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ABSTRACT
We continue our study of weakly ionized protostellar accretion discs that are threaded by a
large-scale magnetic field and power a centrifugally driven wind. It has been argued that there
is already evidence in several protostellar systems that such a wind transports a significant
fraction of the angular momentum from at least some part of the disc. We model this situation
by considering a radially localized disc model in which the matter is everywhere well coupled
to the field and the wind is the main repository of excess angular momentum. We consider
stationary configurations in which magnetic diffusivity counters the shearing and advection of
the magnetic field lines. In Wardle & Königl we analysed the disc structure in the hydrostatic
approximation (vertical motions neglected inside the disc) and presented exact disc/wind
solutions for the ambipolar diffusivity regime. In Königl, Salmeron & Wardle (Paper I) we
generalized the hydrostatic analysis to the Hall and Ohm diffusivity domains and used it
to identify the disc parameter sub-regimes in which viable solutions with distinct physical
properties can be expected to occur. In this paper we test the results of Paper I by deriving
full numerical solutions (integrated through the sonic critical surface) of the disc equations in
the Hall domain. We confirm all the predictions of the hydrostatic analysis and demonstrate
its usefulness for clarifying the behaviour of the derived solutions. We further show that the
outflow solutions can be extended to larger scales (so that, in particular, they also cross the
Alfvén critical surface) by matching the localized disc solutions to global ‘cold’ wind solutions
of the type introduced by Blandford & Payne. To facilitate this matching, we construct a library
of wind solutions for a wide range of wind model parameters; this library is made available to
the community. The results presented in Wardle & Königl, Paper I and this work combine to
form a comprehensive framework for the study of wind-driving accretion discs in protostellar
and other astrophysical environments. This theoretical tool could be useful for interpreting
observations and for guiding numerical simulations of such systems.
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1 IN T RO D U C T I O N

A common feature of protostellar accretion discs is their association
with collimated, energetic outflows (e.g. Cabrit 2007). These out-
flows are widely believed to represent centrifugally driven winds
that are launched along large-scale, ordered magnetic fields (e.g.
Königl & Pudritz 2000; Pudritz et al. 2007). Such winds could in
principle be efficient transporters of disc angular momentum (e.g.
Blandford & Payne 1982, hereafter BP82), and it has in fact been

�E-mail: raquel@mso.anu.edu.au

argued that there is already observational evidence in several pro-
tostellar systems that an outflow of this type carries the bulk of the
excess angular momentum from at least some part of the associated
accretion disc (e.g. Ray et al. 2007). Protostellar discs are typically
weakly ionized, and a certain minimum degree of ionization is re-
quired to attain the level of coupling between the matter and the
field that enables the vertical magnetic angular-momentum trans-
port mechanism to operate. [A similar requirement must be satisfied
also to enable radial angular-momentum transport by a small-scale,
turbulent magnetic field; such turbulence could be induced, for ex-
ample, by the magnetorotational instability (MRI; e.g. Balbus &
Hawley 1998).] The inherent magnetic diffusivity tends to counter
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the effects of shearing and advection by the differentially rotating
accretion flow and therefore makes it possible for the discs to attain
a steady state, at least on the dynamical (rotation) time.

The behaviour of a weakly ionized gas can be characterized ac-
cording to the nature of the dominant diffusivity mechanism for
the given density and ionization state: ambipolar, Hall or Ohm
(e.g. Königl & Salmeron 2011). The ambipolar regime, in which
the magnetic field lines are effectively frozen into the ions and
drift with them relative to the dominant neutral component, can
be expected to dominate over the entire disc cross-section in the
outermost regions of the disc (at radii r � 10 au) and near the disc
surfaces at smaller radii. In the Hall regime the magnetic field is
frozen into the electrons and drifts with them relative to the ions
and neutrals; this regime could dominate over most of the disc
cross-sections on scales r ∼ 1–10 au. The Ohm regime, in which
the field lines completely decouple from the charge carriers, could
potentially dominate near the disc mid-plane on scales ∼0.1–1 au
(at smaller radii the mid-plane region likely becomes collisionally
ionized). However, as wind-driving discs typically have compara-
tively lower column densities and mid-plane densities because of
their high angular momentum transport efficiency (which results
in relatively high inflow speeds), the low-ionization Ohm regime
might be curtailed (or even entirely eliminated) in such systems.
Even if this were to happen, the Hall-dominated zone would be
unlikely to extend to much smaller radii than estimated above on
account of the fact that, at sufficiently large densities, the dominant
charge carriers become positively and negatively charged grains of
equal mass (e.g. Nishi, Nakano & Umebayashi 1991), so that no
Hall current can flow.

The structure of radially localized wind-driving protostellar discs
in the ambipolar diffusion-dominated regime was investigated by
Wardle & Königl (1993, hereafter WK93). They derived exact so-
lutions that were matched to global, radially self-similar disc–wind
solutions of the type introduced by BP82. They analysed the disc
solutions by using the hydrostatic approximation, in which the ver-
tical velocity component is neglected inside the disc, and obtained
useful algebraic relations that led to a set of parameter constraints on
physically viable configurations (see also Königl 1997). This analy-
sis was generalized by Königl, Salmeron & Wardle (2010, hereafter
Paper I) to the Hall and Ohm diffusivity regimes. In particular, they
found that all the viable solutions correspond to four sub-regimes
in the Hall domain and three in the Ohm domain, with the so-
lutions in each of the identified parameter sectors having distinct
physical properties. The main goal of this paper is to derive exact
wind-driving disc solutions that can test these predictions and, more
generally, the applicability of the hydrostatic approximation to the
description of the salient features of such systems. We concentrate
on the Hall diffusivity domain, which, according to the discussion
above, should be most relevant (together with the ambipolar regime
already discussed in WK93) to the study of the weakly ionized re-
gions of wind-driving protostellar discs. In Paper I, we formulated
the problem in terms of a conductivity tensor, specified by the val-
ues of the Pedersen, Hall and Ohm components, and discussed its
correspondence to a multifluid formulation for the case where only
two charged species (one positive and one negative) are present.
Our parameter constraints were, in fact, derived in the context of
the latter approach. In this paper we employ the conductivity-tensor
formulation for the characterization of the solutions that we derive,
but we again employ the multifluid formulation in the analysis.

