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We show that parity-time- (PT -) symmetric coupled optical waveguides with gain and loss support localized
oscillatory structures similar to the breathers of the classical φ4 model. The power carried by the PT breather
oscillates periodically, switching back and forth between the waveguides, so that the gain and loss are compensated
on the average. The breathers are found to coexist with solitons and to be prevalent in the products of the soliton
collisions. We demonstrate that the evolution of a small-amplitude breather’s envelope is governed by a system of
two coupled nonlinear Schrödinger equations and employ this Hamiltonian system to show that small-amplitude
PT breathers are stable.
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I. INTRODUCTION

Light propagation in parity-time- (PT -) symmetric optical
systems with balanced gain and loss has been under intense
scrutiny in the past few years. The concept has its roots in
quantum mechanics where a PT -symmetric non-Hermitian
Hamiltonian may have an entirely real spectrum of eigenvalues
[1,2]. In optics, the PT symmetry can be achieved by an
appropriate modulation of the complex refractive index [3–5].

The symmetric optical systems should display a variety of
unusual and often counterintuitive phenomena including an
unconventional beam refraction [6,7], Bragg scattering [8,9],
nonreciprocal Bloch oscillations [10], symmetry-breaking
transitions [11,12], a loss-induced optical transparency [13],
conical diffraction [14], an additional type of Fano resonance
[15], chaos [16], and nonlocality manifested in the nontrivial
effect of the boundaries [17]. Recently, optical PT -symmetric
couplers [12,13] and lattices [18] have been realized experi-
mentally.

Nonlinear effects in PT -symmetric systems are of partic-
ular interest for both fundamental and applied science. They
offer the potential for an efficient control of light, including
all-optical low-threshold switching [19–21] and unidirectional
invisibility [20]. In addition, nonlinearity can compensate the
diffraction of stationary light beams and dispersion of light
pulses, allowing the formation of spatial and temporal solitons.

There has already been a large number of studies of optical
solitons in PT -symmetric systems. Solitons in complex one-
dimensional potentials have been analyzed on the basis of
the nonlinear Schrödinger equation [22–32]. Two-dimensional
symmetric potentials were dealt with in Refs. [26,29,33]. The
authors of [34–37] classified solitons in planar PT -symmetric
couplers, whose geometry is intermediate between one- and
two-dimensional lattices.

The PT -symmetric solitons considered in the above
publications represented stationary self-localized modes. The
solitons arise due to the exact compensation of the gain
and loss at each moment of time. A more general type of
localized objects was identified in [37], where the unstable
solitons were observed to seed spatially localized temporally

periodic states. (In the context of planar stationary waveguides,
these are interpreted as transversally localized structures
with profiles oscillating along the waveguide.) These objects
resemble breathers in conservative systems (such as the φ4

and sine-Gordon equations) [38]; hence they were referred to
simply as breathers [37].

In this paper the PT breathers are studied in more detail.
First, we derive the amplitude equations for oscillatory solu-
tions in a planar PT -symmetric nonlinear optical coupler (the
equations for the envelopes of the oscillatory wave packets).
The amplitude equations turn out to be Hamiltonian—despite
the fact that the original system includes both gain and loss.
These Hamiltonian equations are then used to show that the
(zero-velocity) PT breathers form two-parameter families
with variable amplitude, localization width, and contrast of
power density oscillations. We also employ these equations to
establish the stability of the breathers with small amplitude.
Finally, the planar PT -symmetric coupler is simulated numer-
ically. The results of our numerical simulations demonstrate
that the breathers are generic objects which are commonly
formed as a result of soliton collisions.

The outline of the paper is as follows. In Sec. II, we
introduce the mathematical model, and in the subsequent
section, derive equations for the slowly varying envelopes
of its oscillatory solutions. Section IV uses these amplitude
equations to classify the PT -symmetric breather states. The
stability of the small-amplitude breathers is established in
Sec. V. In the next Section (Sec. VI), we describe the formation
of breathers in soliton-soliton collisions. Finally, Sec. VII
summarizes the results of this study.

II. MODEL

The PT -symmetric coupler, i.e., a pair of coupled waveg-
uides with power gain in one waveguide and optical loss
of equal rate in the other, has been studied theoretically
[4,5,20,21,39] and experimentally [12,13]. Optical systems
that include the PT -symmetric coupler as a structural el-
ement [15,17,40] and systems consisting of arrays of such
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FIG. 1. (Color online) A schematic representation of PT -
symmetric coupled waveguides with gain (red, top) and loss (blue,
bottom, waveguide). (a) Two planar waveguides carrying stationary
light beams. Here t and x indicate the longitudinal and transverse
spatial coordinates, respectively. (b) A pair of one-dimensional
waveguides where light pulses undergo temporal evolution as they
travel along the x axis.

couplers [7,14,23,34,39,41,42] have also been discussed in
the literature.

Following [35,37] we analyze the diffraction of optical
beams propagating in a planar PT coupler, in media with
Kerr-type nonlinearity. The amplitudes of the active and
passive modes in this setting satisfy a system of two coupled
nonlinear Schrödinger equations,

iut + uxx + 2|u|2u = −v + iγ u,
(2.1)

ivt + vxx + 2|v|2v = −u − iγ v.

Here t is the (spatial) coordinate in the propagation direction
and x is the transverse coordinate. The coefficient γ > 0 is
the amplification rate for the waveguide with gain and, at the
same time, the damping rate for the waveguide with loss. This
planar coupler is schematically shown in Fig. 1(a). It is fitting
to note here that the system (2.1) emerges as the continuum
limit of the chain of PT couplers considered in [34].

The same PT -symmetric system (2.1) can describe the
propagation of optical pulses (rather than stationary light
beams) [37]. This alternative interpretation of Eqs. (2.1)
arises if t and x stand for the time and distance in the
frame of reference traveling along with the pulse. This is the
arrangement illustrated by Fig. 1(b).

The system (2.1) is not conservative. Neither the individual
powers associated with the two modes,

Pu =
∫

|u|2dx, Pv =
∫

|v|2dx, (2.2)

nor their sum are conserved. The total power satisfies

d

dt
(Pu + Pv) = 2γ (Pu − Pv), (2.3)

which implies that it remains constant only on solutions which
have Pu = Pv for all times [37].

