.05 (Table 7). This
is suggestive of additional light-s synthesis products from the
progenitors to the s-rich stars.

The mean [Fe/H] values for the s-poor and the
s-rich groups are 〈[Fe/H]〉s-poor = −1.82± 0.02 and
〈[Fe/H]〉s-rich = −1.67± 0.01 respectively (see Table 7).
The two groups have a different [Fe/H] with a mean difference
of 0.15± 0.02 dex, a 5σ effect. The standard deviations of the
[Fe/H] values are 0.07 and 0.05 for the s-poor and s-rich which
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Table 7. Mean abundances.

Abundance Mean ± σ # Mean ± σ # Mean ± σ #
total s-poor s-rich

[Fe/H] −1.76 0.02 0.10 35 −1.82 0.02 0.07 21 −1.67 0.01 0.05 14
[C/Fe] −0.50 0.08 0.28 14 −0.65 0.08 0.21 8 −0.30 0.10 0.22 6
[N/Fe] 0.87 0.09 0.32 14 0.67 0.09 0.25 8 1.14 0.07 0.16 6
[O/Fe] 0.34 0.03 0.18 35 0.36 0.03 0.15 21 0.32 0.06 0.23 14
[Na/Fe]NLTE 0.17 0.04 0.25 35 0.08 0.05 0.24 21 0.31 0.05 0.19 14
[Na/Fe]LTE 0.26 0.05 0.27 35 0.15 0.06 0.26 21 0.42 0.06 0.20 14
[Mg/Fe] 0.39 0.02 0.11 35 0.38 0.03 0.12 21 0.39 0.03 0.11 14
[Al/Fe] 0.38 0.05 0.29 31 0.29 0.07 0.30 18 0.50 0.07 0.24 13
[Si/Fe] 0.44 0.01 0.06 35 0.43 0.02 0.07 21 0.45 0.02 0.06 14
[Ca/Fe] 0.30 0.01 0.07 35 0.26 0.01 0.04 21 0.36 0.02 0.06 14
[TiI/Fe] 0.22 0.01 0.07 35 0.19 0.02 0.06 21 0.26 0.02 0.07 14
[TiII/Fe] 0.32 0.01 0.06 32 0.32 0.01 0.06 20 0.32 0.02 0.06 12
[Cu/Fe] −0.88 0.02 0.14 35 −0.94 0.03 0.14 21 −0.79 0.02 0.09 14
[Zn/Fe] 0.13 0.02 0.09 24 0.10 0.03 0.11 14 0.16 0.02 0.07 10
[Y/Fe] 0.07 0.04 0.24 32 −0.08 0.03 0.13 20 0.33 0.03 0.10 12
[Zr/Fe] 0.21 0.04 0.22 30 0.07 0.04 0.16 18 0.41 0.03 0.11 12
[Ba/Fe] 0.09 0.04 0.22 35 −0.05 0.03 0.12 21 0.31 0.04 0.13 14
[La/Fe] 0.14 0.03 0.18 34 0.01 0.01 0.06 20 0.33 0.02 0.09 14
[Nd/Fe] 0.17 0.03 0.19 32 0.05 0.02 0.09 20 0.37 0.03 0.11 12
[Eu/Fe] 0.46 0.01 0.07 30 0.49 0.01 0.05 19 0.42 0.02 0.08 11
[La/Y] 0.06 0.03 0.15 31 0.11 0.04 0.16 19 −0.01 0.03 0.11 12
[(C + N + O)/Fe] 0.33 0.02 0.08 14 0.28 0.02 0.05 8 0.41 0.02 0.04 6
logε(C + N + O) 7.68 0.04 0.16 14 7.57 0.03 0.09 8 7.84 0.03 0.07 6

Fig. 7. La and Eu abundances of M 22 as functions of [Fe/H]. In pan-
els a) and b) we repeat the [Eu/Fe] and [La/Fe] panels of Fig. 6. In
panel b) we have added a dashed line at [La/Fe] = +0.2 to show the di-
vision in this abundance ratio between s-rich and s-poor stars; see text
for discussion of this choice. In panel c) we plot the [La/Eu] values; the
separation between the two groups of stars is more obvious here, and
the dashed line represents our chosen split at [La/Eu] = −0.3. Symbols
are as in Fig. 6.

might indicate that there is no [Fe/H] spread within each group,
if the relative errors are of the order of 0.05 dex. Some small
overlap in metallicity between the two s (and Fe)-groups, at
roughly −1.8 <∼ [Fe/H] <∼ −1.7 cannot be excluded, as apparent

Fig. 8. Comparison of the spectra of La lines (top panels) and Eu lines
(bottom panels) in two stars with similar atmospheric parameters but
substantially different derived La abundances. The displayed data are
taken from the MCD spectra. The spectrum in red is that of the s-rich
star III-3, and the one in blue is that of the s-poor star IV-102.

in the top panel of Fig. 10, but the difference in [Fe/H] between
s-rich and s-poor groups is not much larger than the estimated
observational error associated to [Fe/H] of ∼0.07.

As demonstrated in M09 (see their Fig. 12), due to the limits
imposed by our observational errors, the relatively small differ-
ence in [Fe/H] between the two stellar groups in M 22 is much
more clearly recognizable by separating stars on the basis of
their s-richness. We note however that a similar difference in
[Fe/H] as the one found in M09 and confirmed here, is also con-
firmed by DC09 who found that two groups of stars with mean
metallicities of [Fe/H]−1.63 and [Fe/H] = −1.89.
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Fig. 9. Abundance ratios [X/Eu] for elements Y, Zr, Ba, and Nd as func-
tions of [La/Eu]. In each panel, the dashed line represents equality of
the displayed abundance ratios. Symbols are as in Fig. 6.

Fig. 10. Upper panel: average s-process abundance ratios with respect
to Fe, plotted as functions of [Fe/H]. Bottom panel: average s-process
abundance ratios with respect to Eu, plotted as functions of [La/Eu]. See
the text for how the averages were computed. In each panel, the solid
lines represent the means for each group, and the dotted lines represent
the sample deviations σ. Symbols are as in Fig. 6.

Our focus in the rest of the present paper is to study the abun-
dance behavior of different elements in stars belonging to the
s-poor or s-rich groups, as defined by their [La/Eu] ratios6.

6 As is often the case with shorthand labels, the s-rich and s-poor des-
ignations should not be taken too literally. In M 22, the s-poor popula-
tion alternatively could have been labeled “r-rich”, because they have
[s-process/Fe] � 0.0 and [r-process/Fe] � +0.4. The s-rich population
could have been labeled “r+ s-rich” because they have overabundances
of all n-capture elements relative to Fe. What is secure is the addition of

Fig. 11. Average s-process abundance ratios with respect to Eu, plotted
as functions of the ratios of the heavy Fe-peak elements Cu and Zn to
Fe. Error bars in blue and red represent the mean values for the s-rich
and s-poor stars. Symbols are as in Fig. 6.

5.2. The heavy Fe-peak elements

Copper is very underabundant in M 22, just as it is in other low
metallicity field stars (Sneden et al. 1991; Mishenina et al. 2002)
and globular clusters (Simmerer et al. 2003). However, [Cu/Fe]
appears to vary in concert with the s-process elements, being
higher in the s-rich than the s-poor group by Δrich

poor[Cu/Fe] =
+0.15± 0.04 (Table 7). In the top panel of Fig. 11 we illus-
trate the Cu distributions in the two groups, plotting them ver-
sus their s-process enrichment. The much larger spread in indi-
vidual [Cu/Fe] values in the s-poor stars compared to the s-rich
stars is worth noting. For each s-group we represented the mean
Cu abundance and the associated rms. The difference among the
two groups is at 3σ level. However, given the uncertainties as-
sociated with individual Cu abundance measurements, interpre-
tation of this trend should be viewed with caution. Certainly the
s-rich/s-poor [Cu/Fe] difference is much less than that observed
for the s-process elements discussed in Sect. 5.1.

