
Use of Multiple GPUs on Shared Memory Multiprocessors for
Ultrasound Propagation Simulations

Jiri Jaros1, Bradley E. Treeby2 and Alistair P. Rendell1

1Research School of Computer Science, College of Engineering and Computer Science
The Australian National University

Canberra, ACT 0200, Australia

jiri.jaros@anu.edu.au, alistair.rendell@anu.edu.au

2Research School of Engineering, College of Engineering and Computer Science
The Australian National University

Canberra, ACT 0200, Australia

bradley.treeby@anu.edu.au

Abstract
This paper outlines our effort to migrate a compute inten-
sive application of ultrasound propagation being devel-
oped in Matlab to a cluster computer where each node has
seven GPUs. Our goal is to perform realistic simulations
in hours and minutes instead of weeks and days. In order
to reach this goal we investigate architecture characteris-
tics of the target system focusing on the PCI-Express sub-
system and new features proposed in CUDA version 4.0,
especially simultaneous host to device, device to host and
peer-to-peer transfers that the application is going to high-
ly benefit from. We also present the results from a CPU
based implementation and discuss future directions to
exploit multiple GPUs..

Keywords: Ultrasound simulation, 7-GPU system, CUDA,
Matlab, FFT, PCI-Express, bandwidth, multi-core.

1 Introduction
In 1994 Becker and Sterling (1995) proposed the con-
struction of supercomputer systems through the use of
off-the-shelf commodity parts and open source software.
Over the ensuing year, the so called Beowulf cluster
computer systems came to dominate the top 500 list of
most powerful systems in the world. The advantages of
such systems are many, including ease of creation, ad-
ministration and monitoring, and full support of many
advanced programming techniques and high performance
computing libraries such as OpenMPI. Interestingly,
however, what was originally a major advantage of these
systems, namely price and running costs, is now much
less so. This is because for even a small to moderately
sized cluster it is necessary to house the system in spe-
cially air-conditioned machine rooms.

Recently, developments in Graphics Processing Units
(GPUs) have prompted another revolution in high-end
computing, equivalent to that of the original Beowulf
cluster concept. Although these chips were designed to

Copyright 2012, Australian Computer Society, Inc. This paper
appeared at the 10th Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia,
January-February 2012. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 127. J. Chen and R.
Ranjan, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

accelerate rasterisation of graphic primitives such as lines
and polygons, their raw computing performance has at-
tracted a lot of researchers to utilize them as acceleration
units for special kind of mathematical operations in many
scientific applications (Kirk and Hwu 2010). Compared
to a CPU, the latest GPUs are about 15 times faster than
six-core Intel Xeon processors in single-precision calcula-
tions. Stated another way, a cluster with a single GPU per
node offers the equivalent performance of a 15 node CPU
only cluster. Even more interestingly, the availability of
multiple PCI-Express buses even on very low cost com-
modity computers means that it is possible to construct
cluster nodes with multiple GPUs. Under this scenario,
a single node with multiple GPUs offers the possibility of
replacing fifty or more nodes of a CPU only cluster.

On the other hand, the development tools for debug-
ging and profiling of GPU-based applications are in their
infancy. Obtaining the peak performance is very difficult
and sometimes impossible for a lot of real-world prob-
lems. Moreover, only a few basic GPU libraries such as
LAPACK and BLAS have so far been developed, and
these are only able to utilize one GPU in a node (CUDA
Math Libraries 2011). GPU-based applications are also
limited by the GPU architecture and memory model mak-
ing general-purpose computing much more difficult to
implement than a CPU-based application.

The purpose of this paper is to outline our efforts to
migrate a compute intensive application for ultrasound
simulation being developed in Matlab to a cluster com-
puter where each node has seven GPUs. The utilised nu-
merical methods are very memory efficient compared to
conventional finite-difference approaches, and the Matlab
implementation already outperforms many of the other
codes in the literature (Treeby 2011). However, for large
scale simulations, the computation times are still prohibi-
tively long. Our overall goal is to perform realistic simu-
lations in hours or minutes instead of weeks or days. This
paper provides an overview of the ultrasound propagation
application, the development of an optimised C++ ver-
sion of the original Matlab code for the CPU that exploits
streaming extensions, our attempts to characterise the
multi-GPU target system, and a preliminary plan for the
GPU code to run on that system.

Section 2 provides background on ultrasound simula-
tion, the simulation method used here, and the time con-
suming operations. Section 3 introduces the architecture

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

43

of our 7-GPU Tyan servers that will be used for testing
and benchmarking our implementations written in C++
and CUDA. Section 4 gives preliminary results of the
first C++ implementation using only CPUs and investi-
gates the bottlenecks. Section 5 focuses on the GPU side
of the Tyan servers and measures the basics parameters of
them in order to acquire necessary experience and inves-
tigate the potential architecture limitations. The last sec-
tion summarizes open questions and issues that will be
dealt with in the future.

2 Ultrasound Propagation Simulations
The simulation of ultrasound propagation through biolog-
ical tissue has a wide range of practical applications. The-
se include the design of ultrasound probes, the develop-
ment of image processing techniques, studying how ultra-
sound beams interact with heterogeneous media, training
ultrasonographers to use ultrasound equipment, and
treatment planning and dosimetry for therapeutic ultra-
sound applications. Here, ultrasound simulation can mean
either predicting the distribution of pressure and energy
produced by an ultrasound probe, or the simulation of
diagnostic ultrasound images. The general requirements
are that the models correctly describe the different acous-
tic effects whilst remaining computationally tractable.

In our work, the k-space pseudospectral method is
used to reduce the number of grid points required per
wavelength for accurate simulations (Tabei 2002). The
system of governing equations used is described in detail
by Treeby (2011). These are derived from general con-
servation laws, discretised using the k-space pseudospec-
tral method, and then implemented in Matlab (Treeby
2010). In order to be able to simulate real-world systems,
both huge amounts of memory and computation power
are required.