III. WEAKLY NONLINEAR AMPLITUDE EQUATIONS

We start our analysis by transforming Eqs. (2.1) to a system
with a diagonal linear part. Assuming γ < 1 and defining

a = eiθu − v

2ω0
, b = e−iθu + v

2ω0
, (3.1)

where

θ = arcsin γ, ω0 = cos θ,

Eqs. (2.1) become

iat + axx − ω0a + 2(|a|2 + 2|b|2)a

+ 4ie−iθ γ a2b∗ + 2e2iθ a∗b2 = 0,

ibt + bxx + ω0b + 2(2|a|2 + |b|2)b

− 4ieiθ γ a∗b2 + 2e−2iθ a2b∗ = 0. (3.2)

The system (3.2) has two simple reductions or, equivalently,
two invariant manifolds. Letting b = 0, Eqs. (3.2) reduce to a
scalar nonlinear Schrödinger equation,

iat + axx − ω0a + 2|a|2a = 0, (3.3)

while letting a = 0 yields a scalar Schrödinger equation with
the opposite sign of the frequency term:

ibt + bxx + ω0b + 2|b|2b = 0. (3.4)

Both (3.3) and (3.4) have soliton solutions and hence the
system (3.2) admits two types of “simple” soliton: one
with b = 0 and the other one with a = 0. These low- and
high-frequency solitons have been analyzed before [34,35,37].
Here, our aim is to construct more general solutions with both
components nonzero.

To this end, we note that when a and b are so small that the
nonlinear part in (3.2) can be neglected, the resulting linear
system has a family of spatially homogeneous stationary-
wave solutions: a = A0e

−iω0t , b = B0e
iω0t . To search for the

nonlinear counterparts of these, we consider a long-wavelength
small-amplitude configuration:

a(x,t) = ε1/2A(X,t), b(x,t) = ε1/2B(X,t), (3.5)

where X = ε1/2x and ε is a small parameter (ε > 0). The O(1)
fields A and B satisfy

iAt + εAXX − ω0A + 2ε(|A|2 + 2|B|2)A

+ 4ie−iθ εγA2B∗ + 2e2iθ εA∗B2 = 0,

iBt + εBXX + ω0B + 2ε(2|A|2 + |B|2)B

− 4ieiθ εγA∗B2 + 2e−2iθ εA2B∗ = 0. (3.6)

Solutions of the system (3.6) can be sought for as expan-
sions in powers of ε:

A = A0 + εA1 + · · · , B = B0 + εB1 + · · · . (3.7)

We also assume that the coefficients An and Bn de-
pend on a hierarchy of “slow times” and “zoomed-out”
spatial coordinates: An = An(T0,T1, . . . ; X0,X1, . . .), Bn =
Bn(T0,T1, . . . ; X0,X1, . . .), where

Tn = εnt, Xn = εnX, n = 0,1,2, . . . . (3.8)

In the limit ε → 0 the scaled time and space variables decouple
and can be treated as independent. In what follows, we adopt
a shorthand notation,

Dn = ∂/∂Tn, ∂n = ∂/∂Xn.

Note that the parameter ε is not pegged to any scale of
the original model (2.1),(3.2). Therefore we expect it to be
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absorbable in the parameters of the solutions that we will end
up with.

Substituting the expansions (3.7) in (3.6), we equate
coefficients of like powers of ε. The order ε0 gives

(iD0 − ω0)A0 = 0, (iD0 + ω0)B0 = 0,

whence

A0 = e−iτ p, B0 = eiτ q, (3.9)

with

τ = ω0 T0.

The coefficients p and q are functions of all variables except
T0.

The order ε1 produces

(iD0 − ω0)A1 = −[
iD1A0 + ∂2

0 A0 + 2(|A0|2 + 2|B0|2)A0

+ 4ie−iθ γA2
0B

∗
0 + 2e2iθB2

0A∗
0

]
,

(iD0 + ω0)B1 = −[
iD1B0 + ∂2

0 B0 + 2(|B0|2 + 2|A0|2)B0

− 4ieiθ γB2
0A∗

0 + 2e−2iθA2
0B

∗
0

]
. (3.10)

To eliminate the secular terms, we impose

iD1p + ∂2
0 p + 2(|p|2 + 2|q|2)p = 0,

(3.11)
iD1q + ∂2

0 q + 2(|q|2 + 2|p|2)q = 0.

The remaining terms in the right-hand sides of (3.10) involve
the third harmonics only; hence we get, for A1 and B1,

A1 = 1

2ω0
(e2iθ q2p∗e3iτ − 4ie−iθ γp2q∗e−3iτ ),

(3.12)

B1 = − 1

2ω0
(4ieiθ γ q2p∗e3iτ + e−2iθp2q∗e−3iτ ).

Proceeding to the order ε2, and setting the corresponding
secular terms to zero, we obtain

iD2p + 2∂0∂1p + 1

ω0
(|q|2 − 2|p|2)|q|2p = 0,

(3.13)

iD2q + 2∂0∂1q + 1

ω0
(2|q|2 − |p|2)|p|2q = 0,

where we have substituted for A1 and B1 from (3.12).
According to Eqs. (3.11), the variations in the amplitudes p

and q become noticeable only over long periods of time, 	t ∼
ε−1. Equations (3.13) govern the evolution of these amplitudes
over even longer time intervals, 	t ∼ ε−2. It is convenient to
combine Eqs. (3.11) and (3.13) into a system that takes care
of the evolution on both slow scales. To this end, we add
Eqs. (3.11) to Eqs. (3.13) multiplied by ε and define T = εt .
Since the amplitudes do not depend on T0, the chain rule gives
∂/∂T = D1 + εD2 + ε2D3 + · · · . Thus, to within O(ε2), we
have D1p + εD2p = pT and D1q + εD2q = qT , and so the
resulting pair of equations can be written as

ipT + pXX + 2(|p|2 + 2|q|2)p + ε

ω0
(|q|2 − 2|p|2)|q|2p = 0,

iqT + qXX + 2(|q|2 + 2|p|2)q + ε

ω0
(2|q|2 − |p|2)|p|2q = 0.

(3.14)

(Here ε � 0.) This is a Hamiltonian system, with the Hamilton
functional

H =
∫

[|pX|2 + |qX|2 − (|p|4 + |q|4 + 4|pq|2)

+ εω−1
0 |pq|2(|p|2 − |q|2)]dX.

The amplitude equations (3.14) describe the evolution of
the slowly changing envelope of a small-amplitude, weakly
localized packet of waves with the carrier frequency ω0. Over
time intervals ε−1 � 	t � ε−2, Eqs. (3.14) are equivalent to
the original system (2.1). This remarkable equivalence of a
dissipative and conservative system, holding for a particular
but fairly broad class of trajectories, is attributable to the PT
symmetry of the former.