If the [Cu/Fe] trend is real, it could put some new constraints
on scenarios for the origin of this element. The nucleosynthetic
sites of copper have been discussed by Sneden et al. (1991), who
suggested that much of the Cu in metal-poor stars forms in the
weak component of the s-process, at which time neutron cap-
tures on Fe-peak elements take place during the late stages of
core He-burning (Couch et al. 1974; Raiteri et al. 1991) in mas-
sive stars. Because the weak component of the s-process is a
secondary mechanism for nucleosynthesis, this site for the for-
mation of copper agrees qualitatively with a relationship of in-
creasing [Cu/Fe] as a function of [Fe/H] in metal-poor stars. The
Cu distribution that we observe in M 22 provides mild support
for such an s-process origin, due to the weak component in mas-
sive stars, for the more metal-rich stars.

much more s-process than r-process material in the higher metallicity
stars of M 22.
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As a check on the Cu results, note that our Zn abundances
exhibit no trend with s-process enrichment within the observa-
tional errors: Δrich

poor[Zn/Fe] = +0.06± 0.04 (Table 7). The indi-
vidual abundances are plotted versus s-process enrichment in the
bottom panel of Fig. 11. The s-poor and s-rich stars occupy the
same [Zn/Fe] space in this figure. No observable difference in
Zn between s-rich and s-poor groups would have been expected
from theory. However the observational errors (represented by
error bars in Fig. 11) are large enough to mask possible small
abundance variations within the two groups. The small positive
value of δ[Zn/Fe] probably illuminates the limit of our abun-
dance set to provide meaningful nucleosynthesis scenarios for
M 22.

5.3. The α elements

The observed α elements in M 22 are Si, Ca, and Ti. We do
not include O and Mg in this group because in globular clus-
ters their abundances can be affected by proton capture nucle-
osynthesis, i.e. different stars in GCs can have lower O, and in
some cases lower Mg. All α elements are overabundant in M 22.
From the data in Table 7 for the whole 35-star sample, we obtain
〈[α/Fe]〉 = +0.33 ± 0.01 (σ = 0.04). These α-element enhance-
ments are in excellent agreement with those reported by M09.
Note that the mean O and Mg abundances are nearly the same as
the other α’s: 〈[O/Fe]〉 = +0.34 and 〈[Mg/Fe]〉 = +0.39. These
elements will be discussed in detail in Sect. 5.4.

No correlation with s-process peculiarity can be detected
for Si, and Ti; their [X/Fe] ratios are identical in s-rich and
s-poor stars, within the abundance measurement uncertainties.
The Ti i−Ti ii abundance differences have a small trend with tem-
perature, due almost entirely to a variation in Ti i; the Ti ii abun-
dance distribution is constant with Teff . This behavior may reflect
NLTE effects in the Ti i abundances. NLTE overionization of Ti i
is likely to be occurring, for the average Ti ii abundances are
higher than Ti i ones. Probably Ti ii abundances are more reliable
than Ti i ones (see Bergemann 2011, for a detailed discussion).

From UVES spectra of 17 stars, M09 claimed that a small
but statistically significant positive correlation existed between
[Ca/Fe] and [Fe/H] (or [s-process/Fe]). As shown in Fig. 12,
our larger sample confirms this trend at approximately the same
level: Δrich

poor[Ca/Fe] = +0.10± 0.02 (Table 7).

5.4. The proton-capture elements

We now consider the abundances for C, N, O, Na, Mg, and Al, all
of which can be affected by proton capture reactions. In Fig. 13
we display the [X/Fe] values obtained for each of these elements
as a function of the mean 〈[s-process/Eu]〉 abundance. As in pre-
vious figures, we use different symbols to represent the s-poor
and s-rich groups. The means and the σ values obtained for each
group are also shown. Since for 5 out 8 stars in the s-poor groups
we were able to measure only upper limits for the N abundance,
the plotted mean is of course also an upper limit.

Inspection of Fig. 13 suggests that s-rich stars have, on av-
erage, higher C and N contents, and from Table 7 we com-
pute Δrich

poor[C/Fe] = +0.35± 0.13 and Δrich
poor[N/Fe] = +0.47± 0.11.

As noted by M09, correlations (with large star-to-star scatter)
are observed between the s-process groups with Na and Al:
Δrich

poor[Na/Fe] = +0.23± 0.07 and Δrich
poor[Al/Fe] = +0.21± 0.10.

In contrast, the p-capture O and Mg elements have nearly the
same abundances in both groups: Δrich

poor[O/Fe] = −0.04± 0.07
and Δrich

poor[Mg] = +0.01± 0.04.

Fig. 12. Calcium abundance ratios plotted as a function of the average
s-process abundance ratios with respect to Eu. Symbols are as in Fig. 6.

Fig. 13. [C, N, O, Na, Mg, Al/Fe] abundance ratios as a function of the
mean [s-process/Eu] content. Symbols are as in Fig. 6.

More illuminating are the abundance comparisons among
the p-capture elements. As shown by M09, Na and O abun-
dances are anticorrelated in M 22 (see their Fig. 3) just as they
are in all GCs that have been studied so far. In Fig. 14 we show
the Na and O data for our larger sample, by using both the LTE
Na values (left lower panel) and the NLTE ones (right lower
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Fig. 14. [Na/Fe] as a function of [O/Fe]. The bottom panels display all
stars in the Na-O plane by using LTE (left) and NLTE Na abundances
(right). The top left-hand panel contains only s-poor stars and the top
right-hand panel contains only s-rich stars. The dashed lines in the top
panels represent a free-hand representation of the mean Na-O trend of
only the s-poor stars. Symbols are as in Fig. 6.

Fig. 15. [Al/Fe] abundance ratios as a function of [Na/Fe] (left panel),
and [Mg/Fe] (right panel). Symbols are as in Fig. 6.

panel). Our sample makes it clear that the NaO anticorrelation
exists in both M 22 populations, but in somewhat different do-
mains of O-Na space. The s-rich and s-poor stars span a simi-
lar range in oxygen, −0.1 � [O/Fe] � +0.6, but not in sodium:
−0.3 � [Na/Fe]s-poor � +0.5 and +0.0 � [Na/Fe]s-rich � +0.6. To
better visualize the difference between the Na-O pattern in the
two s-process groups, we have drawn by hand a fiducial line
tracing the Na-O anticorrelation shape for s-poor stars, and su-
perimpose this line to the s-rich stars (upper panels of Fig. 14).
With this aid, we estimate that at any [O/Fe] ratio, the [Na/Fe]
ratio in an s-rich star is ∼0.2 dex larger than in an s-poor star.
The different behavior of s-poor and s-rich stars in the Na-O an-
ticorrelation, even if with some differences, recalls the one in
ω Cen (see Johnson & Pilachowski 2010; Marino et al. 2011).

Both M 22 populations exhibit positive abundance correla-
tions of Al with Na, as illustrated in the right panel of Fig. 15.
However, here also the s-poor and s-rich stars are distinguish-
able: only the s-poor stars have [Na or Al/Fe] < 0. No Mg
variation with either Al or Na were discovered by M09, and
our expanded sample confirms this result (see the left panel of
Fig. 15). M09 suggested that an intrinsic Mg variation might be

too small to be detected in the face of observational errors. For
our complete 35-star sample, as well as the s-poor and s-rich
subsamples, σ[Mg/Fe] � 0.11−0.12 (Table 7). Such values are
not much larger than those for [Si/Fe], [Ca/Fe], [Ti/Fe], and
[Zn/Fe], which we claim are invariant in M 22 stars. A possi-
ble Mg-Al anticorrelation may be inferred from the half-dozen
stars in Fig. 15 with the lowest [Mg/Fe] ratios; these all have
high [Al/Fe] ratios. However, this is not a statistically defensible
conclusion, and pursuit of this point would need careful analysis
of a larger M 22 sample.

The lack of a clear Mg-Al anticorrelation does not necessar-
ily mean that proton captures on Mg are ruled out. If we sup-
pose that the higher observed Mg abundances are representative
of “primordial” M 22 material (that is, prior to any p-capture
synthesis events), and if primordial Al is indicated by the lower
observed Al abundances, then for this material [Mg/Al] ∼ +0.5,
or log ε(Mg/Al) ∼ +1.6. Then if (for example) 10% of this Mg
were to be converted to 27Al by p-capture in the primordial ma-
terial, the resulting Al would go up by a factor of four, nearly
the range covered by our data. The 10% decrease in Mg would
be nearly impossible to be detected. Additionally, if the ab initio
abundance of Mg contains substantial amounts of 25Mg and/or
26Mg, then the final Al abundance would be even larger after
p-captures.

In Fig. 16 we present correlations between C abundances and
N, Na, O abundances. No trends among these elements are ap-
parent if we consider our sample of stars as a whole. However,
segregation of points into two different s-Fe groups provides evi-
dence for unique C-N (left-hand panel) and C-Na (middle panel)
anticorrelations within each group, as expected from CNO-cycle
enrichment within each M 22 population separately. However,
we cannot discern any obvious nucleosynthetic signature in the
C-O plot (right-hand panel), either from the whole sample or in
the two populations individually.