Let us calculate a hypothetical execution time request-
ed for simulating a realistic ultrasound image using
Matlab on a dual six-core Intel Xeon processor. The ul-
trasound image is created by steering the ultrasound beam
through the tissue and recording the echoes received from
that particular direction. The recorded signal from each
direction is called an A-line, and a typical image is con-
structed from at least 128 of these. This means we need
128 independent simulations with slightly modified input
parameters. Using a single computer, these must be com-
puted sequentially. Every simulation is done over the 3D
domain with grid sizes starting at 768x768x256 grid
points and 3000 time steps. From preliminary experi-
ments performed using the Matlab code, each simulation
takes about 27 hours of execution time and consumes
about 17 GB of memory. Thus to compute one ultrasound
image would require roughly 145 days. The objective of
this work is to reduce this time to hours or even minutes
by exploiting the parallelism inherent in the algorithm.

2.1 k-space Pseudospectral Simulation Method
Implemented in Matlab

The Matlab code simulating non-linear ultrasound propa-
gation using the k-space pseudospectral method is based
on the forward and inverse 3-dimensional fast Fourier
transformation (FFT) supported by a few 3D matrix oper-
ations such as element-wise multiplication, addition, sub-

traction, division, and a special bsxfun operation. This
function replicates a vector in particular dimensions to
create a 3D matrix on the fly and then performs a defined
element-wise operation with another 3D matrix (such as
multiplication denoted by @times). Most operations
work over the real domain, however, some of them are
done over the complex one.

The time step loop in a simplified form is shown in
Figure 1. This listing identifies all the necessary mathe-
matical operations and presents all matrices, vectors, and
scalar values necessary for computation. For the compu-
tation, it is necessary to maintain the complete dataset in
main memory. This data set is composed of 14 real matri-
ces, 3 complex matrices, 6 real and 6 complex vectors.

An iteration of the loop represents one time step in the
simulation of ultrasound propagation over time. The
computation can be divided into a few phases correspond-
ing to the particular code statements:

(1) A 3D FFT is computed on a 3D real matrix repre-
senting the acoustic pressure at each point within the
computational domain. Despite the fact the matrix p is
purely real, a 3D complex-to-complex FFT is executed in
Matlab.

(2) - (4) New values for the local particle velocities in
each Cartesian dimension x, y, z are computed. These
velocities describe the local vibrations due to the acoustic
waves. The result of fftn(p) is element-wise multi-
plied by a complex matrix kappa and then multiplied by
a vector expanded into a 3D matrix in the given directions
using bsxfun. After that, the 3D inverse FFT is com-
puted. As we are only interested in real signals, the com-
plex part of the inverse FFT is neglected. Other element-
wise multiplications and subtractions are further applied.
Note that the old values of the particle velocities are nec-
essary for determining the new ones.

(5) The particle velocities in the x-direction at particu-
lar positions are modified due to the output of the ultra-
sound probe. (Note, additional source conditions are also
possible, only one is shown here for brevity). The matrix
ux_sgx is transformed to a vector and mask-based ele-
ment-wise addition is executed.

(6) - (8) The gradient of the local particle velocities in
each Cartesian direction is computed. First, the 3D FFT
of the particle velocity is computed, then, the result is
multiplied by kappa and a vector in the complex do-
main. After that, the inverse 3D FFT is calculated. Only
the real part of the FFT is used in the difference matrix.

(9) - (11) The mass conservation equations are used to
calculate the rhox, rhoy and rhoz matrices (acoustic
density at each point within the computational domain).
All operations are done over the real domain on 3D ma-
trices. If an operand is a scalar or a vector, it is expanded
to a 3D matrix on the fly.

(12) The new value of pressure matrix is computed
here using data from all three dimensions. Two forward
and inverse 3D FFTs are necessary for intermediate re-
sults. All other operations are done over the real domain.

(13) The pressure matrix is sampled and the samples
are stored as the final result.

In summary, at a high level we need to calculate
6 forward and 8 inverse 3D FFTs, and about 50 other
element-wise operations, mainly multiplications.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

44

% start time step loop
for t_index = 2:Nt

 % compute 3D fft of the acoustic pressure
1 p_k = fftn(p);

 % calculate the local particle velocities in
 % each Cartesian direction
2 ux_sgx = bsxfun(@times, pml_x_sgx,

bsxfun(@times, pml_x_sgx, ux_sgx)
 - dt./rho0_sgx .* real(ifftn(
 bsxfun(@times, ddx_k_shift_pos,
 kappa .* p_k)))

);
3 uy_sgy = bsxfun(@times, pml_y_sgy,

bsxfun(@times, pml_y_sgy, uy_sgy)
 - dt./rho0_sgy .* real(ifftn(
 bsxfun(@times, ddy_k_shift_pos,
 kappa .* p_k)))

);
4 uz_sgz = bsxfun(@times, pml_z_sgz,

bsxfun(@times, pml_z_sgz, uz_sgz)
 - dt./rho0_sgz .* real(ifftn(
 bsxfun(@times, ddz_k_shift_pos,
 kappa .* p_k)))

);

 % add in the transducer source term
5 if transducer_source >= t_index
 ux_sgx(us_index) = ux_sgx(us_index) +
 transducer_input_signal(delay_mask);
 delay_mask = delay_mask + 1;
 end

 % calculate spatial gradient of the particle
 % velocities
6 duxdx = real(ifftn(bsxfun(@times,
 ddx_k_shift_neg, kappa .* fftn(ux_sgx))));
7 duydy = real(ifftn(bsxfun(@times,
 ddy_k_shift_neg, kappa .* fftn(uy_sgy))));
8 duzdz = real(ifftn(bsxfun(@times,
 ddz_k_shift_neg, kappa .* fftn(uz_sgz))));