This paper is organized as follows. Section 2 summarizes the
system of equations that underlies the radially localized disc model
and describes the model parameters as well as the boundary con-

ditions on the equations and the method of their numerical inte-
gration. Section 3 provides the corresponding description of the
global, self-similar wind model and outlines the procedure used to
match the disc and wind solutions. Section 4 presents representa-
tive solutions for Hall diffusivity-dominated discs in the different
parameter-space sub-regimes identified by the hydrostatic analysis
in Paper I and compares them with the predictions (summarized in
Appendix A) of the analytical treatment. The main findings of the
paper are recapitulated in Section 5.

2 R ADI ALLY LOCALI ZED D I SC MODEL S

2.1 Dimensionless system of equations in z

In section I.3 (where the prefix ‘I’ hereafter denotes Paper I) we
derived the algebraic relations and ordinary differential equations
(ODEs) in the vertical cylindrical coordinate z that describe the ver-
tical structure of the disc at any given value of the radial cylindrical
radius r. For clarity and ease of reference, we reproduce them below
in dimensionless form. They are the equations of motion

dwr

dz̃
= 1

wz

[
a2

0

ρ̃
jφ + 2wφ

]
, (1)

dwφ

dz̃
= − 1

wz

[
a2

0

ρ̃
jr + wr

2

]
, (2)

d ln ρ̃

dz̃
= 1

1 − w2
z

[
a2

0

ρ̃
(jrbφ − jφbr) − z̃

]
; (3)

the azimuthal component of the induction equation

dwEr

dz̃
= −3

2
br ; (4)

Ampère’s Law

dbr

dz̃
= jφ , (5)

dbφ

dz̃
= −jr ; (6)

the relations linking the electric field in the inertial coordinate sys-
tem and in the frame comoving with the neutrals

e′
r = wEr + wφ − wzbφ , (7)

e′
φ = −εB + wzbr − wr (8)

and Ohm’s Law

jr = y(σ̃O − σ̃P)br + σ̃H

b
(e′

zbφ − e′
φ) + σ̃Pe

′
r , (9)

jφ = y(σ̃O − σ̃P)bφ + σ̃H

b
(e′

r − e′
zbr) + σ̃Pe

′
φ , (10)

e′
z = −(e′

rbr + e′
φbφ)(σ̃O − σ̃P)

(σ̃O − σ̃P) + b2σ̃P

+ σ̃Hb(e′
rbφ − e′

φbr)

(σ̃O − σ̃P) + b2σ̃P
, (11)

where we have taken jz to be �0. The following notation has been
used in the above expressions:

z̃ ≡ z

hT
, ρ̃ ≡ ρ(r, z)

ρ0(r)
, (12)
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w ≡ v − vKφ̂

cs
, wE ≡ cE/B0 + vK r̂

cs
, e′ ≡ cE′

csB0
, (13)

j ≡ 4πhT J
cB0

, σ̃ ≡ 4πhTcsσ

c2
, b ≡ B

B0
, (14)

where ρ is the gas density, v is the fluid velocity, J is the current
density, B is the magnetic field, σ is the conductivity tensor, incor-
porating the Pedersen, Hall and Ohm components (σ P, σ H and σ O,
respectively), and

E′ = E + v × B
c

(15)

is the electric field in the frame of the neutrals, in terms of E, the
electric field in the inertial (‘laboratory’) frame. Also, y ≡ E′ · B/B2,
vK is the Keplerian speed, cs is the isothermal speed of sound, hT =
(cs/vK)r is the tidal scaleheight and the subscript ‘0’ denotes the
disc mid-plane.

Under the thin-disc approximation, the vertical component of the
magnetic field is constant with height; there is therefore no need
to solve the vertical component of Ampére’s Law. It can also be
shown that the azimuthal component of E (or, equivalently, the
variable wEr) is constant with height in our model (see section
I.3.7). Therefore, the variable vBr = cEφ/Bz, which represents the
radial drift velocity of the poloidal flux surfaces (see section I.3.6)
is also constant with height inside the disc.

In addition to the above equations, the following are also included
so as to enable the position of the sonic point (subscript ‘s’) and the
(normalized) upward mass flux wz0 (= ρ̃s under the assumptions
that ρ̃wz = const and that the disc is vertically isothermal) to be
derived self-consistently as part of the solution (see Section 2.4):

dz̃s

dz̃
= 0 , (16)

dwz0

dz̃
= 0 . (17)

2.2 Parameters

The solutions are specified by the parameters enumerated below.
Only a brief summary is provided here; the reader is referred to
section I.3.13 for further details.

(i) a0 ≡ vA0/cs, the mid-plane ratio of the Alfvén speed (based
on the uniform vertical field component Bz) to the isothermal sound
speed. It is a measure of the magnetic field strength.

(ii) cs/vK = hT/r, the ratio of the tidal scaleheight to the disc
radius – a measure of the geometric thinness of the disc. Although
this parameter does not appear explicitly in the normalized equa-
tions, it is required for matching the disc and wind solutions (see
Sections 3.2 and 3.5) and is used to place an upper limit on the mid-
plane radial speed in physically viable solutions (see Appendix A).

(iii) The mid-plane ratios of the conductivity-tensor components:
(σ P/σ⊥)0 [or (σ H/σ⊥)0] and (σ⊥/σ O)0, where σ⊥ = (σ 2

H + σ 2
P)1/2

is the total conductivity perpendicular to the magnetic field. They
characterize the conductivity regime of the fluid and are taken here
to be independent of z to facilitate the comparison with the analytic
results derived in Paper I.