In Fig. 17 the CNO abundance sum is represented as a
function of [s/Fe], as usual calling the reader’s attention to
the s-poor and s-rich groups with different symbols in the fig-
ure. These CNO totals are shown as [(C+N+O)/Fe] in the left-
hand panel and as logε(C+N+O) in the right-hand panel. The
M 22 population split is evident: s-rich stars have on average
a higher [(C+N+O)/Fe] abundance, with Δrich

poor[(C+N+O)/Fe] =
+0.13± 0.03. The mean difference in the [(C+N+O)/Fe] content
is at the level of >∼3σ (see Table 7), but note that we could mea-
sure only an upper limit to the N abundance for almost all the
s-poor stars, suggesting that the real difference could be larger.

A final piece of evidence in the M 22 abundance puzzle
comes from our analysis of the 8000 Å region of six MCD stars
for which we were able to derive 12C/13C ratios (Table 5). Note
that star IV-102 has very weak CN red-system bands at all wave-
lengths, and our derived 12C/13C value should be treated with
caution. The APO and LICK spectra also cover the 8000 Å spec-
tral region. However, neither of these data sets have sufficient re-
solving power and S/N to permit reliable carbon isotopic ratios.

Although the six stars with derived carbon isotopic ratios
constitute only a small subset of our M 22 giants, all of them
have 3.0 < 12C/13C < 5.0 (Table 5). Our low value for III-3
is supported by the earlier Brown et al. (1990) analysis of this
star, for which they obtained 12C/13C = 4. Star IV-20, with no
MCD data in the present study, also has a very low isotopic ra-
tio according to Brown et al. : 12C/13C = 4. Finally, Smith &
Suntzeff (1989) used low-resolution spectra of the CO infrared
first-overtone vibration-rotation bands to derive 12C/13C esti-
mates for five M 22 stars. For three stars (III-3, III-12, and IV-

A8, page 13 of 24

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116546&pdf_id=14
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116546&pdf_id=15


A&A 532, A8 (2011)

Fig. 16. From the left to the right: nitrogen, sodium and oxygen abundance ratios as a function of [C/Fe]. Symbols are as in Fig. 6.

Fig. 17. [(C+N+O)/Fe] (left panel) and log ε(C+N+O) (right panel)
as a function of 〈[s-process/Eu]〉. Symbols are as in Fig. 6. The dashed
lines represent the error associated with single measures, the black error
bars represent the mean CNO abundance contents for the two s-groups
and the statistical error associated with the mean.

102) their ratios are in excellent agreement with ours. However,
for stars IV-97 and V8 (with no available values in our study)
Smith & Suntzeff derived higher 12C/13C values: ≥10 and ≥40,
respectively. In summary, the carbon isotopic values for most
M 22 giants appear to be very low, normal for the stars similar to
the ones studied here, but a larger-sample study will be needed
to determine if stars with substantially larger ratios are few in
number or common.

6. M 22 low resolution spectroscopy
and photometry

Norris & Freeman (1983) gathered low resolution blue spectra
of 130 giants in M 22, and from these data determined three ab-
sorption indices: S (3839), for the CN 3883 bandhead strength;
A(Ca), for the Ca iiH&K strength; and W(G), for the CH G-band
strength. The CN and the Ca indices were corrected to first or-
der for the natural changes in absorption strengths due to Teff
and log g differences along the M 22 giant branch. This was ac-
complished by first drawing fiducial lines to express the strength
changes as functions of V magnitude, and then measuring off-
sets δS (3839) and δA(Ca) from these lines. Norris & Freeman
showed that a positive correlation exists between δS (3839) and
δA(Ca), as well as between W(G) and δA(Ca). In Fig. 18 we
compare these indices with some abundances derived in this pa-
per. The upper two panels, showing the S (3839) index as a func-
tion of [Fe/H] and [La/Eu], clearly demonstrate that our derived
[Fe/H] metallicities and the s-process abundances also track the
CN strength indices. In the middle panels we show that there is
a mid correlation between W(G) with [C/Fe] and S (3839) with
[N/Fe]. Note also the positive correlation between the A(Ca) in-

Fig. 18. Comparison of the chemical abundances derived in this paper
with the indices by Norris & Freeman (1983): CN band-strength in-
dices δS (3839) plotted as a function of the [Fe/H] (left-upper panel)
and [La/Eu] (right-upper panel), W(G) and δS (3839) as a function of
[C/Fe] (left-middle panel) and [N/Fe] (right-middle panel), and δA(Ca)
as a function of [Ca/H] (left-bottom panel) and [Ca/Fe] (right-bottom
panel). Symbols are as in Fig. 6.

dex and our derived abundance ratios [Ca/H] and [Ca/Fe] (lower
two panels).

In addition we have coupled our abundances to the
Strömgren photometric data of Richter et al. (1999). Those au-
thors demonstrated the existence of a bimodal distribution in the
m1 index of M 22 giants, which they associated with CN varia-
tions. Here we match our spectroscopic results with photometry
in two different ways. In the top panels of Fig. 19 purely photo-
metric data are displayed, combining the Strömgren colours with
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Fig. 19. Top panels: I-b − y (left) and I-m1 (right) CMD for M 22, corrected for differential reddening. The grey symbols represent HB stars
(triangles), probable AGB stars (circles) and RGB bump stars (crosses) selected in the I-(b − y) CMD. Spectroscopic data are superimposed with
s-rich stars represented by red circles, and s-poor stars by blue crosses, according with the other figures. Bottom panels: colour difference Δm1

between each analyzed star and a reference fiducial line represented as a dotted line (left panel). On the right panel the 〈[s/Fe]〉 average abundances
are shown as a function of Δm1. The sources for the photometric data are given in Sect. 2.

I magnitudes taken from Stetson’s database, after correcting the
data for differential reddening. Our stars, coded as in previous
figures, show little differences in the b − y versus I plot (top-left
panel). However, a clear split is apparent between the s(Fe)-poor
and s(Fe)-rich stars in m1 versus I plot (top-right panel). As the
m1 index is strongly affected by the blue CN bands and overall
metallicity, we expected this bimodal distribution as a conse-
quence of the higher mean abundance in both C and N of the
s-rich stars, as shown in Fig. 13. Hence, the s-rich stars populate
the RGB sequence associated to the stars enriched in CN, and
s-poor stars the branch associated to weaker CN band strengths
(see Richter et al. 1999).

Of course, our sample of stars could be contaminated by
AGB stars, but the presence of few AGB stars does not affect
the results, as discussed also in M09. A visual inspection of the
stars on the CMD on the right-upper panel of Fig. 19, suggests
that some AGB stars could be present among both the s-poor
and the s-rich RGB. The AGB lies blueward of the RGB at a
given luminosity. But identification of blue-offset stars in the I
vs. b−y CMD (left-upper panel of Fig. 19) as probable members
of the AGB could be misleading, because we also expect to find
the slightly more metal-poor, s-poor stars on the blue side of the
RGB. Unambiguous assignment of AGB stars in this manner is
not easy.

On the other hand, systematically redder colours for the
s-rich stars would lead to a low probability of being shifted by
photometric errors into the AGB region. Indeed in M09, six out
of seven probable AGB stars, belong to the s-poor group. Note
that the possible presence of AGB stars in M09 was based only
on a visual inspection of the stars in the I vs. (B − I) CMD, and
doesn’t necessarily mean that AGB stars preferentially belong to
the s-poor group.

In any case, assuming that all the probable AGB stars in M09
are indeed true AGB members, their s-poor sample would in-
clude half RGB and half AGB stars, tracing the primordial com-
position of the cluster. The chemical s-element abundances of
probable AGB belonging to the s-poor group of M 22 could not
reflect “in situ” phenomena, as the third dredge-up that would
lead to enhanced s-process abundances in the atmosphere (and
additionally is expected for much more massive AGB stars),
but must reflect the primordial composition of the s-poor group.
Moreover, we expect only a ∼10% contamination of giant pop-
ulation by AGB stars (Lloyd Evans 1975), hence it is unlikely
that the 50% of stars in the s-poor sample of M09 are real AGB.
From this discussion we conclude that the presence of few AGB
stars does not influence our results, so for the present study we
consider all the sample as composed by RGB, with a small con-
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tamination by AGB stars, without identifying individual candi-
date AGB stars.