 % calculate acoustic density rhox, rhoy and
 % rhoz at the next time step using a
 % nonlinear mass conservation equation
9 rhox = bsxfun(@times, pml_x, (rhox -
 dt.*rho0 .* duxdx) ./ (1 + 2*dt.*duxdx));
10 rhoy = bsxfun(@times, pml_y, (rhoy -
 dt.*rho0 .* duydy) ./ (1 + 2*dt.*duydy));
11 rhoz = bsxfun(@times, pml_z, (rhoz -
 dt.*rho0 .* duzdz) ./ (1 + 2*dt.*duzdz));

 % calculate the new pressure field using a
 % nonlinear absorbing equation of state
12 p = c.^2.*(...
 (rhox + rhoy + rhoz)
 + absorb_tau.*real(ifftn(
 absorb_nabla1 .*
 fftn(rho0.*(duxdx+duydy+duzdz))))
 - absorb_eta.*real(ifftn(
 absorb_nabla2 .*
 fftn(rhox + rhoy + rhoz)))
 + BonA.*(rhox + rhoy + rhoz).^2
 ./(2*rho0)
);

 % extract and save the required storage data
13 sensor_data(:, t_index)= p(sensor_mask_ind);

end

Figure 1: Matlab code for the k-space pseudospectral
method showing the necessary operations.

3 Architecture of Tyan 7-GPU Servers
This section describes the architecture of the Tyan servers
targeted for use in the ultrasound propagation simula-
tions. The Tyan servers are 7-GPU servers based on the
Tyan barebones TYAN FT72B7015 (Tyan 2011). The
barebones consist of a standard 4U rack case and three
independent hot-swap 1kW power supplies.

A schematic of the Tyan 7-GPU server configuration
can be seen in Figure 2. The motherboard of the servers
offers two LGA 1366 sockets for processors based on the
Core i7 architecture in a NUMA configuration. The serv-
er is populated with two six-core Intel Xeon X5650 pro-
cessors offering 12 physical cores in total (24 with Hy-
perThreading technology). As each processor contains
three DDR3 memory channels, the server is equipped
with six 4GB modules (24 GB RAM). The memory ca-
pacity can be expanded up to 144GB using 12 additional
memory slots.

Communication among CPUs and attached memories
is supported by the Intel QuickPath Interconnection (QPI)
with a theoretical bandwidth of 12 GB/s. This intercon-
nection also serves as a bridge between CPUs and two
Intel IOH chips that offer various I/O connections includ-
ing four PCI-Express links.

By themselves, the four PCI-Express x16 links are in-
sufficient to connect 7 GPUs and an Infiniband card at
full speed. (We would have needed 128 PCI-E links, but
unfortunately, had only 64.) Therefore, intermediate PEX
bridges were placed between the IOH chips and other
devices to double the number of PCI-E links. One PEX
bridge is shared between two GPUs (or a GPU and an
Infiniband card). The PEX bridges allocate PCI-Express
links to the GPUs based on their actual requirements. If
one GPU is idle the other one can use all 16 links.

As the servers are designed as a cutting edge GPGPU
platform, the most powerful NVIDIA GTX 580 cards
with 512 CUDA cores and 1.5GB of main memory have
been used. These cards, based on the Fermi architecture,
support the latest NVIDIA CUDA 4.0 developer kit and
represent the fastest cards that can currently be acquired.

The operating system and user data are stored on two
500GB hard disks, one of which serves as a system disk
and the other one as temporary disk space for users. The
servers are interconnected using the Infiniband links and
a 48 port QLogic Infiniband switch, and to the internet
using one of four Gb Ethernet cards.

The operating system the servers are running is Ub-
untu 10.04 LTS server edition. For our implementation
we have decided to use standard GNU C++ compiler and
the latest CUDA version 4.0. This introduces a lot of new
features mainly targeted to multi-GPU systems, such as
peer-to-peer communication among GPUs, zero-copy
main memory accesses from GPUs, etc. OpenMPI is used
to communicate between servers and OpenIB layer to
directly access the infiniband network card.

4 CPU-based C++ Implementation
In order to accelerate the execution of the Matlab code,
the time critical simulation loop has been re-implemented
in C++ while paying attention to the underlying architec-
ture to exploit all available performance. A good CPU
implementation will serve as a starting point for a GPU

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

45

Figure 2: Architecture of 7-GPU server used for
the acceleration of ultrasound simulations.

implementation, revealing all the hidden difficulties and
ineffectiveness in the Matlab code while also providing
ideas on how to improve the Matlab code.

First of all, the import and export of data structures
from Matlab to C++ and back has to be designed. Fortu-
nately, all Matlab matrices can be transformed into linear
arrays (solving the problem with column-first ordering of
multidimensional arrays in Matlab) and saved into sepa-
rated files using an ASCII or binary format.

All imported matrices as well as six temporary matri-
ces are maintained in main memory during the computa-
tion. In the C++ code, the matrices are treated as linear
vectors and allocated using the malloc function. This
organisation simplifies the computation because there is
no need to use three indices in element-wise operations.
The complex matrices are stored in an interleaved form
(even indices correspond to real parts and odd indices the
imaginary part of the elements). Another advantage of
this data storage format is compatibility with FFTW and
CUDA routines when implementing the GPU version.

The C++ code benefits from using an object oriented
programming pattern. Each matrix is implemented as
a class inheriting basic operations from base classes (real
matrix class, complex matrix class) and introducing new
methods reflecting the simulation method.

The C++ code does not follow the Matlab code in
a verbatim way. Some intermediate results have been
precomputed and several temporary matrices have been
introduced and reused to save computational effort.

4.1 Complex-to-Complex FFT
Apart from easy to implement element-wise operations,
the multidimensional FFT is computed many times in the
code. Instead of creating a new implementation, the well-
known FFTW library has been employed (FFTW 2011).
This library is optimized for a huge number of CPU ar-
chitectures including multi-core systems with shared
memory and clusters with message passing and their
streaming extensions such as MMX, SSE, AVX, etc.