Setting ε = 0, the system (3.14) becomes

ipT + pXX + 2(|p|2 + 2|q|2)p = 0,
(3.15)

iqT + qXX + 2(|q|2 + 2|p|2)q = 0.

This vector nonlinear Schrödinger equation has been exten-
sively studied in the literature [43–55]. On the other hand, the
system (3.14) with ε �= 0 does not seem to have been discussed
before.

Note that both Eq. (3.14) and the “curtailed” system (3.15)
govern the small-amplitude breathers only, with u,v ∼ ε1/2.
However Eq. (3.14) has an advantage over Eq. (3.15) in that the
former system has a longer range of validity. While Eq. (3.15)
ceases to be valid for times exceeding ε−1, Eq. (3.14) remains
accurate for times as long as ε−2.

Our second reason behind the evaluation of the second-
order corrections in the perturbation expansion was related to
the conservative property of the amplitude equations (3.14)
and (3.15). Once the first-order amplitude equations are found
to be given by a Hamiltonian system [the system (3.11)], the
question arises whether this property is specific to the first-
order evolution only. The fact that the second-order dynamics
is also governed by a Hamiltonian system [Eq. (3.14)] suggests
then that the energy conservation is an inherent property of the
small-amplitude oscillations. We conjecture that this property
is valid to all orders in the perturbation theory (and may be
violated only by terms that lie beyond all orders).

IV. BREATHER SOLUTIONS

One simple solution of Eqs. (3.14) is

p = ei[μT +(V/2)X]√μ sech[
√

μ(X − V T )], q = 0. (4.1)

The other one is given by

p = 0, q = ei[νT +(W/2)X]√ν sech[
√

ν(X − WT )]. (4.2)

These two solutions of (3.14) will be referred to as degenerate
solitons. The parameters μ > 0, ν > 0, V , and W can be
chosen arbitrarily. Here

√
μ and

√
ν give the amplitudes of

the degenerate solitons, and V and W are their velocities.
The degenerate-soliton solutions of Eq. (3.14) correspond

to the solitons of the scalar reductions (3.3) and (3.4)
of the original system (2.1). The degenerate soliton (4.1)
corresponds to the low-frequency soliton of (2.1), and the
solution (4.2) to its high-frequency counterpart [34,35,37].
The vector of the power densities {|u|2,|v|2} associated with
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each of these solutions describes a pulse traveling, without
oscillations, at the velocities v = ε1/2V and w = ε1/2W ,
respectively.

Our main interest is in solutions of the system (3.14)
which have both components nonzero. Thanks to the Galilian
invariance of (3.14), it is sufficient to consider separable
solutions corresponding to nonpropagating waves:

p = eiμT P (X), q = eiνT Q(X). (4.3)

The spatial parts P and Q satisfy

P ′′ − μP + 2(|P |2 + 2|Q|2)P + ε

ω0
(|Q|4 − 2|PQ|2)P = 0,

Q′′ − νQ + 2(|Q|2 + 2|P |2)Q + ε

ω0
(2|PQ|2 − |P |4)Q = 0,

(4.4)

where the double prime indicates d2/dX2.
Localized solutions of the stationary equations (4.4) give

rise to oscillatory, breatherlike, configurations in the original
model (2.1):

u(x,t) = ε1/2[Qeiω2t + Pe−iω1t ] + O(ε3/2),

v(x,t) = ε1/2[Qei(ω2t+θ) − Pe−i(ω1t+θ)] + O(ε3/2),

where P = P (ε1/2x), Q = Q(ε1/2x), and

ω1 = ω0 − εμ, ω2 = ω0 + εν.

The corresponding |u|2 and |v|2 are

|u|2 = ε(|P |2 + |Q|2) + ε[QP ∗ei(ω1+ω2)t + c.c.],

|v|2 = ε(|P |2 + |Q|2) − ε[QP ∗ei(ω1+ω2)t+2iθ + c.c.],

where c.c. stands for the complex conjugate of the immediately
preceding term and we neglected the O(ε2) corrections. These
quantities show temporal oscillations with the frequency ω1 +
ω2 = 2 cos θ + ε(ν − μ).

In this paper, we confine ourselves to the simplest choice of
ν = μ. (A brief comment on a more general situation with ν �=
μ is in Appendix A.) An additional simplification is attained
by restricting consideration to real solutions. For real P and
Q Eqs. (4.4) reduce to

P ′′ − μP + 2P 3 + 4Q2P + ε

ω0
(Q2 − 2P 2)Q2P = 0,

Q′′ − μQ + 2Q3 + 4P 2Q + ε

ω0
(2Q2 − P 2)P 2Q = 0.

(4.5)

When ε = 0, the system (4.5) has an explicit solution

P0(X) = Q0(X) =
√

μ

3
sech(

√
μX). (4.6)

The terms proportional to ε in (4.5) are regular perturbations,
i.e., the perturbed solution satisfying the boundary conditions
P (X),Q(X) → 0 as |X| → ∞ exists for all sufficiently small
ε. To show this, we expand P and Q in powers of ε,

P =P0+εP1+ε2P2+ · · · , Q = Q0 + εQ1 + ε2Q2 + · · · ,

(4.7)

and substitute the expansions in (4.5). Letting S = P1 + Q1

and D = Q1 − P1, the order ε gives

(−d2/dξ 2 + 1 − 6 sech2ξ )S = 0, (4.8)
(

− d2

dξ 2
+ 1 − 2

3
sech2ξ

)
D = 2

9
√

3

μ3/2

ω0
sech5ξ, (4.9)

where we have defined ξ = μ1/2X.
The operator in the left-hand side of (4.8) has a zero

eigenvalue, with the associated eigenfunction being odd. If
we wish to construct a solution with definite parity (i.e., an
even solution), we should take S = 0. On the other hand, the
operator in the left-hand side of (4.9) is positive definite and
hence invertible. As a result, Eq. (4.9) has an exponentially
decaying solution:

D = 1

51
√

3

μ3/2

ω0
(6 sechξ + sech3ξ ).

Taken together with S = 0, this implies

Q1 = −P1 = 1

102
√

3

μ3/2

ω0
(6 sechξ + sech3ξ ). (4.10)

Returning to the original variables u and v we note that,
as expected, the parameters ε and μ enter the solution only in
combination, εμ. Without loss of generality, we can set one of
these to 1, e.g., μ = 1.