To illuminate the relation between the m1 values of s-rich
and s-poor stars and their average s-element contents, we used
the following procedure. First,we drew a ridge line for the
blue RGB, by putting a spline through the median m1 found
in successive short intervals of I magnitude, and obtained the
dashed-dotted line shown in the upper-right panel of Fig. 19.
We then calculated for each star its m1 residuals from the ridge
line (called here Δm1). We plotted the I magnitude versus Δm1
as illustrated in the lower-left panel of Fig. 19. Finally, in the
lower-right panel we show the average s-element abundance as
a function of Δm1. Clearly, the mean 〈[s/Fe]〉 increases with in-
creasing Δm1.

7. Summary and discussion

We have presented a high resolution spectroscopic analysis of
35 RGB stars in the GC M 22 from an heterogeneous sample
of data, homogeneously analyzed. We have confirmed and ex-
tended the results of M09 that M 22 hosts two groups of stars
whose mean [Fe/H] metallicities differ by 0.15 dex (see also in
DC09). These two groups turn out to have different chemical
properties. First, they show a different s/r abundance ratio. The
two groups appear to be homogeneous in the r-process element
Eu, that isΔrich

poor[Eu/Fe]∼ 0. However, the s/r distribution, clearly
traced by the [La/Eu] abundance ratio, appears to be bimodal,
with the s-rich stars having La/Eu ratios about 2.5 times larger
than in the s-poor ones, or Δrich

poor[La/Eu] ∼ 0.4. A bimodal split
between the s-rich and s-poor of about the same amount with
respect to Eu is observed also in the other s-process dominated
species (Ba, Y, Nd, Zr). This demonstrates that the stars with
higher metallicity are also more enriched in material processed
through s processes.

Since the most obvious M 22 abundance anomaly is the
spread in s-process abundances, it is good to re-emphasize that
[Eu/Fe] remains constant, within observational errors, indepen-
dent of the Fe abundance. It is generally believed that mas-
sive stars are responsible for the Fe abundance and α elements.
However, only a subset of these same stars appear to be re-
sponsible also for the production of r-process material. This can
be seen in large-sample abundance surveys of metal-poor stars,
which show relatively small star-to-star scatter in [α/Fe] ratios
but an enormous range in [Eu/Fe] ratios (see the summary of
many studies in Fig. 14 of Sneden et al. 2008). The constancy
of [Eu/Fe] points M 22 to a common ratio of r-process-donating
massive stars to Fe and α-process stars in the ab initio IMF, irre-
spective of the Fe-metallicity of the two groups. This constancy
is not easily achieved, and may require fine tuning of the evolu-
tionary scenarios for M 22.

Evidence for a small increase in [Cu/Fe] with increasing
metallicity has been detected for our sample of stars: s-rich stars
have higher [Cu/Fe], while their [Zn/Fe] values are essentially
the same at all metallicities. This hints at an s-process contri-
bution from the weak component in the production of Cu, but
the relatively large observational errors associated with [Cu/Fe]
suggests caution in this interpretation.

The relative abundances of the α elements (Si and Ti)
with respect to Fe are constant, within observational errors,
with metallicity. The curious trend of larger [Ca/Fe] ratios by
Δrich

poor[Ca/Fe] ∼ 0.1 in the higher metallicity M 22 stars found
in M09, is confirmed here. Previous work, including Norris &
Freeman (1983) and Lehnert et al. (1991), saw a range in [Ca/H]
of about 0.3–0.4 dex. Our observed range in [Ca/H] is larger

than the one in [Fe/H], and is comparable to what was reported
in Norris & Freeman (1983) and Lehnert et al. (1991). This in-
crease in [Ca/Fe] with [Fe/H] is comparable to what is seen in
ω Cen over a similar [Fe/H] range (see two upper left panels of
Fig. 12 of Johnson & Pilachowski 2010). The difference in the
mean [Ca/Fe] in ω Cen between the metal-poor and the metal-
intermediate groups from Johnson & Pilachowski is 0.08 dex
(with a small mean error due to the large sample), which is very
similar to the 0.1 dex difference we see in M 22.

Among the light p-capture elements, M 22 stars show the
same sort of Na-O anticorrelation and Na-Al correlations that
have been extensively cataloged in mono-metallic clusters (e.g.
Carretta et al. 2009b). This indicates that the Ne→Na and the
Mg→Al conversions have been active in M 22. The Na-O an-
ticorrelation is present in each s-group, with s-rich and s-poor
stars spanning a similar range in [O/Fe], but a different range in
[Na/Fe], i.e. the average [Na/Fe] at a given [O/Fe] is higher in
the s-rich stars than the s-poor by about 0.2 dex. Carbon and ni-
trogen reveal the typical anticorrelation expected from extensive
CN-cycle processing, but this becomes apparent only when we
separate stars in the two s-groups. On average, the s-rich stars
have higher C, N, and Na abundances, while they have similar
O and Mg. Hence, the average overall CNO abundance between
the two s-groups differs by at least a factor of two.

The complexity of the chemical properties of M 22 also re-
flects on the CMD. A double RGB is visible when using the m1
Strömgren index, sensitive to the CN bands and to metallicity
(Richter et al. 1999): the lower [Fe/H] s-poor stars populate a
sequence on the blue side, while the higher [Fe/H] s-rich ones
obviously occupy a redder branch. A bimodal distribution is vis-
ible also on the SGB (Piotto 2009, M09), likely associated with
the double RGB. We thus expect (but cannot prove with our data)
that M 22 SGB stars have the same bimodality in s-process el-
ements and Fe exhibited by the giants studied in this work. If
true, the overall CNO differences will play the dominant role
in producing the SGB split, since M09 demonstrated that sim-
ple Fe-peak metallicity variations are not sufficient to generate
enough of the observed photometric breadth in this region of
the colour-magnitude diagram. Cassisi et al. (2008) and Ventura
et al. (2009) have suggested that a bulk CNO abundance differ-
ence can account for a similar SGB split in NGC1851 (Milone
et al. 2008). However, spectroscopic results for this cluster are
contradictory, as evidence for CNO variations have been found
by Yong et al. (2009), but not by Villanova et al. (2010).

Our work highlights the peculiarity of M 22 among GCs.
We consider “normal” GCs to be those that are: (i) essen-
tially mono-metallic, i.e., all their stars appear to have the same
[Fe/H]; (ii) chemically homogeneous in the heavy elements; but
(iii) chemically inhomogeneous only in the light element abun-
dances, as revealed by variations in the CH, CN, NH bands,
and in the O, Na, Al, and Mg abundances. Nearly all GCs
have these characteristics. However, in M 22, in addition to
the O-Na anti-correlation there is a spread in the heavier ele-
ments, a characteristic that is seen only in a small number of
other systems. Such systems include ω Cen, where the range
in heavy elements is large and well established, the Galactic
Bulge cluster Ter 5 (Ferraro et al. 2009), M 54, the central star
cluster of the Sagittarius dwarf (Sarajedini & Layden 1995;
Bellazzini et al. 2008; Carretta et al. 2010a), the outer halo clus-
ter NGC 2419 (Cohen et al. 2010), and perhaps NGC 1851
(Carretta et al. 2010b). The presence of heavy element abun-
dance ranges in these systems necessarily means their nucle-
osynthetic history must be more complicated than for “normal”
GCs, though whether it is an extension or a different process re-
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mains unclear. Current scenarios for explaining the abundance
anomalies in “normal” GCs argue that polluters from a first
stellar generation release into the intra-cluster medium large
amounts of material from which a second generation could
form. The candidate polluters are those expected to undergo
the chemical processes responsible for the observed enrichment
in Na/N/Al and depletions in O (and in some cases in Mg).
Candidate first-generation element donors include intermediate
mass asymptotic giant branch (AGB) stars (D’Antona & Caloi
2004), fast rotating massive stars (Decressin et al. 2007), and/or
massive binaries (de Mink et al. 2009). Note also that Marcolini
et al. (2009) have proposed an alternative scenario in which the
first generation is the one with enhanced Na and depleted O, at
odds with what is proposed in most models.