A special class encapsulating the FFTW library has
been designed in the C++ code. As Matlab uses complex-
to-complex 3D FFTs even for real input matrices, the first
version of the C++ code also employed the complex-to-
complex in-place version of the 3D FFT. First, the input
matrix is copied into the FFTW object and transformed

 into a complex matrix. Then, the forward FFT is com-
puted. As the FFTW class is compatible with other matrix
classes, it serves as a temporary storage. Having comput-
ed the FFT, a few element-wise operations are performed
on this complex matrix, and finally, the inverse FFT is
computed. As FFTW does not use normalization, each
element has to be divided by the product of the matrix
dimension sizes.

4.2 Operation Fusion
The naïve C++ implementation, created at first, encodes
each mathematical operation as a separate method paral-
lelized using OpenMP directives. It allows us to under-
stand the algorithm and validate the code. On the other
hand, this implementation is extremely ineffective. It is
caused by a very poor calculation to memory access ratio
while processing very large matrices in the order of hun-
dreds of MBs, and high thread management overhead.

The operation fusion reduces the memory accesses by
performing multiple mathematical operations on corre-
sponding elements at once and saving the temporary re-
sults in cache memories. As a result, memory bandwidth
is saved enabling better scalability at the expense of more
complicated code.

4.3 Real-to-Complex FFT
As all the forward FFTs take only real 3D matrices as an
input, the results of the forward FFTs are symmetrical.
Analogously, as we are only interested in real signals, the
imaginary parts of the inverse FFTs are of no use.

Substituting complex-to-complex FFTs with real-to-
complex ones saves nearly 50% of the memory and com-
putation time related to FFTs. Moreover, as other opera-
tions and matrices are applied to the result of the FFT, we
save additional computation effort and memory because
of not having to store the symmetrical parts of auxiliary
matrices such as kappa.

4.4 SSE Optimization and NUMA Support
The final version of the C++ code benefits from a careful
optimization of all element-wise operations in order to
utilize streaming extensions such as SSE and AVX. Some
of the routines were revised so that the C++ compiler
could utilize automatic vectorization to produce a highly
optimized code. In the cases it was not possible to do so,
the compiler intrinsic functions had to be used for rewrit-
ing the particular routines from scratch.

Finally, as the Tyan servers are based on the Non-
Uniform Memory Access (NUMA) architecture, some
policies preventing threads and memory blocks to migrate
among cores and local memories have been incorporated
into the code. First, all the threads are locked on CPU
cores using an OS affinity property. Secondly, the shared
memory blocks for all the matrices are allocated by the
master thread and immediately initialized and distributed
into local memories using a parallel first touch policy
(Terboven, C., Mey, D., et.al. 2008). As the access pat-
tern remains unchanged for element-wise routines, the
static OpenMP scheduling guarantees all the matrices
remain in the local memories. The only exception is the
FFT computation, fortunately handed by FFTW library.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

46

4.5 Execution Time Comparison
This section presents the first results of the C++ imple-
mentation and compares the execution time with the
Matlab version on a dual Intel Xeon system with 12 phys-
ical cores and 24GB RAM memory.

Figure 3 shows the relative speed-ups of four different
C++ implementations against Matlab and their dependen-
cy on the number of CPU threads. All the C++ versions
utilize the FFTW library compiled with OpenMP and
SSE extensions under single precision. Matlab could use
all CPU cores (12) and worked also with single precision
in all cases. It can also be noted the server is equipped
with the Intel Turbo technology raising the core frequen-
cy up to 3.2GHz under one thread workload and decreas-
ing the frequency to 2.66GHz under full 12 thread load.

The C2C, naïve implementation represents the sim-
plest implementation of the problem. Although very sim-
ple, it is able to outperform Matlab by about 26%. Opera-
tion fusion brings an additional significant improvement.
Utilizing all 12 cores, the results are produced in 2.7
times shorter execution time. Replacing Complex-to-
Complex (C2C) FFTs with the Real-to-Complex (R2C)
ones and reducing some matrices sizes led to an addition-
al reduction in execution time. This version of C++ code
is up to 5.2 times faster than Matlab. Finally, revising all
element-wise operations to exploit vector extensions of
the CPUs and implementing basic NUMA policy, we
reached speed-ups of 8.4 times.

Analysing and profiling the C++ code, we learn that
nearly 58% of execution time is consumed by FFTs (see
Table 1). The other operations take only a fraction of the
time. Unfortunately, they cannot be optimized as one,
because of intermediate FFTs.

For larger problems, the memory requirements of the
complex-to-complex C++ and Matlab codes are very
close. The reduction of memory requirements in the real-
to-complex version is about 20% considering that most of
matrices remained unchanged.

A real-word example has also been examined. The
domain size was set to 768x768x256 grid points and 3000
time steps simulated. Matlab needed 27 hours and 11
minutes to compute the result and consumed about 17GB
of RAM memory. C2C version with operation fusion
took 8 hours and 16 minutes to complete the task and
16.8GB of RAM memory. R2C version finished after 4
hours and 55 minutes using 13.3GB of RAM. The final
version of the code reduced the execution time to 3 hours
and 22 minutes. Recalling our hypothetical simulation
example mentioned earlier, this would decrease the com-
putational time from 145 days to 17 days.

Another important observation is the execution time
necessary to perform an iteration of the loop. Assuming
the real-world simulation space size of 768x768x256, and
3000 time steps, every iteration takes about 4.1s. As it is
not possible to execute multiple iterations at a time, this is
the granularity of parallelisation. Moreover, during this
time the entire 13GBs of memory will be touched at least
once.

Naturally, the outputs from the C++ version and
Matlab version have been cross-validated with relative
error lower than 10-6 for the domain sizes up to 2563, and
10-4 for domain sizes up to 768x768x256 grid points.

Figure 3: Relative speed-up of C++ against Matlab
using a domain size of 2563 and 1000 time steps.