(iv) The mid-plane value of the Elsasser number �0 ≡
v2

A0/(�Kη⊥0), where η⊥0 ≡ c2/4πσ⊥0 is the ‘perpendicular’ mag-
netic diffusivity and �K = vK/r is the Keplerian angular velocity.
This parameter measures the degree of coupling between the neu-
trals and the magnetic field, with values �1 and 	1 corresponding

to strong and weak coupling, respectively. In this paper we assume
(as was done in Paper I) that the disc is everywhere magnetically
well coupled, so that �0 is never 	1. As an alternative to the tensor
magnetic diffusivity employed here, one could also write down sep-
arate equations for the charged species (see Paper I). Assuming that
the charged particles consist only of ions and electrons (denoted by
the subscripts ‘i’ and ‘e’, respectively), one can write � = ϒβ i in
the Hall regime, where ϒ is the ratio of the Keplerian rotation time
to the neutral-ion momentum exchange time and β j is the ratio of
the gyrofrequency of charged species j to its collision frequency
with the neutral gas (see Appendix A). In the ambipolar diffusivity
limit (not considered here), � = ϒ .

(v) ε ≡ −vr0/cs, the normalized inward radial speed at the mid-
plane. This is a free parameter of the disc solution, whose value is
determined when it is matched to a self-similar global wind solution
(see Section 3.5).

(vi) εB ≡ −vBr0/cs = −cEφ0/csBz, the normalized (vertically
constant) azimuthal component of the electric field, which measures
the radial drift velocity of the poloidal magnetic field lines through
the disc.

2.3 Boundary conditions

The complete system of equations comprises the set of ODEs given
by equations (1)–(6), (16) and (17) as well as the algebraic relations
(7)–(11). This is a two-point boundary value problem for coupled
ODEs. Eight boundary conditions must be formulated, either at the
mid-plane or at the critical (sonic) point of the flow, defined as the
location where the vertical velocity reaches the isothermal sound
speed (or wz = 1). They are applied as follows.

At the mid-plane. We begin by assigning odd symmetry to the
radial and azimuthal components of the magnetic field, br and bφ ,
which therefore vanish at z̃ = 0. Consistently with this choice, the
remaining variables (except wz) have even (reflection) symmetry
about the mid-plane and their derivatives vanish at that location. We
also adopt ρ̃ = 1, which follows directly from the normalization
of ρ, and prescribe the radial inwards velocity (measured by the
parameter ε). The six boundary conditions applied at the mid-plane
are thus

br0 = bφ0 = 0 , (18)

(
dwr

dz̃

)
0

=
(

dwφ

dz̃

)
0

= 0 , (19)

ρ̃0 = 1 , −wr0 = ε . (20)

Using these boundary conditions and equations (1), (2) and (7)–
(10), we arrive at the following expressions for wφ0 and wEr0:

wφ0 = −σH0

σP0

ε

4
− a2

0 σ̃
2
⊥0

2σP0
(ε − εB) , (21)

wEr0 = σH0

σP0
(ε − εB) + 1

σP0

ε

2a2
0

− wφ0 . (22)

At the sonic point. The sonic point is a singular point of equa-
tion (3), so an additional boundary condition is obtained by impos-
ing the regularity condition

z̃s = a2
0

ρ̃s
(jrsbφs − jφsbrs) . (23)

Furthermore, the density at z̃s is given by

ρ̃s = wz0 (24)
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(see the discussion just before equation 16). The density derivative
at the sonic point can be obtained by differentiating the numerator
and denominator of equation (3) (i.e. by applying l’Hôpital’s rule),
which yields a quadratic equation for (dρ̃/dz̃)s. Out of the two roots
of this equation, we choose the negative one – corresponding to a
positive velocity gradient – as expected for a physical solution.

2.4 Numerical integration of the disc equations

The set of ODEs given by equations (1)–(6), (16) and (17) is in-
tegrated using the procedure first outlined in WK93. In brief, we
start by assigning the mid-plane values of br, bφ , ρ̃, wr, wφ and
wEr (using equations 18 and 20–22), proceed to guess the value of
wz0 (or, equivalently, ρ̃s) as well as the position of the sonic point
z̃s, and then integrate from the mid-plane vertically upwards. If the
guessed wz0 is too high, wz eventually diverges. If, however, the
guessed value is too low, the vertical velocity reaches a maximum
and then begins to decrease with z̃. But a vertically decreasing veloc-
ity corresponds to a positive density gradient, which is unphysical
for an isothermal disc in which the non-thermal forces acting in the
vertical direction (namely, the vertical components of gravity and of
the Lorentz force) tend to compress the gas. This behaviour of the
solutions enables us to bracket the correct value of wz between two
limits. We then improve on the guessed value using bisection until
we are close enough to the physical solution to be able to estimate
z̃s and hence (by extrapolating in z̃) the values of the fluid variables
at the sonic point. The boundary conditions given by equations (23)
and (24) can then be imposed to obtain the remainder of the disc
variables at that location.

To complete the derivation of the full solution, we renormalize z
by the estimated height of the sonic point (ẑ ≡ z/zs) and integrate
the equations simultaneously from the mid-plane (ẑ = 0) and from
the sonic point (ẑs = 1) to an intermediate fitting point (typically
ẑ ∼ 0.90) while adjusting the guessed values at both locations
iteratively until the solution converges. This procedure is adopted
because the integration from the sonic point towards the mid-plane
becomes unstable at small values of ẑ. In carrying out this numerical
scheme, it is essential to ensure that wz attains a value of at least
∼0.90–0.95 in the bisection runs before attempting to compute
the location of the sonic point and the extrapolated values of the
fluid variables there. If this is not done then the estimates of these
quantities may not be good enough for the backward integration to
the fitting point to be successful.