It is difficult to fit M 22’s chemical properties into any of
these cluster enrichment history proposals; its history has been
more complicated than normal GCs. The pattern of differences
in [Fe/H], in the s-process dominated elements, and in [Ca/Fe]
in M 22 resembles the case of ω Cen, albeit in M 22 the range
in [Fe/H] is more than a factor of 20 lower. However, the M 22
s-process abundances apparently differ from those in ω Cen. In
the latter, the s-process abundance ratios rise seemingly mono-
tonically with [Fe/H] before reaching a plateau at constant
[s-process/Fe] (Norris & Da Costa 1995a; Smith et al. 2000;
Marino et al. 2011; Stanford et al. 2010; Johnson & Pilachowski
2010). However, in M 22, while the range in [s-process/Fe] is
comparable to that in ω Cen, our results do not suggest a mono-
tonic increase of [La/Fe] with [Fe/H], rather there appears to be
an overlap, possibly due to observational errors, in [Fe/H] values
between the s-poor and s-rich groups, with the location of the
metal-rich, s-poor star II-31 could being particularly striking.
These differences may suggest different nucleosynthetic histo-
ries for the two clusters, and could contrast with that proposed
by Da Costa & Marino (2010) who concluded that the s en-
richment processes in ω Cen and M 22 were similar, at least in
the [Fe/H] range common to both clusters. Indeed, aside from
the spread in [Fe/H] present in the two s-process groups, and
their difference in [Ca/Fe] values, it appears, considering the
[s-process/Fe] abundance ratios and those for other heavy ele-
ments in each group as constant, that two groups each behave
separately in a similar way to normal mono-metallic GCs.

Interpretation of the M 22 abundance pattern would be much
easier without the need to account for the Ca, Fe and s-process
variations. The presence of a group of stars with higher [Fe/H]
that also have little change in Eu/Fe and most α/Fe ratios could
simply argue that multiple episodes of core-collapse super-
nova (SNII) played a role in the evolution of M 22. The larger
[s-process/Fe] abundances in the higher metallicity M 22 stars
is a significant complication. In current self-enrichment models,
the only ways to account for these observations is to consider an
unique source for Fe and s-process elements, or a fine tuning in
the times of accumulation of the material from which successive
generations form or not evolving as an isolated system so that
external gas flows can contribute to the enrichment processes.

In the Sun, the s-process contribution is mainly due to two
components: (i) the “main” component attributed to low mass
AGB stars (∼2–4 M�; Busso et al. 1999), and (ii) the “weak”
component attributed to massive stars (Raiteri et al. 1993, and
references therein). If the s-process enrichment in the s-rich stars
in M 22 is due to the main component, this would imply a rela-
tively large difference in age among the s-rich and s-poor stars,
since the low mass AGB stars evolve in times even of the order
of Gyrs. Low mass AGB stars are also expected to increase the
total CNO abundances, which would be consistent with our re-

sults. A major s-process contribution from the weak component
would be consistent with a much faster evolution of the cluster,
and with a smaller age difference between the s-groups. Note
that the weak component mainly produces the lighter nuclei in
the s-chain, like 58Fe, 63Cu, and 65Cu. Since, as suggested by
Sneden et al. (1991), much of the Cu in metal-poor stars can be
produced in the weak component of the s-processes, a possible
Cu increase with Fe qualitatively supports the idea that massive
stars contribute to the pollution of the intra-cluster medium in
M 22. The advantage of this scenario is that the same stars can
be the sources for increases in the metallicity and s-process el-
ements. However, if this scenario is correct it would imply that
massive stars also produce enough of the heavier s-process nu-
clei to quantitatively account for the observed Ba, La, and Nd
abundances in the s-rich group of M 22 stars. Simply following
this scenario, after the evolution of massive stars belonging to the
metal/s-process-poor group (possibly from both Na-poor/O-rich
and Na-rich/O-poor populations), a second generation slightly
enhanced in Fe, and enriched in s-process elements formed from
the material created by these massive stars that end as SNII.
Then, the Na-poor/O-rich stars from the s-rich stars form their
own Na-O anticorrelation (and Al-Na correlations), similarly to
normal GCs.

Instructive at this point, is again the comparison with ω Cen,
and its constancy in [Cu/Fe]. In this extreme cluster the enor-
mous elemental variations in n-capture have been interpreted as
due to the contributions from low-mass AGB stars via s-process
nucleosynthesis (e.g., Norris & Da Costa 1995a), thus the ob-
served constant values of [Cu/Fe] found by Cunha et al. (2002)
do not fit a picture in which Cu is produced in AGB stars. This
could mean that we shouldn’t be looking to the mechanism that
produces the s-process abundance difference between the two
M 22 groups to explain the [Cu/Fe]. In turn, this could suggest
that in M 22 we may well have evidence that weak-s in mas-
sive stars is contributing to the nucleosynthesis, and possibly is
not in ω Cen. As previously said, we express caution with our
results on [Cu/Fe] abundances as the associated observational
errors are relatively large. However, the contribution from the
weak-s component in M 22 could be supported also by the lower
[heavy-s/light-s] ratio, traced by the [La/Y] abundances, in the
s-rich stars that have also higher [Cu/Fe]. Indeed, the weak-s
component produces more light-s, than heavier s-process ele-
ments.

As an alternative scenario, we could suppose the following
sequence of events: 1) SNII in the cluster explode and expel ma-
terial far from the cluster center at high velocity; 2) intermediate
AGB stars pollute the medium of material enriched in Na/N/Al
and depleted in O, this material goes into the cluster central
region via cooling flow (as predicted by D’Ercole et al. 2008),
hence a second generation of stars (Na-rich, O-poor) formed; 3)
at the end, low mass AGB stars evolve and expelled material
enriched in s-process-elements. A second cooling flow involves
the material ejected from low mass AGB and the one expelled
by the first SNII. The latter should need a longer time to be re-
attracted towards the center of the cluster because it was ejected
at higher velocity. The material from low mass AGB and SNII
mix together in the center of the cluster, and another star forma-
tion event occurs forming stars enriched in s elements and Fe at
the same time.

These evolutionary scenarios require special circumstances
to occur for M 22 but not for the vast majority of GCs. Another
qualitative attempt to explain M 22’s abundance set is to suppose
that the present M 22 is composed of the merger of two originally
clusters. Of course, in this hypothesis we are assuming that any
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spread is present in the [Fe/H] abundances in each s-process
group, and hence the two s-groups being mono-metallic. This is
attractive because it does not require now-departed members of
the more metal-poor group to have been responsible for the cre-
ation of the more metal-rich group. This idea would probably fail
immediately if no normal GCs could be found with the chemical
mixes of M 22’s two stellar groups. However the well-studied
M 5 (Ivans et al. 2001; Ramírez & Cohen 2003) and M 4 (Ivans
et al. 1999; Marino et al. 2008) have relative abundance mixes
that resemble those of the lower and higher metallicity M 22
groups, respectively. The mean literature values for Ba and La in
M 5 range from −0.08 to 0.18, and 0.02 to 0.18, respectively. On
the other hand, M 4 has substantially higher values of these abun-
dance ratios: [La/Fe] = 0.45, [Ba/Fe] = 0.60 (Ivans et al. 1999);
[Ba/Fe] = 0.41 (Marino et al. 2008); these are unusually high
for GCs. Additionally, the [Fe/H] metallicity difference between
M 5 and M 4 is about 0.1 dex, similar to the mean difference
in the two M 22 groups. However, that spread is not a require-
ment of the cluster merger scenario. Finally, the mean Na and
Al abundances are slightly higher in M 4 than in M 5. A signif-
icant uncertainty for the cluster merging idea might be the un-
known probability of such a merger to have happened early in
our Galaxy’s history. The merger probability of two GCs in the
field halo is likely to be very small given the volume, but that
may not true in a dwarf galaxy/merger object – there the clusters
exist in a much smaller volume, the relative velocities are lower
and maybe dynamical friction can bring two clusters together
in the center, with the dwarf galaxy subsequently disrupted (see
Bekki 2010, and references therein).

Another GC has been recently interpreted in cluster merging
hypothesis: NGC 1851 (Carretta et al. 2010b). Like M 22, there
is a bimodality in s-process elements (Yong & Grundahl 2008),
a possible spread in [Fe/H] metallicity and [Ca/H], a segregation
of stars in color-magnitude diagram quantities that correlates
with abundance variations (Milone et al. 2008; Han et al. 2009).

Our findings show that M 22 represents an important piece
in the understanding of GC evolution. It shares similarities both
with normal mono-metallic GCs and with the most extreme case
of ω Cen, and thus may be a bridge to better understanding what
has made ω Cen so unique. A full understanding of the M 22
chemical evolution should be important in shedding light on the
multiple stellar population phenomenon in GCs.
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Table 3. Atmospheric parameters.