% of time Routine

30.84 Inverse FFT

26.73 Forward FFT

3.61 BonA.*(rhox + rhoy + rhoz).^2./(2*rho0)

3.46 Sum_subterms_on_line_12

3.10 rho0.*(duxdx+duydy+duzdz)

2.81 rhox + rhoy + rhoz

2.67 Compute_rhox

2.52 Compute_rhoy

2.42 Compute_rhoz

2.30 Compute_uy_sgy

2.16 Compute_uy_sgx

2.02 Compute_uy_sgz

15.36 Other operations

Table 1: Execution time composition of the C++ code.

5 Towards the Utilization of Multiple GPUs
In order to be able to solve real-world ultrasound propa-
gation simulations in reasonable time, we need to reduce
the execution time by an order of magnitude at least. For
this reason we would like to utilize up to 7 GPUs placed
in the Tyan server to provide the necessary computational
power as well as very high memory bandwidth.

First, we would like to start with one GPU and create
a CUDA implementation of the simulation code. The
most time consuming operations are the fast Fourier
transformations. On the CUDA platform, the cuFFT li-
brary can be used. This library is provided directly by
NVIDIA and runs on a single GPU (CUDA Math Librar-
ies 2011). All other element-wise operations can be di-
rectly implemented as simple kernels, as the element-wise
operations are embarrassingly parallel. On the other hand,
these operations cannot benefit from the on-chip shared
memory exploitation of which is often the key factor in
reaching peak performance (Sanders and Kandrot 2010).
This limitation can be partially alleviated by employing
CUDA texture memory and its automatic caching.

There are a few strategies how to split the work among
multiple GPUs. The obvious way is to calculate each di-
mension independently on a different GPU with the final
pressure calculation performed on a single one. Looking
at the listing shown in Figure 1, we can notice that nearly
entire loop can be dimensionally decomposed. That is
within each time step, the calculations for the x, y and z
dimensions can be done independently. The only excep-

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12

R
el

at
iv

e
sp

ee
d-

up

Number of CPU threads

Speed-up of the C++ code against Matlab

C2C, naïve

C2C, fusion

R2C, fusion

R2C, SSE, NUMA

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

47

tion is line 12, where all three dimensions are necessary
to compute the new pressure matrix. This could potential-
ly utilize 3 GPUs for dimension independent calculations
while only a single GPU for the final calculation.

Another strategy is to divide the computation of each
operation among multiple GPUs. There is another reason
to go this way. Utilizing only a single GPU or dimension
partition scheme we are strictly limited by the GPU on-
board main memory size, which is 1.5GB per GPU in our
situation. This value is pretty small compared with 24GB
of server main memory and does not allow us to treat
larger simulation spaces. If we cut the loop into the
smallest meaningful operations we would need two
source 3D matrices and a destination one to reside in on-
board GPU memory. This would allow us to solve prob-
lems with dimensions sizes up to 5123 grid points in sin-
gle precision. Our hypothetical example would be intrac-
table because total memory required would be 1.7GB.

Dividing element-wise operations among multiple
GPUs is straightforward. We can employ a farmer-
workers strategy where a farmer (CPU) divides chunks of
work to do. We can imagine a chunk as several rows of
multiple 3D matrices that are necessary to compute sev-
eral rows of a temporary result.

Currently, cuFFT does not run over multiple GPUs.
Fortunately, the 3D FFT can be decomposed into a series
of 1D FFTs calculated in the x, y and z dimensions and
interleaved by matrix transpositions. Considering this,
one possible scenario is that the CPU distributes batches
of 1D FFTs over all 7 GPUs to compute the 1D FFT in
the x dimension. Then a data migration is performed via
CPU main memory or using the newly introduced CUDA
peer-to-peer transfers followed by calculation of 1D FFTs
in the y dimension etc. (An alternative strategy would be
to use 2D FFTs on each GPU, with a transpose at the end
of the 2D FFTs.)

As in many other distributed schemes, the overall per-
formance will be highly limited by memory traffic, and in
this case, also by the PCI-Express bandwidth. We must
not forget that we will need to force tens of GBs through
the PCI-Express which has a theoretical peak bandwidth
of 8GB/s.

In order to gain necessary experience with our Tyan
servers with 7-GPUs, we have designed several bench-
marks to verify the key parameters of the servers such as
PCI-Express bandwidth, zero-copy memory scheme, and
peer-to-peer transfers among multiple GPUs. All these
operations are going to be utilized in our future ultra-
sound code.

5.1 Peak PCI-Express Bandwidth with Respect
to CPU Memory Allocation Type.

Having a good knowledge about PCI-Express characteris-
tics, behaviour and performance is a key issue when de-
signing and implementing GPGPU applications. As all
data processed on the GPU (device) has to be transported
from CPU (host) memory to device memory and the re-
sults back to the host memory to interpret on the CPU,
PCI-Express can easily become a bottleneck debasing any
acceleration gained using this massively parallel hard-
ware. Considering the peak CPU-host memory bandwidth
is 25GB/s and the peak GPU-device memory bandwidth

is 160GB/s, the theoretical throughput of PCI-Express
x16 of 8GB/s is likely to be a place of congestion.

Any data structure (3D matrix or 1D vector in our
case) designated for host-device data exchange has to be
allocated on the host and device separately. Allocating
memory on the device (GPU) side is easy as there is only
one CUDA routine for this purpose. On the other hand,
we need to distinguish between three different types of
host memory allocation each intended for a different pur-
pose:

• C/C++ memory allocation routines
• Pinned memory allocation with a CUDA routine
• Zero-copy memory allocation with a CUDA routine
C/C++ memory allocation routines such as malloc

or new serve well for simple CUDA (GPGPU) applica-
tions. Their advantages are compatibility with non-
CUDA applications and simple porting of C/C++ code
onto the CUDA platform. However, using C/C++
memory allocation leads to PCI-Express throughput deg-
radation caused by a temporary buffer for DMA introduc-
ing a redundant data movement in host memory. Moreo-
ver, only synchronous data transfers can be employed
preventing communication-computation overlapping and
sharing of host structures by multiple GPU and CPU
cores.