Equations (4.3), with P and Q expanded as in (4.7), and
Pn and Qn as in (4.6) and (4.10), provide solutions to the
amplitude equations (3.14):

p = eiT

√
3

sechX

[
1 − ε

102ω0
(6 + sech2X) + O(ε2)

]
,

(4.11)

q = eiT

√
3

sechX

[
1+ ε

102ω0
(6+sech2X)+O(ε2)

]
.

Since both p and q are nonzero in (4.11), we will be referring
to these solutions as two-component solitons.

Feeding Eqs. (4.11) into (3.5), (3.7), (3.9), and (3.12) gives

a = ε1/2[A0 + εA1 + O(ε2)], b = ε1/2[B0 + εB1 + O(ε2)],

(4.12)

with

A0 = e−i(ω0−ε)t

√
3

sech(ε1/2x)

×
[

1 − ε

102ω0
[6 + sech2(ε1/2x)] + O(ε2)

]
,

B0 = ei(ω0+ε)t

√
3

sech(ε1/2x)

×
[

1 + ε

102ω0
[6 + sech2(ε1/2x)] + O(ε2)

]
,

A1 = eiεt

6
√

3ω0

sech3(ε1/2x)

× [ei(3ω0t+2θ) − 4iγ e−i(3ω0t+θ)] + O(ε),

B1 = − eiεt

6
√

3ω0

sech3(ε1/2x)

× [4iγ ei(3ω0t+θ) + e−i(3ω0t+2θ)] + O(ε). (4.13)
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Equations (4.12) and (4.13), taken together with the conversion
formulas

u(x,t) = a + b, v(x,t) = eiθb − e−iθ a, (4.14)

yield solutions of the original equation (2.1).
To test the accuracy of the asymptotic solution (4.12)–

(4.14), we simulated equations (2.1) with the initial condi-
tions in the form (4.12)–(4.14) with t = 0. [In these initial
conditions, we neglected the O(ε2) terms in A0,B0 and the
O(ε) terms in A1,B1.] The resulting oscillatory configuration
is plotted in Fig. 2. The fundamental harmonic in the frequency
spectrum of |u|2 and |v|2 was indeed found to be very close to
2ω0, the double frequency of the asymptotic solution.

As we mentioned in Sec. II, the system (2.1) may be thought
of as a continuum limit of a chain of coupled PT -symmetric
dimers. The power in each dimer can perform a periodic
oscillation [20,21], with an amplitude-dependent period. The
breather is an oscillation involving the entire chain. Although
the amplitude of oscillation varies along the chain, the coupling
synchronizes individual dimers so that the breather has a
single base frequency. Accordingly, the power integrals (2.2)
associated with the two modes show a perfectly periodic
behavior [Fig. 2(c)]. The total power Pu + Pv is not a constant
of motion but is periodic and therefore conserved on average.

V. STABILITY

The amplitude equations (3.14) may be used to study
the dynamics of the solitons and breathers of the original
system (2.1) over times up to t ∼ ε−2. In particular, Eqs. (3.14)
may be used to study the stability of these objects.

Consider a stationary solution (4.3) of the system (3.14).
This can be one of the two degenerate solitons (4.1) and (4.2)—
or the nondegenerate soliton (4.7),(4.6),(4.10) corresponding
to the breather of the original system (2.1). We consider the
simplest situation where μ = ν; in this case we may set,
without loss of generality, μ = ν = 1. Linearizing Eqs. (3.14)
about the stationary solution and assuming perturbations of
the form

δp(X,T ) = eiT [f(X,T ) + ig(X,T )],

δq(X,T ) = eiT [y(X,T ) + iz(X,T )],

where f, g, y, and z are real, gives

L1f + V(X)y = −gT , L0g = fT ,
(5.1)

M1y + V(X)f = −zT , M0z = yT .

Here we have introduced the operators

L0 = −∂2/∂X2 + 1 − 2P 2 − 4Q2 + ε

ω0
(2P 2 − Q2)Q2,

L1 = −∂2/∂X2 + 1 − 6P 2 − 4Q2 + ε

ω0
(6P 2 − Q2)Q2,

M0 = −∂2/∂X2 + 1 − 4P 2 − 2Q2 + ε

ω0
(P 2 − 2Q2)P 2,

M1 = −∂2/∂X2 + 1 − 4P 2 − 6Q2 + ε

ω0
(P 2 − 6Q2)P 2,

and a coefficient function

V(X) = −8PQ + 4ε

ω0
(P 2 − Q2)PQ.

FIG. 2. (Color online) Numerical evolution of the initial condition
in the form of the expansion (4.12)–(4.14) with t = 0. (In this
simulation, γ = 0.5 and ε = 0.1.) Shown are |u|2 (a), |v|2 (b), and
powers carried by the two components of the breather (c). In (c), Pu is
depicted by the broken red and Pv by the dotted blue line. Also shown
is the total powerPu + Pv (solid line). The simulation continued until
times much longer than ε−2 = 100, without any visible change in the
amplitude or period of the breather.
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For separable solutions of the form

f(X,T ) = Re[eλT f (X)], g(X,T ) = Re[eλT g(X)],

y(X,T ) = Re[eλT y(X)], z(X,T ) = Re[eλT z(X)],

with complex f, g, y, z, and λ, Eq. (5.1) reduces to an
eigenvalue problem:

A
( 	y

	z
)

= λ

( 	y
	z
)

, (5.2)

where

A =
(

0 H0

−H1 0

)
(5.3)

is a 4 × 4 matrix with blocks given by

H0 =
(
L0 0
0 M0

)
, H1 =

(
L1 V(X)

V(X) M1

)
,

and 	y, 	z are two-component vectors:

	y =
(

f

y

)
, 	z =

(
g

z

)
. (5.4)

A. Stability of the high- and low-frequency solitons

Consider, first, the degenerate soliton (4.1) and let the
velocity V = 0. [This degenerate soliton with Q = 0 describes
the amplitude of the low-frequency soliton of the original
PT -symmetric equations (2.1).] In this case, the operators
L0 and L1 reduce to L0 and L1, respectively, where

L0 = −d2/dX2 + 1 − 2 sech2X, (5.5)

L1 = −d2/dX2 + 1 − 6 sech2X, (5.6)

while M0 and M1 acquire a common form which we denote
L1/2:

L1/2 = − d2

dX2
+ 1 − 4 sech2X + ε

ω0
sech4X. (5.7)

Since Q = 0 implies V(X) = 0, the eigenvalue problem (5.2)
acquires a block-diagonal form:

L0g = λf, L1f = −λg, (5.8)

L1/2 y = −λz, L1/2 z = λy. (5.9)

Equation (5.8) is the linearized eigenvalue problem for the
scalar cubic nonlinear Schrödinger equation, a well-researched
integrable system. It has no discrete eigenvalues except the
fourfold zero eigenvalue. Its continuous spectrum occupies
the imaginary axis.