Star Source Teff log g ξt [Fe/H]
[K] [km s−1]

I-12 MCD 4260 0.45 1.55 −1.90
AAT 4300 0.70 1.70 −1.86

UVES 4300 0.75 1.55 −1.85
AVG. 4285 0.65 1.60 −1.87

I-27 APO 4420 1.40 1.60 −1.82
UVES 4490 1.46 1.65 −1.63
AVG. 4455 1.45 1.60 −1.73

I-36 LICK 4400 0.80 1.70 −1.89
I-37 LICK 4370 0.90 1.55 −1.73
I-53 UVES 4500 1.35 1.55 −1.74
I-57 APO 4300 1.20 1.70 −1.65

AAT 4250 0.90 1.65 −1.62
AVG. 4275 1.05 1.65 −1.64

I-80 UVES 4460 1.15 1.55 −1.70
I-85 UVES 4600 1.00 1.45 −1.81
I-86 AAT 4420 1.10 1.20 −1.80

UVES 4500 1.30 1.50 −1.84
AVG. 4460 1.20 1.35 −1.82

I-92 LICK 4240 0.75 1.55 −1.75
II-1 LICK 4300 0.75 1.50 −1.66
II-31 LICK 4380 1.20 1.65 −1.65
II-96 MCD 4400 1.00 2.10 −1.82
II-104 UVES 4460 1.15 1.45 −1.76
III-3 MCD 4000 0.30 2.25 −1.72

APO 4010 0.40 2.25 −1.78
UVES 3990 0.20 2.10 −1.66
AVG. 4000 0.30 2.20 −1.72

III-12 MCD 4150 0.70 1.95 −1.69
AAT 4220 1.25 2.00 −1.61
AVG. 4185 1.00 1.95 −1.65

III-14 LICK 4010 0.40 2.15 −1.84
AAT 4050 0.30 2.15 −1.80
AVG. 4030 0.35 2.15 −1.82

III-15 LICK 4070 0.40 1.85 −1.82
III-25 UVES 4700 1.35 1.75 −1.92
III-33 UVES 4430 1.05 1.70 −1.78
III-35 UVES 4500 1.25 1.35 −1.83
III-47 APO 4600 1.20 2.00 −1.82
III-50 UVES 4700 1.70 1.45 −1.76
III-52 LICK 4050 0.50 1.70 −1.63

UVES 4100 0.65 1.80 −1.62
AVG. 4075 0.60 1.75 −1.63

III-96 AAT 4480 1.30 1.65 −1.86
IV-20 AAT 4320 1.05 1.70 −1.65

UVES 4260 0.90 1.60 −1.63
AVG. 4290 1.00 1.65 −1.64

IV-59 UVES 4400 1.00 1.70 −1.77
IV-68 UVES 4750 1.65 1.20 −1.75
IV-76 AAT 4730 1.50 2.30 −1.63
IV-88 AAT 4400 1.20 1.70 −1.62
IV-97 UVES 4000 0.05 2.00 −1.94
IV-102 LICK 4020 0.25 2.15 −1.96

MCD 4050 0.10 2.35 −1.95
AAT 3990 0.20 2.15 −2.01
AVG. 4020 0.20 2.20 −1.97

C MCD 3960 0.30 2.25 −1.69
C513 APO 4100 0.40 1.65 −1.86
V-2 LICK 4130 0.65 1.75 −1.57
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Table 4. Sensitivity of abundance ratios on atmospheric parameters changes.

[X/Fe]a Δ(Teff) Δ(log g) Δ([A/H]) Δ(ξt) Totalb

AAT: IV-20
±60 K ±0.15 ±0.10 ±0.12 km s−1

O ±0.00 ±0.05 ∓0.06 ±0.00 0.08
Na ±0.05 ∓0.02 ∓0.10 ∓0.03 0.12
Mg ∓0.06 ∓0.01 ±0.00 ±0.03 0.07
Al ∓0.05 ∓0.01 ±0.00 ±0.04 0.06
Si ∓0.09 ±0.02 ±0.02 ±0.05 0.11
Ca ∓0.03 ∓0.02 ±0.00 ±0.00 0.04
TiI ±0.00 ∓0.02 ±0.00 ±0.03 0.04
FeI ±0.11 ±0.00 ∓0.01 ∓0.05 0.12
FeII ∓0.05 ±0.07 ±0.02 ∓0.02 0.09
Cu ±0.10 ±0.00 ∓0.10 ±0.00 0.14
Ba ∓0.07 ±0.04 ±0.04 ∓0.05 0.10
La ±0.02 ±0.07 ∓0.06 ±0.00 0.09

APO: I-57
±100 K ±0.17 ±0.10 ±0.13 km s−1

O ±0.03 ±0.07 ∓0.05 ±0.00 0.09
Na ±0.12 ∓0.00 ∓0.10 ±0.00 0.16
Mg ∓0.05 ∓0.03 ∓0.03 ±0.02 0.07
Al ∓0.05 ∓0.01 ∓0.01 ±0.04 0.07
Si ∓0.13 ±0.00 ∓0.01 ±0.03 0.13
Ca ±0.00 ∓0.04 ∓0.03 ∓0.02 0.05
TiI ±0.09 ∓0.03 ∓0.03 ±0.00 0.10
TiII ∓0.12 ±0.02 ±0.00 ∓0.04 0.13
FeI ±0.13 ±0.01 ±0.01 ∓0.04 0.14
FeII ∓0.08 ±0.07 ±0.09 ∓0.01 0.14
Cu ±0.06 ±0.00 ∓0.10 ±0.00 0.12
Zn ±0.05 ±0.02 ∓0.10 ∓0.06 0.13
Y ∓0.11 ±0.03 ±0.00 ±0.01 0.11
Zr ±0.00 ±0.05 ∓0.04 ±0.00 0.06
Ba ∓0.10 ±0.04 ±0.03 ∓0.06 0.13
La ±0.05 ±0.08 ∓0.06 ±0.00 0.11
Nd ∓0.10 ±0.04 ±0.01 ±0.02 0.11
Eu ±0.00 ±0.08 ∓0.05 ±0.00 0.09

LICK: II-31
±70 K ±0.18 ±0.10 ±0.12 km s−1

O ±0.00 ±0.08 ∓0.05 ±0.00 0.09
Na ±0.05 ∓0.02 ∓0.10 ±0.02 0.12
Mg ∓0.03 ∓0.01 ±0.02 ±0.02 0.04
Al ∓0.01 ∓0.01 ±0.01 ±0.03 0.03
Si ∓0.08 ±0.02 ±0.01 ±0.03 0.09
Ca ±0.02 ∓0.01 ±0.03 ∓0.02 0.04
TiI ±0.03 ∓0.01 ±0.01 ∓0.01 0.03
TiII ∓0.10 ±0.06 ∓0.01 ∓0.01 0.12
FeI ±0.09 ±0.00 ∓0.01 ∓0.03 0.10
FeII ∓0.06 ±0.08 ±0.02 ∓0.01 0.10
Cu ±0.04 ±0.00 ∓0.05 ±0.00 0.06
Zn ±0.00 ±0.02 ∓0.05 ∓0.02 0.06
Y ∓0.09 ±0.06 ∓0.03 ∓0.03 0.12
Zr ±0.00 ±0.10 ∓0.05 ±0.00 0.11
Ba ∓0.07 ±0.05 ±0.05 ∓0.06 0.12
La ±0.00 ±0.07 ∓0.05 ±0.00 0.09
Nd ∓0.08 ±0.06 ±0.04 ±0.02 0.11
Eu ±0.00 ±0.06 ∓0.08 ±0.00 0.10

MCD: II-96
±50 K ±0.10 ±0.10 ±0.12 km s−1

O ±0.00 ±0.05 ∓0.04 ±0.00 0.06
Na ±0.05 ∓0.00 ∓0.10 ±0.00 0.11
Mg ±0.02 ∓0.02 ±0.00 ±0.02 0.03
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Table 4. continued.