A pinned memory allocation routine provided by
CUDA marks an allocated region in host memory as non-
pageable. This region is thus permanently presented in
host memory and cannot be swapped onto disk. This ena-
bles Direct Memory Access (DMA) to this buffer, pre-
venting any redundant data movement and allowing the
buffer to be shared between multiple CPU cores and
GPUs.

Zero-copy memory is a special kind of host memory
that can be directly accessed by a GPU. No GPU memory
allocations and explicit data transfers are needed any
more. Data is streamed from host memory on demand.
This is useful for GPU applications only reading input
data or writing results once. However, this kind of
memory allocation is extremely unsuitable for iteration-
based kernels. It is important to note this has an impact on
the ability of the CPU to cache this data and thus repeated
accesses to the same data locations tend to be very slow.
A possible scenario is that a CPU thread fills an input
data structure for a GPU and never touches it again; the
GPU reads it only once using zero-copy memory allow-
ing a good level of computation and communication over-
lap.

Figure 4 shows the influence of host memory alloca-
tion type on the execution time needed to compute an
element wise multiplication of 128M elements (5123).
First, three matrices are allocated on the host using a par-
ticular allocation type. After that, the matrices are up-
loaded into device memory (not in the case of zero-copy).
Now, an element-wise multiplication kernel is run. The
result is written into device memory and then transferred
to host memory (not in case of zero-copy). The figure
clearly shows the overhead of standard C memory alloca-
tion routines over the CUDA ones.

Zero-copy memory seems to be very suitable for our
purposes. Although, the k-space method is iterative by
nature, we are limited by the device memory size that
does not allow us to store all global data (13GB) in

CRPIT Volume 127 - Parallel and Distributed Computing 2012

48

Figure 4: Time necessary to transfer two vectors of
128M elements to the GPU, perform element-wise

multiplications, and transfer the resulting vector back
to the CPU.

device memory even if we distribute the data over all 7
GPUs. Instead, we can leave some constant matrices in
host memory and stream them to particular GPUs on de-
mand. This perfectly suits line no. 6 in Figure 1, see be-
low:

duxdx = real(ifftn(bsxfun(@times

 ddx_k_shift_neg, kappa .* fftn(ux_sgx))));

First, the 3D FFT of the matrix ux_sgx is calculated

using a distributed version of cuFFT. The result is left in
the device memory. Now we need to multiply the result
of the forward FFT by the matrix kappa. As we need
any element of kappa exactly once, there is no benefit in
transferring the kappa matrix to the GPU. Instead, we
could stream it from host memory using zero-copy
memory. After that, we upload ddx_k_shift_neg
vector into texture memory, because each element is read
many times while expanding it to a 3D matrix on the fly
and multiplying with the temporary result of the previous
operation. Finally, the inverse 3D FFT is started using the
data placed in the device memory.

5.2 Peak Single PCI-Express Transfer Band-
width

Having chosen an appropriate memory allocation on the
host side, we focused on measuring PCI-Express band-
width between CPU and GPU taking into account differ-
ent data block sizes starting at 1KB and finishing at
65MB. As the CPU has to serve multiple GPUs simulta-
neously, it is crucial to know the speed at which the CPU
could feed the GPUs.

As the Tyan servers are special-purpose servers with
a unique architecture using two IOH north bridges and
PEX bridges, the peak bandwidth between the host and
single devices was investigated in order to verify the
throughput of different PCI-Express slots in both direc-
tions.

The experimental results are summarized in Figure 5.
The measurements were repeated 100 times and averaged
values were plotted. It can be seen that for small data
blocks the PCI-Express bandwidth is degraded and reach-
es only a small fraction of the theoretical value of 8GB/s
in one direction. In order to utilize the full potential of
PCI-Express, data blocks with sizes of 500KB and larger

 have to be transferred. The smallest chunk of data we can
possibly upload to the GPU is one row of a 3D matrix,
which for the size of interest represents 3KB. This is ob-
viously too fine-grained a decomposition and we will
have to send hundreds of lines in one PCI-Express trans-
action. This does not pose a problem, because a typical
number of rows to process is in order of hundreds of
thousands. The figure also reveals that device to host
transfers are slightly faster than host to device ones.

A surprising variation in the peak bandwidth when
communicating with different devices was observed. On
one Tyan server, the first three GPUs are 2GB/s slower
than the other four when transferring data from GPU to
CPU memory. Although there are small oscillations from
experimental run to experimental run, the results did not
change significantly. We tried to physically shuffle the
GPUs between slots but the results remained virtually
unchanged. One explanation is that first three GPUs are
connected to the Intel IOH chipset that is also responsible
for HDDs, LANs, VGA, etc. On the other hand this does
not explain the situation on the second Tyan server where
GPUs 3, 4, 5 and 6 are significantly slower. Considering
that both motherboards are the same, other peripheries
should be connected to the same Intel IOH chipset. These
results have also been cross validated with well-known
SHOC benchmark proposed by Danalis at al. (2010).

5.3 Peak PCI-Express Bandwidth under Mul-
tiple Simultaneous Transfers

The second set of benchmarks investigates the PCI-
Express bandwidth when communicating with multiple
GPUs that is essential for work distribution over multiple
GPUs. In all instances, pinned memory was used and four
different transfer controlling (farmer) patterns considered:

• A single CPU thread distributes the data over multi-
ple devices using synchronous transfer.

• Multiple CPU threads distribute the data over multi-
ple devices using synchronous transfers. Each de-
vice is served by a private CPU thread.

• A single CPU thread distributes the data over multi-
ple devices employing asynchronous transfers.

• Multiple CPU threads distribute the data over multi-
ple devices by asynchronous transfers.