On the other hand, Eq. (5.9) gives

L2
1/2y = −λ2y.

This implies that λ = iω, where ω is an eigenvalue of the
Hermitian operator L1/2. Since all such eigenvalues are real,
all λ’s are purely imaginary and hence the degenerate soliton
is stable.

When ε = 0, the operator L1/2 has two discrete eigenvalues
ωa and ωb given by

ωa = α − 3 ≈ −1.438, ωb = 3α − 4 ≈ 0.685, (5.10)

with α = (
√

17 − 1)/2. The corresponding eigenfunctions are
ψa = sechαX and ψb = sechα−1X tanh X, respectively. The
eigenvalues ωa and ωb persist when ε deviates from zero
(but remains finitely small). It is only when ε grows above
a certain finite value that ωb and then ωa become immersed in
the continuous spectrum. Accordingly, for ε below a finite
threshold, the degenerate soliton (4.1) has two modes of
internal oscillation. (For ε = 0, this fact has been established
in [53].)

The degenerate soliton (4.2) corresponds to the high-
frequency soliton of the original equations (2.1). The lineariza-
tion about this degenerate soliton leads to the same eigenvalue
problem (5.9), with the same operator (5.7), where one just
needs to replace ε → −ε. This observation establishes the
stability of the soliton (4.2). As long as ε remains below
a finite threshold, the operator L1/2 with ε → −ε has two
discrete eigenvalues; hence the degenerate soliton (4.2) has
two internal modes.

The fact that the degenerate solitons of the amplitude
equations (3.14) are stable implies that both the low- and
high-frequency solitons of thePT -symmetric system (2.1) are
stable for sufficiently small ε. This conclusion is in agreement
with the analysis of the low- and high-frequency solitons
performed directly on Eqs. (2.1). Namely, the high-frequency
soliton was shown to be stable when its amplitude a lies
below a finite threshold ac, ac = ( 2

3 )1/2(1 − γ 2)1/4 [35,37].
On the other hand, the low-frequency soliton has an unstable
eigenvalue irrespective of the amplitude but its real part is
exponentially small when the amplitude is small [37]. This
instability constitutes an effect that lies beyond all orders in
εn; it cannot be captured by the amplitude equations (3.14).
The unstable perturbations take an exponentially long time to
grow in this case; hence the small-amplitude low-frequency
soliton will not reveal any instability when studied over time
intervals t ∼ ε−n.

The frequencies of the internal modes of the low- and high-
frequency soliton solutions of Eqs. (2.1) were also computed
in [37]. These coincide with the frequencies (5.10) computed
using the amplitude equations (3.14).

B. Stability and spectrum of the breather: t ∼ ε−1

Turning to the two-component soliton (4.11), it is conve-
nient to consider the soliton of the “curtailed” system (3.15)
first. The stability of the soliton of the system (3.15) will imply
the stability of the breather of the original PT -symmetric
system (2.1) over time intervals t ∼ ε−1 (where ε1/2 is the
amplitude of the breather).

The two-component soliton of the system (3.15) is given
by Eqs. (4.11) with ε = 0:

p = 1√
3
eiT sechX, q = 1√

3
eiT sechX. (5.11)

Depending on the context, this symmetric solution has been
referred to as the linearly polarized [48] or equally mixed [51]
soliton. Note that setting ε = 0 in Eqs. (4.11) does not mean
that we are considering breathers of zero amplitude. The
nonzero parameter ε remains present in the corresponding
breather solution (4.12),(4.13),(4.14); in particular the ampli-
tude of the breather remains equal to ε1/2 �= 0.
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The stability of the soliton (5.11) was proved by the
construction of a Lyapunov functional [46]. With an eye to
addressing the situation of general ε, we reconsider the stability
of this solution here—using the eigenvalue analysis.

When ε = 0, the eigenvalue problem (5.2) can be cast in
the block-diagonal form(

0 −L1

L0 0

)(
ζ1

ζ2

)
= λ

(
ζ1

ζ2

)
, (5.12)

(
0 −L+
L0 0

) (
ρ1

ρ2

)
= λ

(
ρ1

ρ2

)
, (5.13)

where the operators L0 and L1 are as in (5.5) and (5.6), and

L+ = − d2

dX2
+ 1 − 2

3
sech2X. (5.14)

The components of the column vectors in (5.12) and (5.13)
are the sums and differences of the components of the vectors
in (5.4): ζ1 = z + g, ζ2 = y + f , ρ1 = z − g, ρ2 = y − f .

Equation (5.12) arose in the previous section [see Eq. (5.8)].
It is the linearized eigenvalue problem for the scalar cubic
nonlinear Schrödinger equation. As discussed there, the
matrix-differential operator (5.12) does not have any discrete
eigenvalues except the four zeros. Therefore Eq. (5.12) can be
safely disregarded and we can focus on Eq. (5.13).

In order to transform Eq. (5.13) to a form more amenable
to analysis, we note that the only discrete eigenvalue of the
operator (5.14) is β + 1/3, where β = √

11/12 − 1/2 > 0. (It
is associated with the nodeless eigenfunction ψ = sechβX.)
Hence the operator L+ is positive definite and admits an
inverse. This observation allows us to write the vector
equation (5.13) as a generalized eigenvalue problem for a pair
of scalar operators,

L0ρ1 = −λ2L−1
+ ρ1. (5.15)

In (5.15), L0 is a symmetric operator, and L−1
+ is symmetric and

positive definite. All eigenvalues (−λ2) of the problem (5.15)
are real and the corresponding eigenfunctions can also be
chosen real. The lowest eigenvalue −λ2

0 can be found as the
minimum of the Rayleigh quotient:

−λ2
0 = min

(ρ1,L0ρ1)

(ρ1,L
−1
+ ρ1)

. (5.16)

Here ( , ) stands for the scalar product in the space of square
integrable real functions: (φ,ψ) = ∫ ∞

−∞ φ(X)ψ(X)dX.
The lowest eigenvalue of the Schrödinger operator L0 is

zero; it is associated with the nodeless eigenfunction z(0)(X) =
sechX. Therefore the Rayleigh quotient in (5.16) cannot take
negative values and its minimum is exactly zero: −λ2

0 = 0.
This means that the matrix-differential operator in the left-hand
side of (5.13) does not have any nonzero real eigenvalues λ

and so the soliton (5.11) of the vector nonlinear Schrödinger
equation (3.15) is stable.