3 G LOBA L (SELF-SIMILAR) WIND MODE LS

The methodology described in Section 2 is appropriate for deter-
mining the initial acceleration of the wind from the surfaces of the
disc, but it cannot be used to follow the evolution of the outflow on
scales where the adopted thin-disc approximation z/r 	 1 breaks
down. It is, however, necessary to ensure that the obtained wind
solution continues to accelerate and passes through the remaining
critical surfaces of the problem, which correspond to the Alfvén
and fast-magnetosonic critical points (e.g. BP82; Vlahakis et al.
2000; Ferreira & Casse 2004). Since we cannot self-consistently
model this process in view of our radially localized formulation
of the disc structure, we approximate a global disc–wind solu-
tion by matching the disc solution to a global, radially self-similar
(i.e. BP82-type) wind solution. In our cold-wind approximation we
only need to impose the regularity condition at the Alfvén critical
surface, which allows us to constrain one of the disc parameters
(specifically ε, which quantifies the mid-plane radial velocity). We

further simplify the treatment by assuming that εB = 0, which al-
lows us to avoid relating the field-line inclination at the disc surface
to the global magnetic flux distribution along the disc (see Ogilvie
& Livio 2001). This is essentially the procedure employed (in the
ambipolar diffusivity regime) by WK93. In Sections 3.1–3.4 we
describe, in turn, the governing equations, parameters, boundary
conditions and numerical integration of the self-similar wind solu-
tion. The methodology for matching a localized disc solution to a
global wind solution is presented in Section 3.5.

3.1 Governing equations

The wind is described by the steady-state, axisymmetric, ideal-
MHD equations (e.g. Safier 1993; Königl & Salmeron 2011) that
comprise the conservation of mass

∇ · (ρv) = 0 (25)

and momentum

ρv · ∇v = −∇P − ρ∇� + J × B
c

(26)

for the neutral gas, the induction equation for the topology of the
magnetic field

∇ × (v × B) = 0 , (27)

Ampère’s Law

J = c

4π
∇ × B (28)

(where, as customary, we have neglected the displacement current),
and the solenoidal condition on the magnetic field (∇ · B = 0). In the
above expressions, P is the gas pressure and � is the gravitational
potential of the central object,

� = − GM

(r2 + z2)1/2
, (29)

where G is the gravitational constant and M is the mass of the pro-
tostar. In ideal-MHD flows, the magnetic field and velocity vectors
are parallel in a frame that moves with the angular velocity �B of
the magnetic flux surfaces,

v = kB
4πρ

+ (�B × r) , (30)

where k/4π is the mass load function of the wind (the ratio of the
constant mass flux to the constant magnetic flux). In the poloidal
(r − z) plane (subscript ‘p’), this equation reduces to

vp = kBp

4πρ
. (31)

The variables �B and k satisfy (B · ∇) �B = (B · ∇) k = 0, and
thus are constant along the magnetic field lines (or, equivalently, the
wind flowlines). Additional quantities that remain constant along
the flow are the specific energy

e = 1

2
v2 + h + � − �BrBφ

k
, (32)

where h is the enthalpy per unit mass, and the specific angular
momentum

l = rvφ − rBφ

k
, (33)

which incorporates the contributions of both the matter (the first
term on the right-hand side) and the magnetic field (the second
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term). The quantities k, e and l can be expressed in dimensionless
form as

κ ≡ k (1 + ξ ′2
b )1/2 vKb

Bb
, (34)

ε ≡ e

v2
Kb

(35)

and

λ ≡ l√
GMrb

, (36)

where the subscript ‘b’ denotes the location of the base of the wind.
We now introduce the self-similarity scalings using the notation

of BP82:

r = rbξ (χ ) , (37)

z = rbχ , (38)

vr = ξ ′(χ )f (χ )vKb , (39)

vφ = g(χ )vKb , (40)

vz = f (χ )vKb . (41)

In these expressions, ξ ′ ≡ tan ϕ = Br/Bz is the inclination of the
field lines with respect to the rotation axis of the star and disc. At
the base of the wind, we take χ b = 0, ξ b = 1, gb = 1 and f b = 0,
so the fluid velocity at the launching point of the outflow is exactly
Keplerian.

We now sketch the procedure followed by BP82 to obtain the set
of ODEs in χ that describes the self-similar wind solution. First,
from the scalings (39)–(41), we deduce

v2 = GM

rb
[f 2U + g2] , (42)

where

U ≡ 1 + ξ ′2 , (43)

with the prime indicating a derivative with respect to χ . Similarly,
the gravitational potential can be expressed as

� = −GM

rb
S , (44)

where the quantity S is defined by

S ≡ (ξ 2 + χ 2)−1/2 . (45)

Furthermore, since we restrict our analysis to ‘cold’ solutions, the
enthalpy term in equation (32) can be neglected in comparison with
the other terms. Substituting equations (32), (33), (42) and (44) into
equations (35) and (36) yields

ε − λ = 1

2
(f 2U + g2 − 2ξg) − S = −3

2
, (46)

where we used �B = (GM/r3
b)1/2. The numerical value on the right-

hand side of equation (46) is obtained by evaluating this expression
at the disc surface; it remains constant along the flow.

To make further progress, one can use equation (30) to write

g = vφ

(GM/rb)1/2
= k

4πρ

Bφ

(GM/rb)1/2
+ ξ , (47)

which, together with equation (33), gives

Bφ =
√

GM

rb
k

[
g − λ

ξ

]
. (48)

Then, substituting equation (48) into equation (47), one obtains

g = ξ 2 − mλ

ξ (1 − m)
, (49)

where m is the square of the Alfvén Mach number (the ratio of the
poloidal speed to the poloidal Alfvén speed). Finally, substituting
equation (49) into equation (46) and using ε − λ = −3/2, one finds

Tw − f 2U =
[

(λ − ξ 2)m

ξ (1 − m)

]2

, (50)

where

Tw ≡ ξ 2 + 2S − 3 . (51)

Note that the gravitational plus centrifugal potential at the position
{ξ , χ} can be expressed as −(GM/rb)(ξ 2/2 + S), which becomes
−(3/2)GM/rb at the base of the wind. It is thus seen that −Tw/2
is the gravitational plus centrifugal potential difference (in units of
GM/rb) between the point {ξ , χ} along a flowline and the base of
the flow at {ξ = 1 , χ = 0}, so that Tw must be �0 for physical
solutions.