As each pair of GPUs share 16 PCI-Express links via
a PEX bridge and different pairs are connected to differ-
ent chipsets with NUMA architecture, we have investi-
gated communication throughput in these configurations:

(1) A pair of devices communicating with the host.
(2) Two devices belonging to different pairs com-

municating with the host.
(3) All even devices communicating with the host.
(4) Two pairs of devices communicating with the host.
(5) All seven devices communicating with the host.
The experimental measurements shown in Figure 6

demonstrate that a single CPU thread with synchronous
transfers cannot saturate the PCI-Express subsystem of
the Tyan servers; the peak bandwidth always freezes at
the level of a single transfer. On the other hand, all re-
maining approaches are comparable, so there is no need
to use multiple CPU threads to feed multiple GPU with
data. We can employ the remaining CPU cores to work
on tasks that are not worth processing on a GPU.

1.967

0.274 0.238

0

0.4

0.8

1.2

1.6

2

C malloc Pinned Zero-copy

T
im

e
to

 c
om

pu
te

 [
s]

Time to compute an element-wise multiplication
with 128M elements

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

49

The second observation that can be made reveals the
difference between the host to device and the device to
host peak bandwidth. Whereas device to host transfers are
limited by the 5.8GB/s, transfers managed by host scale
up to 10.2GB/s (see Figure 6). We can conclude the de-
vice to host transfers are limited by the throughput of
a single PCI-Express 16 cannel while host to device by
the QPI interconnection.

Table 2 presents the peak bandwidth in different con-
figurations using one CPU thread and asynchronous
transfers with respect to the numbering above. In all cas-
es, device to host transfers cannot exploit the potential of
the underlying architecture. In case (4), two different val-
ues were observed depending on the location of the pair.
As we have mentioned before, the first three PCI-Express
slots are slower than the other four. This leads to the fact
that the first two pairs are slower than the other ones. The
upper limit for host to device transfers lies around the
10GB/s level possibly limited by the QPI interconnection.

5.4 Peak Peer-to-Peer Transfers Bandwidth
One of the new features introduced in CUDA 4.0 is
a peer-to-peer transfer. This feature enables Fermi based
GPUs to directly access memory of another device via
PCI-Express bypassing host memory. Data can be re-
motely read, written or copied. As peer-to-peer (p2p)
transfers could serve the data exchange phase of distrib-
uted FFTs, we have investigated the performance of this
technique and compared the results with user implement-
ed device-host-device (d-h-d) transfers.

The Fermi GPU cards are only equipped with one
copy engine, this device cannot act as source and destina-
tion of a peer-to-peer (p2p) transfer at the same time.
Nevertheless, having seven GPUs we can create several
scenarios where multiple devices are performing p2p
transfers simultaneously. Also, we can use synchronous
and asynchronous p2p transfers.

Figure 7 shows a comparison of p2p and d-h-d trans-
fers running on two devices in different pairs, namely
GPU 0 and GPU 1. We can see that the new p2p tech-
nique brings a significant improvement over the d-h-d
transfer where the data has to be downloaded from the
source device and, after that, uploaded on the destination
device. The situation rapidly changes when performing
multiple p2p transfers. The synchronous transfers become
a bottleneck and asynchronous ones exploit more band-
width. Figure 8 presents the performance of three simul-
taneous pairwise transfers (GPU 1 -> GPU 2, GPU 3 ->
GPU 4, and GPU 5 -> GPU 6) where each device is either
source or destination and all sources and destination are
connected to different PEXs.

A d-h-d transfer in its asynchronous form consists of
two phases. In the first phase, data packages are down-
loaded from all source devices and placed in host
memory in asynchronous way. After synchronization the
data packages are distributed over destination devices
also in asynchronous way (more transfers at a time).

From the figure, CUDA 4.0 does not seem to be opti-
mized for multiple simultaneous p2p transfers and user
managed device-host-device transfers win. The difference
is about 800MB/s. Taking into account this finding, it
appears that it is better to implement highly optimized

Pattern Host to Device Device to Host
(1) 6GB/s 6.5GB/s

(2) 10GB/s 6.8GB/s

(3) 10GB/s 5.2GB/s

(4) 10GB/s 5.2 / 6.8GBs

(5) 10GB/s 5.4GB/s

Table 2: Peak bandwidth of multiple simultaneous
transfers in different configurations.

device-host-device transfers that also involve CPU cores
in data rearrangement and migration.

6 Discussion and Conclusion
This paper outlines our effort to migrate a compute inten-
sive application of ultrasound propagation simulation to
a cluster computer where each node has seven NVIDIA
GPUs. The preliminary results from the CPU implemen-
tations have shown a speed-up of up to 8.4 compared to
the original Matlab implementation. Given the computa-
tional benefits of using the k-space method compared to
other approaches, this is a significant step towards creat-
ing an efficient model for large scale ultrasound simula-
tion.

As the architecture of the Tyan 7-GPU server is not
very common, we have examined a number of its specifi-
cations. We have designed several benchmarks that have
revealed the behaviour of the PCI-Express subsystem.

In order to achieve the highest possible performance,
we have to distribute the work over all seven GPUs. The
CPU implementation of the code has revealed a low
computation-memory access ratio. The asymptotic time
complexity is only O(n) = n log n. From the realistic ex-
periments we found the CPU time for a single iteration is
about 4.1s while global data of almost 13GBs has to be
touched at least once.

Considering we could rework the code to access any
element exactly once, and taking into account reachable
CPU-GPU bandwidth, a naïve GPU based implementa-
tion would spend 2.1s or 1.3s distributing the data over
one or multiple GPUs, respectively. Assuming all com-
munication can be overlapped by computation using zero
copy memory and the presence only one copy engine on
a GPU, the realistic speed-up of a naïve implementation
over a CPU one would be limited by 1.5 or 3.2 for one or
multiple GPUs respectively.