This is the main conclusion of this subsection. It implies
that the small-amplitude breather of the PT -symmetric sys-
tem (2.1) is stable over time intervals t ∼ ε−1.

In fact it is not difficult to show that the operator (5.13)
does not have any discrete eigenvalues at all—neither real
nor imaginary. (See Appendix B.) The implication is that
when ε = 0, the two-component soliton of the vector nonlinear

Schrödinger equation does not have internal modes. (This fact
has been previously established by numerical means [53].)
With regard to the breather of the PT -symmetric system (2.1),
this implies that the small-amplitude breather cannot have any
modulating frequencies of order ε in its spectrum. This is the
second conclusion of this subsection.

C. Stability of the breather: t ∼ ε−2

To extend the breather stability result to times of order ε−2,
we need to consider the system (3.14) with ε �= 0. We should
demonstrate that its solution (4.11) does not have unstable
eigenvalues with Reλ of order εσ , 0 < σ � 1, in its spectrum.

We begin the stability analysis of this solution with the
identification of symmetries of the system (3.14). These will
provide information on zero eigenvalues of the operator (5.3).

Besides the translation and Galilean invariance, the sys-
tem (3.14) is symmetric with respect to U(1) × U(1) trans-
formations of the form p → peiφ , q → qeiχ , where φ,χ =
const. In addition, μ and ν can be chosen arbitrarily in the
stationary system (4.4). Thus each solution of the form (4.3) is
a member of a six-parameter continuous family and therefore
the eigenvalue problem (5.2) has six zero eigenvalues.

The corresponding eigenvectors and generalized eigenvec-
tors of the matrix A can be found explicitly. First, we observe
that

H0

(
P

0

)
= H0

(
0
Q

)
= 0, (5.17)

and H1(PX,QX)T = 0; hence (P,0,0,0)T , (0,Q,0,0)T , and
(0,0,PX,QX)T are the U(1) and translational eigenvectors, re-
spectively. One can also check that H1(Pμ,Qμ)T = −(P,0)T ,
H1(Pν,Qν)T = −(0,Q)T , andH0 	w = (PX,QX)T , where 	w =
− 1

2X(P,Q)T . These define the generalized eigenvectors:
(0,0,Pμ,Qμ)T , (0,0,Pν,Qν)T , and − 1

2X(P,Q,0,0)T .
All nonzero eigenvalues λ of the matrix A can be found

from the solution of the eigenvalue problem for a 2 × 2 matrix:

H0H1

(
f

y

)
= −λ2

(
f

y

)
. (5.18)

Using (5.17) one can readily check that the eigenvectors of
H0H1 corresponding to −λ2 �= 0 satisfy∫

f (X)P (X)dX =
∫

y(X)Q(X)dX = 0.

These orthogonality constraints define a subspace of the space
of square integrable vector functions. On this subspace, the
operator H0 admits an inverse and (5.18) can be written as

H1

(
f

y

)
= −λ2H−1

0

(
f

y

)
. (5.19)

The components P (X) and Q(X) of the solution (4.7)
remain positive for all X as long as ε remains below a
finite threshold. This means that zero remains the lowest
eigenvalue of the operators L0 and M0—the operators whose
null eigenvectors are given by P and Q. Therefore, the operator
H−1

0 remains positive definite (and symmetric) while the
operator H1 is symmetric. Equation (5.19) implies then that
all eigenvalues (−λ2) are real, so that all λ are either real or
purely imaginary.
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As ε grows from zero, the six eigenvalues of the matrix
A remain at the origin. New discrete eigenvalues can arise
only by bifurcating from the continuous spectrum which fills
the imaginary axis of λ outside the gap (−i, + i). Once an
eigenvalue has detached from the continuum, it can move along
the imaginary axis toward the origin. However, the eigenvalue
can reach the origin only if ε exceeds a finite threshold.
Therefore, the two-component soliton will remain stable as
long as ε remains (finitely) small.

Concerning the breather solution of the system (2.1), the
implication of this result is that the PT -symmetric breather
is stable on the time scale t � ε−2. (That is, the breather’s
lifetime is no shorter than ε−2.)

VI. BREATHER PRODUCTION IN SOLITON COLLISIONS

Breathers are known not to be exceptional or isolated
occurrences in thePT -symmetric planar coupler. In particular,
they form as a result of the soliton instability [37,56]. In this
section we argue that breathers are even more common than
solitons themselves: a collision of a high- and a low-frequency
soliton produces two or more breathers, and a collision of
two breathers also results in one or more of these oscillatory
objects.

We use Eqs. (2.1) to simulate the evolution of the initial
condition in the form of two solitons of equal amplitudes,
moving toward each other with equal velocities:

u(x,0) = a + b, v(x,0) = eiθb − e−iθ a,

a = ei(v/2)(x+x0)√μ sech[
√

μ(x + x0)], (6.1)

b = e−i(v/2)(x−x0)√μ sech[
√

μ(x − x0)].

Taking x0 > 0, the low-frequency soliton is initially on the left
and the high-frequency one is on the right; the initial velocities
are v and −v, respectively. [Note that in (6.1), the same symbol
v denotes the velocity of the soliton and the second component
of the vector field, v(x,t); this slight abuse of notation should
cause no confusion.] The initial distance between the solitons
is assumed to be much larger than their widths: 2

√
μx0 � 1.

The high-frequency soliton is stable if μ � 2
3

√
1 − γ 2

[35,37]. The low-frequency soliton is unstable for all μ but
when the amplitude is small, its instability growth rate is
exponentially small in μ [37]. Therefore when the solitons’
amplitudes are sufficiently small, the low-frequency soliton
will not manifest instability in the run-up to the collision. The
two small-amplitude solitons can be considered as two stable
entities.