One can obtain an expression for dm/dx ≡ χAm′ (where x ≡
χ/χA is the vertical coordinate along a flowline in units of the height
of the Alfvén point, subscript ‘A’) by substituting Ampère’s Law
(equation 28) into the momentum equation (26) and then combining
the vertical component of equation (26) (with the thermal pressure
term neglected in view of the ‘cold flow’ approximation) with the
differential form of equation (50). The result, presented by BP82, is

dm

dx
= χA

mS2
[
B1 − B2(m − 1) − B3(m − 1)2

]
ξTw(m − 1)(tw − 1)

, (52)

where

m ≡ 4πρ
(
v2

r + v2
z

)
B2

r + B2
z

= κξf Jw , (53)

B1 ≡ 2m2χ (ξ 2 − λ)Jw , (54)

B2 ≡ ξ (χ + ξξ ′)
[
(5/4)Tw + ξ 2 − S

]
, (55)

B3 ≡ Jw

[
χ (ξ 2 + Tw) − f 2(χ + ξξ ′)

]
, (56)

Jw ≡ ξ − χξ ′ (57)

and

tw ≡ 1

Tw
κξf 3J 3

wS2 = m3

Tw

(
S

κξ

)2

. (58)

We will also make use of
dξ

dx
= χAξ ′ . (59)

Equation (52) has two singular points. One of them (m = 1)
corresponds to the Alfvén critical surface, which occurs at the lo-
cation (χ = χA or x = 1) where the poloidal velocity component
(vp) becomes equal to the poloidal component of the Alfvén veloc-
ity (vAp). The other singular point (tw = 1) occurs at the location
where vp becomes equal to the fast-magnetosonic speed and corre-
sponds to the so-called modified fast-magnetosonic critical surface
(e.g. Bogovalov 1994). Although an outflow solution that is fully
causally disconnected from the source must cross both of these
critical surfaces (e.g. Vlahakis et al. 2000), the condition tw is not
expected to provide any additional constraint on our cold outflow
solutions (see Ferreira & Casse 2004) and we therefore ignore it in
this work.
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Equations (52) and (59) can be integrated from the Alfvén point
to the base of the wind to obtain the wind solution. As the location
of the Alfvén critical point (χA) and the inclination of the field lines
at the base of the wind (ξ ′

b) are not known a priori, we introduce the
additional equations

dχA

dx
= 0 (60)

and

dξ ′
b

dx
= 0 , (61)

so that these quantities can be found self-consistently when the
equations are integrated.

3.2 Parameters

The global, self-similar wind solutions are specified by the follow-
ing parameters:

(i) the normalized mass-to-magnetic flux ratio,

κ = ρ̃s

a2
0

vKb

cs
; (62)

(ii) the normalized total specific angular momentum,

λ = 1 − a2
0

ρ̃s

cs

vKb
bφb ; (63)

(iii) the inclination of the field lines at the disc surface, measured
by the angle ϕ that the lines make with the vertical,

ξb
′ = brb (64)

(See Section 3.1) Equations (62)–(64) show how the global wind
parameters can be represented in terms of the local disc parameters
at the base of the wind (see Section 2.2). Note that κ(λ − 1) =
|bφb| is restricted to a limited range of values for physically viable
solutions (see fig. I.2 and WK93). For given choices of two of
the above parameters, the third is constrained by the requirement
that the solution accelerates past the Alfvén critical surface (see
Section 3.5).

3.3 Boundary conditions

The system of equations that describes the wind consists of the set
of ODEs given by equations (52) and (59)–(61), together with the
algebraic equations (43), (45), (50), (51) and (53)–(58). This is a
two-point boundary value problem; four boundary conditions are
required, which can be specified either at the Alfvén point or at the
base of the outflow. They are applied as follows.

At the Alfvén point. Two boundary conditions are imposed at this
location. First, by definition,

mA = 1 . (65)

This is a singular point of equations (50) and (52). Applying the
regularity condition to equation (50) yields

ξA = λ
1
2 . (66)

Note that one can infer from equations (65) and (66) that the nu-
merator of equation (52) vanishes identically at the Alfvén point,
so no additional boundary condition is obtained by applying the
regularity condition to the latter equation.

Applying l’Hôpital’s rule to equations (50) and (52), and using
equations (65) and (66), one arrives at the following expressions for
m′

A and ξ ′
A:

m′
A = 2ξ ′

A(
TwA − f 2

AUA

)1/2 (67)

and

C1m
′2
A + C2m

′
A + C3 = 0 , (68)

where

C1 ≡ ξATwA(twA − 1) , (69)

C2 ≡ ξAS2
A(χA + ξAξ ′

A)
[
(5/4)TwA + ξ 2

A − SA

]
(70)

and

C3 ≡ −4S2
AξAξ ′

AχAJwA . (71)

From equations (67) and (68) one obtains (dm/dx)A = χAm′
A and

(dξ/dx)A = χAξ ′
A, which can be used to start the integration from

the Alfvén point towards the disc.
At the base of the wind. Here, we could, in principle, use the

condition ξ b = 1 from the adopted self-similarity scaling (see equa-
tion 37). However, the integration becomes unstable close to the
disc surface and ξ ′ typically diverges as χ → 0. As a result, a
Taylor expansion about {ξ = 1 , χ = 0} is used to obtain the fluid
variables at a small distance (δx ≈ 10−4) above the disc surface.
Specifically, we use

fδx ≈ f ′
bδx + f ′′

b

2
δx2 (72)

and

ξδx ≈ 1 + ξ ′
bδx + ξ ′′

b

2
δx2 , (73)

where

f ′
b = (3Ub − 4)

1
2[

κ2(λ − 1)2 + Ub

] 1
2

, (74)

f ′′
b = −9κξ ′2

b − 1
4 (3D1 + 5Ub) ξ ′

bf
′

b + D2

3Ub − 4
, (75)

ξ ′′
b = −1 − Ub

4
+ κ

(
1 − 3/f ′2

b

)
ξ ′

bf
′

b − D1

4
, (76)

D1 ≡ κ2(λ − 9)(λ − 1) , (77)