On the other hand, if we accommodated all data in the
on-board GPU memory we could reach much higher
speed-up. Such an experiment has been carried out using
a Matlab CUDA extension and a single NVIDIA Tesla
GPU with 6 GB of memory and 448 CUDA cores. Using
a domain size of 2563 we have reached a speed-up of
about 8.5 (compared to Matlab code), which is close to
our CPU C++ implementation. Assuming we can opti-
mize the GPU implementation in a similar way as in the
CPU case, we may be able to improve on the Matlab
CUDA code significantly.

The appropriate data distribution is going to play a key
role in the application design. One way to reduce the data
set is to calculate some matrices on the fly, exchanging
spatial complexity for time complexity. Another possibil-
ity is to employ fast real-time compression and decom-
pression of the data making the chunks smaller to transfer

CRPIT Volume 127 - Parallel and Distributed Computing 2012

50

through PCI-Express and between GPU on-board and on-
chip memory. As many of the matrices are constant, the
compression would have to be done only once. As long as
we know that using asynchronous transfer one CPU core
is sufficient to feed all seven GPUs, the remaining cores
could execute other tasks that are not worth migrating to
GPUs.

Data migration between GPUs will play another key
role. Provided that we also need to perform data migra-
tion as a part of distributed FFT, we have revealed that
the present CUDA 4.0 is not optimized for multiple sim-
ultaneous peer-to-peer transfers bypassing the host
memory and thus, this communication pattern will have
to be implemented as a composition of common device to
host and host to device transfers.

7 Acknowledgments
This work was supported by the Australian Research
Council/Microsoft Linkage Project LP100100588.

8 References
Becker, D., Sterling, T., et al. (1995): Beowulf: A Parallel

Workstation for Scientific Computation, Proc. Interna-
tional Conference on Parallel Processing, Ocono-
mowoc, Wisconsin, 11-14.

Kirk, D., and Hwu, W. (2010): Programming Massively
Parallel Processors: A Hands-on Approach, Morgan
Kaufmann.

Danalis, A., Marin, G., McCurdy, C., Meredith, J., Roth,
P., Spafford, K., Tipparaju, V., Vetter, J (2010). The
Scalable HeterOgeneous Computing (SHOC) Bench-
mark Suite. Proceedings of the Third Workshop on
General-Purpose Computation on Graphics Processors
(GPGPU 2010).

Sanders, J. and Kandrot E. (2010): CUDA by Example:
An Introduction to General-Purpose GPU Program-
ming, Addison-Wesley Professional.

Treeby, B. E. and Cox, B. T. (2010): k-Wave: MATLAB
toolbox for the simulation and reconstruction of photo-
acoustic wave fields. Journal of Biomedical Optics.
15(2):021214.

Treeby, B. E., Tumen, M. and Cox, B. T. (2011): Time
Domain Simulation of Harmonic Ultrasound Images
and Beam Patternsin 3D using the k-space Pseudospec-
tral Method. Medical Image Computing and Computer-
Assisted Intervention, 6891(1): 369-376, Springer, Hei-
delberg.

Tabei M., Mast T. D. and Waag, R. C. (2002): A k-space
method for coupled first-order acoustic propagation
equations. Journal of Acoustical Society of America.
111(1):53-63.

Terboven, C., Mey, D., et.al. (2008): Data and Thread
Affinity in OpenMP Programs. Proceedings of the
2008 workshop on Memory access on future processors
(MAW ’08), New York, NY, ACM, 377–384.

CUDA: Parallel computing architecture, NVIDI
http://www.nvidia.com/object/cuda_home_new.html,
Accessed 15 Sep 2011.

CUDA Math Libraries Performance 6.14, NVIDIA,
http://developer.nvidia.com/content/cuda-40-library-
performance-overview, Accessed 15 Sep 2011

FFTW: Free FFT library, http://www.fftw.org/. Accessed
13 Sep 2011.

Matlab: The Language of technical computing, Math-
Works, http://www.mathworks.com.au/products/matlab
/index.html, Accessed 15 Sep 2011.

OpenMPI: Open Source High Performance Computing,
The Open MPI project, http://www.open-mpi.org/, Ac-
cessed 15 Sep 2011.

TYAN Computer: Tyan FT72B7015 server barebone,
http://www.tyan.com/product_SKU_spec.aspx?Product
Type=BB&pid=439&SKU=600000195, Accessed 15
Sep 2011.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

51

Figure 5: Peak bandwidth between host and a single device in both directions influenced by transported block
size.

Figure 6: Peak bandwidth when host is communicating with all 7 GPUs in both directions.

Figure 7: Peak bandwidth of a single peer-to-peer transfer and device-host-device transfer.

Figure 8: Peak bandwidth of multiple p2p and d-h-d transfers using three disjoint source-destination pairs.

0

1

2

3

4

5

6

7
1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Host to Device Bandwidth

GPU 0 GPU 1

GPU 2 GPU 3

GPU 4 GPU 5

GPU 6

0

1

2

3

4

5

6

7

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Device to Host Bandwidht

GPU 0 GPU 1

GPU 2 GPU 3

GPU 4 GPU 5

GPU 6

0

2

4

6

8

10

12

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Host to Device Bandwidth
All 7 GPUs

SEQ_SYNC

SEQ_ASYNC

PAR_SYNC

PAR_ASYNC

0

1

2

3

4

5

6

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Device to Host Bandwidth
All 7 GPUs

SEQ_SYNC

SEQ_ASYNC

PAR_SYNC

PAR_ASYNC

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Peer-to-peer and device-host-device transfer
using GPU0 and GPU1

p2p

d-h-d

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Peer-to-peer and device-host-device transfer
GPUs transfers: 1 ->2, 3 ->4, 5 ->6

p2p, sync

d-h-d, sync

p2p, async

d-h-d, async

CRPIT Volume 127 - Parallel and Distributed Computing 2012

52