The collision of the low-frequency and the high-frequency
solitons in the PT -symmetric system (2.1) corresponds to the
collision of degenerate solitons (4.1), (4.2) governed by the
amplitude equations (3.14). In the particular case ε = 0, such
collisions were studied by Tan and Yang [55] (see also [51]).
Depending on the solitons’ initial velocities, the colliding
degenerate solitons were recorded to pass through each other or
bounce back. The solitons emerging from the collision would
no longer be degenerate; instead, they would have both p and
q components nonzero [51,55]. Translated into the language
of the PT system (2.1), this means that the collision of the
small-amplitude PT solitons should typically result in the
emergence of two breathers.

FIG. 3. (Color online) The collision of the low- (initially on
the left) and the high-frequency (initially on the right) solitons.
As the solitons approach each other, they develop beat-frequency
oscillations of growing amplitude. The localized objects emerging
from the collision remain oscillatory despite the growing separation
distance—these are a pair of breathers. The breathers are weakly
radiating; also note the emission of a rapid small-amplitude breather
at the moment of collision. In this simulation, γ = 0.5,

√
μ = 0.3,

v = 0.4, and x0 = 16.

This is indeed the scenario that we have observed in
our numerical simulations of Eqs. (2.1). We have detected
the formation of two breathers in collisions of small- and
moderate-amplitude solitons. A typical evolution is depicted
in Fig. 3.

An interesting feature of the degenerate-soliton collisions
recorded by Tan and Yang [55] was that the reduction of
the collision velocity did not result in the decrease of the
velocities of the solitons after collision. In agreement with
this amplitude-equation effect, our simulations of the collision
of PT solitons with initial velocities v → 0 have produced
breathers diverging at finite speeds [see, e.g., Figs. 4(a) and
4(b)].

Another inelastic effect detected in the curtailed amplitude
equation (3.15) pertained to the initial velocities in the range
0.1 < V < 0.3. For these V , the collision of two degenerate
solitons was seen to result in the production of a stationary
small-amplitude soliton, in addition to the two transmitted
or reflected ones [55]. A similar phenomenon accompanies
the collision of the low- and high-frequency small-amplitude
solitons in ourPT -symmetric system (2.1). Namely, the initial
condition (6.1) with v in the range 0.1μ1/2 < v < 0.3μ1/2 and
small μ gives rise to three breathers. Two of these move apart
while the third, small-amplitude, breather is left behind near
the origin. We have observed this effect even for not-very-small
soliton amplitudes [Fig. 4(a)].

As the amplitudes of the colliding solitons are increased,
the curtailed equation (3.15) ceases to be applicable. The
collision of larger-amplitude solitons is now accompanied
by intense radiation, while the oscillations of the emerging
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FIG. 4. (Color online) The collision of solitons with moderate
and large amplitudes, small and large initial velocities. In (a), γ =
0.6,

√
μ = 0.3, and the initial velocity v = 0.075 lies in the interval

(0.1μ1/2,0.3μ1/2). Note a small-amplitude nonpropagating breather
left behind while two large-amplitude fragments shoot out of the
collision. (b) shows the collision of solitons with larger amplitudes.
Here γ = 0.5,

√
μ = 0.5, and v = 0.125. (c) corresponds to large

initial velocities: γ = 0.5,
√

μ = 0.25, and v = 0.6.

breathers acquire a low-frequency modulation [Fig. 4(b)]. As
the amplitudes exceed a certain threshold, the collision results
in a blowup of one of the fragments.

One more range of parameter values where the equa-
tion (3.15) does not furnish any accurate description of the
dynamics pertains to large v. As v is increased, we observe
the growth of the transient amplitude of one of the emerging
breathers—a kind of a rogue wave appearing just after the
collision [Fig. 4(c)]. Eventually, this rogue wave seeds the
blowup of the breather.

It is worth emphasizing here that the creation of breathers is
characteristic only for the collision of two solitons of different
types (that is, collision of the low- with the high-frequency
soliton). The scattering of two like solitons, e.g., two high-
frequency solitons, is purely elastic—for the simple reason
that the initial condition and the resulting solution belong to the

FIG. 5. (Color online) The collision of two breathers. Both
breathers are taken in the form (4.12),(4.13),(4.14), with the ampli-
tudes

√
ε = 0.3, and Galileo boosted with the velocities v = ±0.5.

(a) and (b) are different in the initial phase of the breathers. In both
plots, γ = 0.3.
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same invariant manifold a = 0. The constraint a = 0 defines
a reduction to a completely integrable equation [Eq. (3.4)];
hence the elasticity of collisions.

The ubiquity of the breathers stems from the fact that they
are not confined to the a = 0 or b = 0 manifold. They represent
trajectories evolving out of generic initial conditions which do
not belong to either of the two reductions.

Finally, we touch upon the collision of two breathers. The
outcome of this collision can be predicted on the basis of
the amplitude equation (3.14). Indeed, the scattering of two
generic solitons in a Hamiltonian system typically produces
two solitons of lower energy, or their bound state. Consistently
with these expectations, the numerical simulations of Eqs. (2.1)
demonstrate the production of one or two breathers (Fig. 5).

VII. CONCLUDING REMARKS

Stationary solitons in the PT -symmetric planar coupler
are known to be sustained due to the exact offsetting of
the power gained in the active waveguide by the power lost
in its passive counterpart [34,35,37]. In this paper, we have
described another realization of the gain-loss balance, which
is provided by the breathers. In the breather case, the total
power is conserved not at every moment in time, but only over
a period of oscillation.

The results of our study can be summarized as follows.
(1) We have derived a system of amplitude equations

[Eqs. (3.14)] governing the envelope of the breather. For times
t � ε−2, where ε1/2 gives the scale of the amplitude of the
small-amplitude breather, the system (3.14) is equivalent to
the original system (2.1).

(2) Despite the fact that the original PT -symmetric system
includes gain and loss, the amplitude system was shown to be
conservative.

(3) The breather solution was constructed as the asymptotic
expansion (4.12), (4.13), and (4.14).

(4) We have proved that all small-amplitude breathers are
stable on the time scale t � ε−2. The small-amplitude breather
was shown to be a “simple” oscillation—it cannot have any
modulating frequencies in its spectrum.

(5) Breathers were shown to be common occurrences in
PT -symmetric chains of dimers. In particular, breathers are
created in collisions of low- and high-frequency solitons.