D2 ≡ κ(3Ub − 1)f ′2
b + 2ξ ′

bf
′3

b + 2κf ′4
b (78)

and Ub = 1 + ξ ′2
b (see BP82). The two boundary conditions applied

at x = δx are then

f (δx) = fδx (79)

and

ξ (δx) = ξδx , (80)

where the expressions on the left-hand sides of equations (79) and
(80) are obtained through the integration of the system of ODEs
from the Alfvén point towards the disc and those on the right-hand
sides are evaluated using equations (72) and (73).
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Figure 1. Global, self-similar (BP82-type) wind solutions in parameter space. Solutions are plotted in the ξ ′
b(= brb) – log λ plane, where λ is the normalized

total specific angular momentum (including the matter and magnetic field contributions) and ξ ′
b measures the inclination of the field lines at the base of the

wind. The curves are labelled by the normalized mass-to-magnetic flux ratio, κ: the values of κ that correspond to the darker curves are indicated in the figure.
The waviness exhibited by some curves near the lower left corner of the plot is a numerical artefact that reflects the difficulty of computing solutions in the
{high-κ , low-λ} region of parameter space. These solutions are available in tabular form as Supporting Information for this article and via the VizieR data
base of astronomical catalogues (http://cdsarc.u-strasbg.fr/). A table extract is provided in Appendix B.

3.4 Integration of the wind equations

To integrate the wind equations, it is first necessary to choose the
values of the free parameters κ and λ and supply initial (guessed)
values of χA and ξ ′

b. In the coupled disc–wind solutions considered
here, the adopted values of κ and λ – as well as the initial estimate
of ξ ′

b – are calculated from equations (62)–(64), using the values
of the fluid variables at the base of the wind that are obtained at
the end of the iterations on the disc solution (see Section 3.5). One
can then use equations (67) and (68) to evaluate (dξ/dx)A = χAξ ′

A

and (dm/dx)A = χAm′
A and start the integration of equations (52)

and (59) from the Alfvén point (xA = 1) towards the base of the
wind.

Below the Alfvén point (i.e. for x < 1), the value of ξ ′ on the
right-hand side of equation (59) is obtained by substituting U, S,
Tw, f and Jw (which are found from equations 43, 45, 51, 53 and
57, respectively), as well as m and ξ (which are found from the
integrals of equations 52 and 59) into equation (50). This yields the
following quadratic equation for ξ ′:

(
1 − K1χ

2
Ax2

)
ξ ′2 + 2χAxK1ξ + (

1 − K1ξ
2
) = 0 , (81)

where

K1 ≡
(

κξ

m

)2
{

Tw −
[

(λ − ξ 2)m

ξ (1 − m)

]2
}

. (82)

Out of the two possible roots of this equation, we choose the one
that satisfies the condition tan ϕ ≡ ξ ′ < tan θ ≡ ξ/χ , as appropriate
for a solution that describes a collimating wind.

As discussed at the end of Section 3.3, the boundary conditions
at the disc are actually applied at a small distance δx above the
surface, where the values derived by integrating down from the
Alfvén surface are matched (via equations 79 and 80) to the values
obtained by stepping off the mid-plane with a Taylor expansion.
The full solution is then found by iterating on χA and ξ ′

b until
convergence is reached. Using this procedure, we derived wind
solutions for a wide range of values of the parameters κ and λ

(see Fig. 1). This solution ‘library’ is useful when one proceeds
to smoothly match a radially localized disc solution to a global
wind solution (see Section 3.5). It is available in tabular form as
Supporting Information in the electronic version of this article and
on the VizieR data base of astronomical catalogues (http://cdsarc.
u-strasbg.fr/).
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3.5 Matching the (localized) disc and (global) wind solutions

Having derived a localized disc solution as described in Section 2.4,
one calculates the associated parameters of a self-similar wind solu-
tion (κ , λ and ξ ′

b) using equations (62)–(64). The parameter combi-
nation obtained in this way does not, however, generally correspond
to a wind solution that crosses the Alfvén critical surface. In the next
step, one derives a self-similar wind solution as described in Sec-
tion 3.4, using the given values of κ and λ and employing the value
of ξ ′

b from equation (64) as an initial guess in implementing the
boundary conditions at the base of the wind. The final value of
ξ ′

b from the wind iteration will, in general, be different from brb,
so equation (64) will not be satisfied. To obtain a self-consistent
disc–wind solution, one iterates on the disc and the wind solutions,
using ε (the normalized mid-plane radial velocity) as an adjustable
parameter, until the value of ξ ′

b from the wind iteration satisfies
equation (64). The CPU time to compute either a disc or a wind
solution as described above is typically no more than a few seconds
on a 2.4 GHz, AMD Opteron system. On the other hand, the CPU
time associated with obtaining a matched disc–wind solution varies
with the particular case, but it is not unusual for the entire procedure
to take up to 15–20 min.

4 R ESULTS

In this section, we discuss the main features of radially localized
solutions of well-coupled, wind-driving discs in the Hall diffusivity
domain. In Paper I, we identified four parameter sub-regimes in
this domain by imposing general physical constraints on viable
solutions in the context of the hydrostatic approximation, wherein
the vertical velocity component is neglected. This approximation
has made it possible to derive algebraic relations that characterize
the extent of each sub-regime and the distinguishing properties of
the associated solutions. These are summarized in Tables A1 and
A2, respectively, of Appendix A, where we also collect some of
the algebraic expressions that were employed in the derivation of
these results. In Section 4.1 we present representative solutions for
these four sub-regimes (labelled by the Roman numerals ‘i’ through
‘iv’) and compare their properties with the predictions of Table A2.
We then proceed (Section 4.2) to analyse the dependence of the
solutions on the conductivity-component ratio |σ H|/σ⊥ as well as
on the sign of the Hall conductivity σ̃H (i.e. on the magnetic field
polarity) and on the parameter ε. We also test whether physically
viable solutions are indeed excluded from the parameter regimes
that are ‘forbidden’ according to the hydrostatic analysis. Finally,
in Section 4.3, we present illustrative disc solutions that are matched
to self-similar wind solutions and briefly discuss the properties of
the joint disc–wind solutions obtained in this way.