[X/Fe]a Δ(Teff) Δ(log g) Δ([A/H]) Δ(ξt) Totalb

Al ∓0.03 ∓0.01 ±0.00 ±0.02 0.04
Si ±0.05 ±0.00 ±0.02 ±0.02 0.06
Ca ±0.01 ∓0.01 ±0.00 ±0.02 0.02
TiI ∓0.02 ∓0.02 ±0.01 ±0.01 0.03
TiII ±0.09 ±0.04 ±0.04 ±0.00 0.11
FeI ±0.07 ±0.00 ∓0.02 ∓0.03 0.08
FeII ∓0.04 ±0.08 ±0.02 ∓0.01 0.09
Cu ±0.05 ±0.00 ∓0.05 ∓0.06 0.09
Zn ±0.00 ±0.00 ∓0.07 ∓0.09 0.11
Y ±0.07 ±0.04 ±0.04 ±0.01 0.09
Zr ±0.00 ±0.05 ∓0.05 ±0.00 0.07
Ba ±0.04 ±0.04 ±0.04 ∓0.06 0.09
La ±0.00 ±0.05 ∓0.05 ±0.00 0.07
Nd ∓0.06 ±0.04 ±0.04 ±0.02 0.08
Eu ±0.00 ±0.07 ∓0.05 ±0.00 0.09

UVES: I-53
±50 K ±0.14 ±0.10 ±0.13 km s−1

O ±0.00 ±0.06 ∓0.05 ±0.00 0.08
Na ∓0.02 ∓0.01 ∓0.01 ±0.01 0.03
Mg ∓0.03 ±0.00 ∓0.01 ±0.01 0.03
Al ∓0.03 ∓0.01 ∓0.01 ±0.02 0.04
Si ∓0.05 ±0.01 ±0.01 ±0.01 0.05
Ca ∓0.01 ∓0.01 ∓0.01 ∓0.01 0.02
TiI ±0.04 ∓0.01 ∓0.02 ±0.00 0.05
TiII ±0.02 ∓0.01 ∓0.01 ∓0.02 0.03
FeI ±0.07 ±0.00 ∓0.01 ∓0.02 0.07
FeII ∓0.02 ±0.05 ±0.02 ∓0.02 0.06
Cu ±0.05 ±0.00 ∓0.04 ∓0.05 0.08
Zn ±0.00 ±0.00 ∓0.08 ∓0.08 0.11
Y ±0.03 ∓0.01 ±0.00 ∓0.02 0.04
Zr ±0.03 ±0.00 ±0.00 ±0.02 0.04
Ba ±0.05 ∓0.01 ±0.00 ∓0.09 0.10
La ±0.05 ±0.07 ∓0.03 ±0.02 0.09
Nd ∓0.08 ±0.00 ±0.00 ±0.04 0.09
Eu ±0.02 ±0.05 ∓0.08 ±0.00 0.10

Notes. (a) For FeI and FeII the [X/H] sensitivities are given; for and all remaining elements we list the sensitivities for the abundance ratios [el/Fe].
(b) Quadratic sum of the contributions given by each atmospheric parameter.
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Table 5. Light element abundances.

Star Source Fea Cb Nc O NaLTE Mg Al Si Ca TiI TiII 12C/13C s-rich?
I-12 MCD −1.90 −0.81 0.98 ... 0.38 0.27 0.76 0.46 0.29 0.20 0.33 4.00 no

AAT −1.86 ... ... 0.24 0.39 0.35 0.66 0.33 0.21 0.20 ... ... no
UVES −1.85 ... ... 0.18 0.31 0.34 0.60 0.44 0.20 0.22 0.35 ... no
AVG. −1.87 −0.81 0.98 0.21 0.36 0.32 0.67 0.41 0.23 0.21 0.34 ... no

I-27 APO −1.81 ... ... 0.55 0.32 0.50 0.49 0.58 0.32 0.27 0.41 ... yes
UVES −1.63 ... ... 0.52 0.24 0.34 0.33 0.44 0.35 0.22 0.41 ... yes
AVG. −1.72 ... ... 0.54 0.28 0.42 0.41 0.51 0.34 0.25 0.41 ... yes

I-36 LICK −1.89 ... ... 0.38 −0.05 0.50 0.52 0.42 0.27 0.10 0.32 ... no
I-37 LICK −1.73 ... ... 0.37 0.25 0.18 0.51 0.54 0.23 0.11 0.26 ... no
I-53 UVES −1.74 ... ... 0.35 0.29 0.51 0.39 0.45 0.35 0.25 0.36 ... yes
I-57 APO −1.65 ... ... 0.59 0.33 0.34 0.10 0.53 0.42 0.20 0.30 ... yes

AAT −1.62 ... ... 0.57 0.29 0.46 0.27 0.51 0.38 0.23 ... ... yes
AVG. −1.64 ... ... 0.58 0.31 0.40 0.19 0.52 0.40 0.22 0.30 ... yes

I-80 UVES −1.70 −0.40 1.33 −0.10 0.65 0.49 0.84 0.41 0.35 0.19 0.28 ... yes
I-85 UVES −1.81 −0.91 1.03 −0.03 0.59 0.22 0.64 0.46 0.25 0.18 0.28 ... no
I-86 AAT −1.80 ... ... 0.40 0.00 0.38 ... 0.47 0.34 ... ... ... no

UVES −1.84 ... ... 0.45 −0.01 0.23 0.04 0.35 0.22 0.23 0.35 ... no
AVG. −1.82 ... ... 0.43 0.00 0.31 0.04 0.41 0.28 0.23 0.35 ... no

I-92 LICK −1.75 ... ... 0.52 −0.05 0.32 ... 0.47 0.23 0.16 0.35 ... no
II-1 LICK −1.66 ... ... 0.48 0.11 0.47 0.44 0.54 0.37 0.21 0.43 ... yes
II-31 LICK −1.65 ... ... 0.47 −0.11 0.36 −0.07 0.33 0.29 0.13 0.29 ... no
II-96 MCD −1.82 −0.96 0.75 0.47 0.29 0.21 0.40 0.43 0.21 0.07 0.26 4.00 no
II-104 UVES −1.76 −0.60 0.53 0.37 −0.20 0.33 −0.06 0.43 0.25 0.20 0.35 ... no
III-3 MCD −1.72 −0.01 0.93 0.49 0.36 0.39 0.14 0.58 0.26 0.27 0.15 3.50 yes

APO −1.78 ... ... 0.50 0.25 0.34 0.18 0.62 0.30 0.44 0.35 ... yes
UVES −1.66 ... ... 0.25 0.31 0.34 0.20 0.42 0.34 0.33 0.38 ... yes
AVG. −1.72 −0.01 0.93 0.41 0.31 0.36 0.17 0.54 0.30 0.35 0.29 ... yes

III-12 MCD −1.69 −0.26 1.13 0.40 0.52 0.43 0.55 0.33 0.33 0.17 0.28 4.00 yes
AAT −1.61 ... ... 0.50 0.46 0.30 0.45 0.43 0.21 0.25 ... ... yes
AVG. −1.65 −0.26 1.13 0.45 0.49 0.37 0.50 0.38 0.27 0.21 0.28 ... yes

III-14 LICK −1.84 ... ... 0.50 0.14 0.42 −0.10 0.53 0.17 0.26 0.39 ... no
AAT −1.80 ... ... 0.46 0.13 0.40 0.05 0.42 0.15 0.24 ... ... no
AVG. −1.82 ... ... 0.48 0.14 0.41 −0.03 0.48 0.16 0.25 0.39 ... no

III-15 LICK −1.82 ... ... 0.11 0.54 0.48 0.63 0.62 0.33 0.24 0.40 ... no
III-25 UVES −1.92 ... ... 0.56 0.02 0.37 0.27 0.44 0.32 0.17 0.31 ... no
III-33 UVES −1.78 −0.55 0.63 0.34 −0.17 0.54 −0.07 0.40 0.28 0.19 0.28 ... no
III-35 UVES −1.83 ... ... 0.19 0.43 0.54 0.47 0.37 0.30 0.20 0.36 ... no
III-47 APO −1.82 ... ... 0.50 0.30 0.38 0.41 0.39 0.31 0.11 0.18 ... no
III-50 UVES −1.76 −0.10 1.03 0.35 0.34 0.56 0.46 0.44 0.45 0.27 0.27 ... yes
III-52 LICK −1.63 ... ... 0.40 0.30 0.42 0.11 0.37 0.35 0.26 0.23 ... yes

UVES −1.62 ... ... 0.49 0.26 0.44 0.27 0.48 0.42 0.38 0.44 ... yes
AVG. −1.63 ... ... 0.45 0.28 0.43 0.19 0.43 0.39 0.32 0.34 ... yes

III-96 AAT −1.86 ... ... 0.48 0.01 0.51 ... 0.30 0.28 0.25 ... ... no
IV-20 AAT −1.65 ... ... ... 0.80 0.29 0.82 0.32 0.33 0.32 ... ... yes

UVES −1.63 −0.61 1.33 −0.05 0.73 0.44 0.74 0.47 0.40 0.28 0.36 ... yes
AVG. −1.64 −0.61 1.33 −0.05 0.77 0.37 0.78 0.40 0.37 0.30 0.36 ... yes