In conclusion, we need to make three remarks. The first
one concerns the PT breathers versus conservative breathers
and limit cycles. The PT -symmetric breathers are different
from their conservative counterparts in that their associated
physical observables (e.g., energy and momentum) are not
stationary but oscillate in time. From this point of view, the
PT breathers are similar to the time-periodic solitons in
dissipative systems [57–59]. However, there is an important
distinction between the latter two categories too. Namely, the
dissipative solitons are limit cycles (in an infinite-dimensional
phase space); their amplitudes and periods are determined
uniquely by the parameters of the system. On the contrary,
the PT breathers arise as members of two-parameter families,
similar to periodic trajectories in Hamiltonian systems.

The second remark is on the radiation from the breather.
Using the singular perturbation expansion, the breather can be
constructed to any order in ε. All higher-order corrections

FIG. 6. The dispersion curves of thePT -symmetric system (2.1).
The black dots indicate the two frequencies of the breather. The
dashed line marks the frequency of radiation.

An,Bn are expressible as powers of A0,B0 and decay to
zero as |x| → ∞. There is no radiation to any order εn,
n = 0,1,2,3, . . ..

However our simulations do reveal radiation waves from
the breathers, with the amplitude of the waves growing as
the amplitude of the breather is increased. The reason why
the asymptotic expansion does not capture these waves is that
the amplitude of the radiation is exponentially small in ε.
(The exponential smallness does not imply that the radiation
is invisible for finitely small ε though.)

The frequency of the radiation can be determined on the
basis of standard considerations. Indeed, the spectrum of
linear excitations of the system (3.2) consists of two branches
ω = k2 + ω0 and ω = k2 − ω0 (Fig. 6), while the breather
of amplitude ε1/2 has two basic frequencies ω0 − ε and
−ω0 − ε [see Eq. (4.13)]. The term a2b∗ in (3.2) oscillates
at a combination frequency 3ω0 − ε which falls in the linear
spectrum. Hence the dominant frequency of the resonant
radiation will be 3ω0 − ε, as indicated by the dashed line in
Fig. 6. (Note that the frequency ω0 − ε does not resonate with
the bottom branch since the a and b modes are not coupled to
linear order.)

Finally, we note that the breathers realize periodic light
switching between the waveguides with gain and loss. Unlike
oscillations in structureless linear [12,13] and nonlinear
[20,21] PT couplers, the breathers describe switching be-
tween spatially extended waveguides. Here, the nonlinearity
suppresses the beam diffraction while the spatial coupling
synchronizes the power oscillations across the beam.
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APPENDIX A: MORE GENERAL BREATHER SOLUTIONS

In this appendix, we briefly comment on other solutions
of the system (4.4)—more general than the nearly symmetric
configuration (4.7), (4.6), (4.10). By rescaling P , Q, and X and
redefining ε, we can always arrange that μ = 1 in Eqs. (4.4):

P ′′ − P + 2(|P |2 + 2|Q|2)P + ε

ω0
(|Q|4 − 2|PQ|2)P = 0,

Q′′−νQ + 2(|Q|2 + 2|P |2)Q+ ε

ω0
(2|PQ|2 − |P |4)Q=0.

(A1)

Note that we are not setting ν equal to 1, along with μ.
For ε = 0, the system (A1) has even and odd solutions with

n humps (n = 1,2, . . .), with both P and Q being nonzero
[48,52]. Each of these can be used as a starting point in the
regular perturbation expansion in powers of ε.

In particular, the solution of the system (A1) with ε = 0,
with an even single-humped P (X) and an even single-humped
Q(X), exists for α−2 < ν < α2, where α2 = 1

4 (
√

17 − 1)2 ≈
2.438 and α−2 ≈ 0.410 [49,52]. Therefore the system (A1)
with sufficiently small nonzero ε will also have a localized
solution for any ν between α−2 and α2.

The solution with a two-humped even P (X) and a
two-humped odd Q(X) exists for β2 < ν < 1, where β2 =
1
4 (

√
17 − 3)2 ≈ 0.315 [49,52].

All these solitonlike solutions of the system (4.4) give
rise to breather solutions of the PT -symmetric system (2.1).
Thus for each n � 1, the system (2.1) has a two-parameter
family of nonpropagating breather solutions with n humps.
Representatives of the family are different in the amplitude
and width of the humps, as well as the contrast of the |u|2 and
|v|2 oscillations.

APPENDIX B: NO INTERNAL MODES FOR THE
SMALL-AMPLITUDE BREATHER

The aim of this appendix is to show that the operator (5.13)
does not have any discrete eigenvalues. To this end, we note
that if λ �= 0, the bottom component of (5.13) gives∫

ρ2(X)z(0)(X)dX = 0, (B1)

where z(0) = sechX is the null eigenvector of the operator L0.
The constraint (B1) defines a subspace of the space of square
integrable functions; we will denote this subspace S.

On the subspace S, the operator L0 is positive definite;
hence we can write (5.13) as another scalar eigenvalue
problem, alternative to (5.15):

L+ρ2 = −λ2L−1
0 ρ2, ρ2 ∈ S. (B2)

Assume that the nonsymmetric matrix-differential operator
in (5.13) has nonzero eigenvalues λ1,λ2, . . .. The correspond-
ing eigenvalues −λ2

1 < −λ2
2 < · · · of (B2) are real, and the

associated eigenfunctions ρ2(X) can also be chosen real.
The lowest eigenvalue can be found as the minimum of the
Rayleigh quotient:

−λ2
1 = min

S

(ρ2,L+ρ2)(
ρ2,L

−1
0 ρ2

) . (B3)

Since both L+ and L0 are positive definite, Eq. (B3) implies
that the eigenvalue −λ2

1 of the generalized eigenvalue prob-
lem (B2) is positive. Hence λ1 lies in the gap of the continuous
spectrum of the operator (5.13): λ1 = iω1, −1 < ω1 < 1.

On the other hand, any function from S can be expanded
over the continuous-spectrum eigenfunctions of the operator
L0:

ρ2(X) =
∫

R(k)zk(X)dk, (B4)

where L0zk = (1 + 2k2)zk , −∞ < k < ∞. Writing L+ as
L0 + 4

3 sech2X and substituting (B4) in (B3), the Rayleigh
quotient becomes

∫
R2(k)(1 + 2k2)dk + 4

3

∫
ρ2

2 sech2XdX∫
R2(k)(1 + 2k2)−1dk

. (B5)

The first term in the numerator of (B5) is greater than
the denominator; hence the quotient is greater than 1. This
contradicts the fact that the eigenvalue λ1 is in the gap
of the continuous spectrum of the operator (5.13). The
contradiction proves that the operator (5.13) cannot have
discrete eigenvalues.
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