In all of our disc models we set the parameter εB to be identically
zero. This parameter, which measures the radial drift velocity of
the poloidal magnetic field lines (see section I.3.13), depends on
the global distribution of Bz along the disc and, therefore, cannot
be obtained self-consistently in our localized formulation. The jus-
tification for setting εB = 0 in our analysis is discussed in WK93
and in appendix I.A. Basically, solutions characterized by the same
value of the parameter combination (ε − εB) are qualitatively sim-
ilar, a property that results from the fact that the only change in
the underlying system of equations brought about by switching to
a reference frame anchored in the radially drifting poloidal flux
surfaces (which move with the radial velocity vBr0 = −εBcs) is the
substitution of vr − vBr0 for the radial velocity vr in all the equations

except the angular momentum conservation relation, which remains
unchanged.

An additional simplification that we employ is to have the Ohm,
Pedersen and Hall conductivity terms (σ O, σ P and σ H, respectively)
scale with the gas density ρ and magnetic field amplitude B as ρ/B2.
We adopt this dependence since it results in the local matter–field
coupling parameter � being constant with height. This is convenient
for comparison of our solutions with the analytic results of Paper I,
which were effectively obtained under the same approximation, as
well as with the solutions derived by WK93 in the ambipolar dif-
fusivity regime, where the corresponding value of � was similarly
assumed not to vary with height. Further calculations, exploring the
properties of solutions computed with more realistic ionization and
conductivity profiles, will be presented elsewhere.

4.1 Illustrative disc solutions in the Hall parameter
sub-regimes

In this subsection, we present representative solutions for the four
Hall parameter sub-regimes (see Table 1). We first divide them
according to whether the value of the mid-plane Elsasser number
�0 is >1/2 (Cases i and iii; Fig. 2) or <1/2 (Cases ii and iv;
Fig. 3), which is one of the two classification criteria that define
these sub-regimes.1 We further divide them according to the second
classification criterion, which is whether s0 ≡ βe0β i0, the mid-plane
value of the ion slip factor, is >1 (Cases i and ii, shown in the left-
hand panels of Figs 2 and 3, respectively) or <1 (Cases iii and iv,
depicted in the corresponding right-hand panels of these figures).
The variables β i0 and βe0 are, respectively, the mid-plane values of
the ion and electron Hall parameters (see equation A1). Now, the
hydrostatic analysis implies that viable solutions must satisfy s0 > 1
in the ambipolar diffusivity regime (WK93) and s0 < 1 in the Ohm
diffusivity regime (Paper I). One can therefore classify Cases (i) and
(ii) as being in the ‘ambipolar diffusion-modified’ Hall regime and
Cases (iii) and (iv) as being in the ‘Ohm diffusion-modified’ Hall
regime. This description is supported by the fact that the parameter
constraints and solution properties derived for the Hall Case (i) are
identical to those in the ambipolar diffusivity limit, with a similar
correspondence holding between the Hall sub-regime (iii) and the
Ohm sub-regime (i) (see Paper I).

We use the solution for Case (i) (left-hand panel of Fig. 2) as a
representative model that illustrates the overall properties of well-
coupled wind-driving discs. The top panel of this figure shows the
gas density as well as the radial and azimuthal components of the
magnetic field as functions of height between the mid-plane and
the sonic point. The bottom panel depicts the velocity components.
This layout is used also in all the other figures in this paper that
depict the vertical structure of the disc solutions.

The representative disc solution exhibits the following overall
properties (WK93). In the quasi-hydrostatic layer straddling the
mid-plane (0 � |z̃| � 0.4 in this example), the magnetic field lines
are radially bent and azimuthally sheared (see equations 5 and 6),
and matter loses angular momentum to the magnetic field. This
enables the disc material to flow towards the protostar (i.e. ε ≡
−wr0 > 0) and results in a radial drag on the ionized disc compo-
nent (assuming that εB remains <ε; see WK93 and appendix I.A).
This drag must be balanced by magnetic tension (see equations 5,

1 Computing solutions for �0 < 1/2 has proven to be numerically challeng-
ing. For this reason, the solutions presented in Fig. 3 correspond to values
of �0 that are only slightly smaller than 1/2.
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Table 1. Key properties of the solutions shown in Figs 2 and 3. We list the first to third inequalities of Table A1 (representing, respectively, the requirement
for a sub-Keplerian flow within the disc, the wind-launching condition and the lower bound on the height of the base of the wind) for each case as well as the
mid-plane values of the ion slip factor s ≡ βeβ i and of the matter–field coupling parameter � ≡ a2σ̃⊥, which is equal to ϒ |β i| in the limit (|σ̃H|/σ̃⊥ − 1) 	 1
(see equation I.95). These parameters form the basis of the classification scheme of viable solutions in the Hall diffusivity regime (see section I.5). The base
of the wind and the sonic-surface heights (zb and zs, respectively) are in units of both the tidal scaleheight hT and the actual (magnetically reduced) pressure
scaleheight h, where the latter is determined in each case as the value of z where the density drops to ρ0/

√
e. The mass accretion rate per disc circumference is

evaluated from Ṁin/2πr0 = −2
∫ zb

0 ρvrdz, and the listed value (Ṁin) is this quantity normalized by ρ0cshT.

Illustrative Case (i) Case (iii) Case (ii) Case (iv)
disc solution Fig. 2 (left) Fig. 2 (right) Fig. 3 (left) Fig. 3 (right)

Constraints 1√
2ϒ0

� a0 � 2 � εϒ0
1√
2ϒ0

� a0 � 2 � εϒ0s0
√

βi0 � a0 � 2
√

ϒ0βi0 � ε
2βi0

√
βi0 � a0 � 2

√
ϒ0βi0 � εβe0

2

0.2 � 1 � 2 � 9 0.1 � 1 � 2 � 10 0.4 � 0.4 � 1 � 3 0.3 � 0.4 � 1 � 3

s0 = βe0β i0 11 0.2 2.2 0.6
�0 = a2

0 σ̃⊥0 5.0 5.0 0.46 0.46

Properties

σ̃O 100 10.0 41 20
σ̃H 4.0 4.0 3.0 3.0
σ̃P 3.0 3.0 0.75 0.75
βe0 16 1.6 12.9 6.3
β i0 0.69 0.13 0.17 0.1
�0 5.0 5.0 0.46 0.46
ϒ0 9.1 50 2.8 5.2
ao 1.0 1.0 0.4 0.4
ε 1.0 1.0 1.0 1.0

h/hT 0.12 0.12 0.16 0.16
zb/hT 3.0 3.0 2.3 2.3
zs/hT 4.7 4.9 6.0 6.9
zb/h 25 25 14 14
zs/h 39 41 37 42