IV-59 UVES −1.77 ... ... 0.14 0.59 0.26 0.75 0.42 0.29 0.25 0.34 ... no
IV-68 UVES −1.75 −0.42 0.63 0.36 −0.22 0.29 −0.15 0.41 0.33 0.29 0.25 ... no
IV-76 AAT −1.63 ... ... 0.56 0.19 0.31 ... 0.44 0.22 0.14 ... ... yes
IV-88 AAT −1.62 ... ... 0.02 0.61 0.17 0.77 0.48 0.35 0.26 ... ... yes
IV-97 UVES −1.94 −0.50 0.30 0.40 −0.02 0.46 0.07 0.44 0.24 0.26 0.42 ... no
IV-102 LICK −1.96 ... ... 0.44 0.41 0.45 0.19 ... 0.33 0.30 0.27 ... no

MCD −1.95 −0.46 0.48 0.41 0.28 0.42 0.29 0.42 0.25 0.21 0.26 3.00 no
AAT −2.01 ... ... 0.44 0.40 0.52 ... 0.49 0.21 0.33 ... ... no
AVG. −1.97 −0.46 0.48 0.43 0.36 0.46 0.24 0.46 0.26 0.28 0.27 ... no

C MCD −1.69 −0.41 1.10 0.25 0.68 0.43 0.58 0.38 0.37 0.38 0.20 5.00 yes
C513 APO −1.86 ... ... 0.40 0.03 0.57 ... 0.40 0.22 0.14 0.34 ... no
V-2 LICK −1.57 ... ... 0.15 0.56 0.21 0.79 0.40 0.45 0.30 0.30 ... yes

Notes. (a) For this column only, metallicities [Fe/H] are given. (b) For this and all remaining abundances, [el/Fe] values are given.
(c) For the stars II-104, III-33, IV-68, IV-97, and IV-102, we were able to measure only upper limits for the nitrogen abundance.
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Table 6. Heavy element abundances.

Star Source Fea Cub Zn Y Zr Ba La Nd Eu s-rich?
I-12 MCD −1.90 −0.93 0.13 −0.20 −0.05 0.03 −0.12 −0.03 ... no

AAT −1.86 −0.93 ... ... ... −0.20 0.03 ... ... no
UVES −1.85 −1.00 0.15 −0.07 −0.03 0.01 −0.07 0.03 0.43 no
AVG. −1.87 −0.95 0.14 −0.14 −0.04 −0.05 −0.05 0.00 0.43 no

I-27 APO −1.81 −0.90 0.08 0.34 0.58 0.20 ... 0.48 ... yes
UVES −1.63 −0.78 0.10 0.40 0.46 0.52 0.47 0.44 0.45 yes
AVG. −1.72 −0.84 0.09 0.37 0.52 0.36 0.47 0.46 0.45 yes

I-36 LICK −1.89 −1.38 ... −0.15 ... −0.03 −0.05 0.04 ... no
I-37 LICK −1.73 −0.90 ... −0.13 0.43 0.02 0.03 −0.06 0.45 no
I-53 UVES −1.74 −0.75 0.15 0.26 0.35 0.54 0.29 0.31 0.41 yes
I-57 APO −1.65 −0.75 0.25 0.45 0.60 0.22 0.41 0.42 0.47 yes

AAT −1.62 −0.65 ... ... ... 0.20 0.27 ... ... yes
AVG. −1.64 −0.70 0.25 0.45 0.60 0.21 0.34 0.42 0.47 yes

I-80 UVES −1.70 −0.85 0.15 0.24 0.38 0.50 0.22 0.18 0.30 yes
I-85 UVES −1.81 −1.10 0.10 −0.27 −0.03 0.14 0.03 −0.13 0.44 no
I-86 AAT −1.80 −0.98 0.05 ... ... 0.12 −0.05 ... ... no

UVES −1.84 −1.00 ... −0.18 0.00 −0.10 0.05 0.08 0.52 no
AVG. −1.82 −0.99 0.05 −0.18 0.00 0.01 0.00 0.08 0.52 no

I-92 LICK −1.75 −0.78 ... 0.07 ... −0.11 −0.01 −0.01 0.43 no
II-1 LICK −1.66 −0.93 ... 0.20 0.55 0.02 0.32 0.38 0.40 yes
II-31 LICK −1.65 −0.88 ... 0.05 0.10 −0.23 0.05 0.14 0.52 no
II-96 MCD −1.82 −0.90 −0.02 −0.22 0.10 −0.18 0.09 0.05 0.56 no
II-104 UVES −1.76 −1.00 0.05 −0.09 −0.05 0.14 −0.01 0.05 0.50 no
III-3 MCD −1.72 −0.78 0.13 0.56 0.40 0.24 0.23 0.40 0.45 yes

APO −1.78 −0.67 0.33 0.42 0.44 0.31 0.33 0.49 0.35 yes
UVES −1.66 −0.63 0.15 0.58 0.36 0.33 0.16 0.35 0.45 yes
AVG. −1.72 −0.69 0.20 0.52 0.40 0.29 0.24 0.41 0.42 yes

III-12 MCD −1.69 −0.72 0.23 0.37 0.54 0.29 0.39 0.50 0.55 yes
AAT −1.61 −0.68 ... ... ... 0.31 0.48 ... ... yes
AVG. −1.65 −0.70 0.23 0.37 0.54 0.30 0.44 0.50 0.55 yes

III-14 LICK −1.84 −0.70 ... 0.10 0.10 0.04 0.12 0.21 0.58 no
AAT −1.80 −0.95 ... ... ... −0.28 −0.03 ... ... no
AVG. −1.82 −0.83 ... 0.10 0.10 −0.12 0.05 0.21 0.58 no

III-15 LICK −1.82 −0.80 ... 0.09 −0.05 −0.05 0.05 0.16 0.46 no
III-25 UVES −1.92 −1.15 0.10 −0.23 0.15 −0.05 0.13 0.11 0.50 no
III-33 UVES −1.78 −0.95 0.05 −0.21 0.00 −0.11 −0.04 0.01 0.40 no
III-35 UVES −1.83 −0.95 0.20 −0.06 −0.05 0.10 0.01 0.01 0.50 no
III-47 APO −1.82 −0.78 −0.02 0.16 0.50 0.01 ... 0.03 0.50 no
III-50 UVES −1.76 −0.90 0.15 0.20 0.30 0.27 0.20 0.16 0.35 yes
III-52 LICK −1.63 −0.84 ... 0.32 0.36 0.38 0.24 0.30 0.40 yes

UVES −1.62 −0.73 0.18 0.36 0.40 0.46 0.29 0.49 0.43 yes
AVG. −1.63 −0.78 0.18 0.34 0.38 0.42 0.27 0.40 0.42 yes

III-96 AAT −1.86 −0.90 ... ... ... −0.21 −0.03 ... ... no
IV-20 AAT −1.65 −0.78 ... ... ... 0.30 0.49 ... ... yes

UVES −1.63 −0.78 0.20 0.32 0.36 0.40 0.29 0.40 0.34 yes
AVG. −1.64 −0.78 0.20 0.32 0.36 0.35 0.39 0.40 0.34 yes

IV-59 UVES −1.77 −0.90 0.00 −0.14 −0.04 −0.10 −0.02 −0.02 0.46 no
IV-68 UVES −1.75 −1.05 0.00 −0.29 −0.04 0.16 0.10 −0.01 0.53 no
IV-76 AAT −1.63 −0.88 ... ... ... 0.19 0.35 ... ... yes
IV-88 AAT −1.62 −0.75 ... ... ... 0.39 0.47 ... ... yes
IV-97 UVES −1.94 −0.83 0.30 −0.01 0.00 0.00 −0.13 0.02 0.48 no
IV-102 LICK −1.96 −1.18 ... 0.01 −0.10 −0.06 −0.13 0.07 ... no

MCD −1.95 −0.95 0.23 0.06 0.00 −0.26 −0.07 0.05 0.52 no
AAT −2.01 −0.73 ... ... ... −0.14 −0.07 ... ... no
AVG. −1.97 −0.95 0.23 0.04 −0.05 −0.15 −0.09 0.06 0.52 no

C MCD −1.69 −0.82 0.03 0.43 0.30 0.26 0.31 0.34 0.52 yes
C513 APO −1.86 −0.82 0.25 −0.07 0.15 −0.26 0.06 0.22 0.52 no
V-2 LICK −1.57 −0.63 ... 0.26 0.30 0.22 0.29 0.51 ... yes

Notes. (a) For this column only, metallicities [Fe/H] are given. (b) For this and all remaining abundances, [el/Fe] values are given.
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