ρs/ρ0 2.1 × 10−10 2.2 × 10−10 1.1 × 10−5 5.9 × 10−6

ξ ′
b = Brb/Bz 1.4 1.4 3.3 3.3
|Bφb|/Bz 0.12 0.13 1.2 1.2
Ṁin 0.48 0.48 0.72 0.70

8 and 10), which is consistent with the field lines bending radially
outwards. Furthermore, as the magnetic tension also partially sup-
ports the fluid against the gravitational pull of the protostar (see
equations 1 and 5), the gas motion in this region is sub-Keplerian.
Further up but still below the base of the wind (defined as the
height z̃b where vφ = vK and located in this solution at z ≈ 3.0)
lies the transition zone (0.4 � |z̃| � 3.0). In this layer the mag-
netic pressure comes to dominate the thermal pressure because of
the strong drop in the gas density away from the mid-plane, and
the magnetic field lines are locally straight. Note that everywhere
within the disc the radial velocity is negative, the azimuthal veloc-
ity is sub-Keplerian and the vertical velocity is subsonic (highly so
in the quasi-hydrostatic layer). Finally, as the angular velocity of
the magnetic field lines is nearly constant along the poloidal flux
surfaces (it is exactly constant only when εB is identically zero; see
Königl 1989), their azimuthal velocity increases with radius until,
eventually, they overtake the fluid (whose azimuthal velocity de-
creases with radius according to the Keplerian rotation law). In the
hydrostatic limit (vz → 0) and with εB = 0 this occurs at the height
z̃b, and under the same assumptions this is also the location where
vr changes sign.2 The solution region above z̃b (between z̃b ≈ 3.0

2 In an exact solution, where vz is >0 near the top of the disc, the heights
where vφ = vK, vφ = r�B and vr = 0 do not exactly coincide, although
typically they remain close to each other.

and the sonic surface at z̃s ≈ 4.7) represents the base of the wind.
In this region vr is >0, vφ is super-Keplerian and the magnetic field
transfers angular momentum back to the matter, causing the upper-
most layers of the disc to be driven out centrifugally (with the mass
flux in the wind effectively fixed by the regularity condition at the
sonic critical point of the disc solution).

The distinguishing properties of the four Hall sub-regimes, as
inferred in the context of the hydrostatic approximation, are listed in
Table A2. To see how the expressions derived in this approximation
for |dbr/dbφ |0, h̃ ≡ h/hT (where h is the magnetically reduced
density scaleheight, defined as the location where the density drops
to ρ0/

√
e) and z̃b/h̃ compare with the properties of the full solutions

listed in Table 1, we need to relate the parameters β i0, βe0 and
ϒ0 used in the two-component plasma formulation of Paper I to
the tensor conductivity components employed in this work. The
parameter ϒ0 is the mid-plane value of the neutral–ion coupling
function given by equation (A2) and is equal to the Elsasser number
in the ambipolar diffusivity limit. The relationships between these
variables and the conductivity ratios can be obtained from equations
(I.95)–(I.97) and reduce, in the limit q ≡ β i/βe 	 1, to

ϒ0 ≈ �0

(
σ̃P

σ̃⊥
− σ̃⊥

σ̃O

)−1

, (83)

βi0 ≈
(

σ̃P

σ̃⊥
− σ̃⊥

σ̃O

) (
σ̃H

σ̃⊥

)−1

(84)
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Figure 2. Structure of illustrative disc solutions as a function of height above the mid-plane (measured in units of the tidal scaleheight hT) for the Hall
conductivity sub-regimes labelled in Table A1 as Case (i) (left-hand panels) and Case (iii) (right-hand panels) and the model parameters shown in the figure
(where all the listed conductivity values pertain to the mid-plane). For these two cases, the matter–field coupling parameter �0 > 1/2. In both solutions, the
top panel shows the gas density (normalized by the mid-plane value) as well as the radial and azimuthal components of the magnetic field (normalized by the
vertical component, which is constant with height). The bottom panel depicts the velocity components in a frame rotating at the Keplerian speed, normalized
by the isothermal sound speed cs. The curves terminate at the sonic point. The key properties of both solutions are listed in Table 1.

Figure 3. Same as Fig. 2 except that the depicted solutions correspond to Cases (ii) (left-hand panels) and (iv) (right-hand panels) of Table A1, for which
�0 < 1/2. Key properties of these solutions are summarized in Table 1.
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and

βe0 ≈ σ̃Hσ̃O

σ̃ 2
⊥

. (85)

4.2 Parameter dependence of the solutions

4.2.1 Dependence on the ratio |σ̃H|/σ̃⊥

The conductivity ratio |σ̃H|/σ̃⊥ serves to distinguish the ambipolar
diffusivity domain (σ̃O � σ̃P � |σ̃H|) from the Hall diffusivity
regime (σ̃P 	 |σ̃H| 	 σ̃O): the ambipolar diffusivity limit corre-
sponds to this ratio tending to 0, whereas the Hall limit corresponds
to this ratio tending to 1. To illustrate the difference between these
two regimes, it may be instructive to compare a solution in the
ambipolar diffusivity regime, which satisfies �0 � 1 and s0 > 1
(see Paper I), with a solution in the Hall sub-regime (i), which, as
we already noted in Section 4.1, satisfies the same inequalities and,
in fact, identical parameter constraints (first line in Table A1). We
show such a comparison in Figs 4 and 5. Fig. 4 depicts the verti-
cal run of the density as well as of the transverse magnetic field
and the velocity components for two representative solutions in the
above-mentioned diffusivity regimes for the same values of the pa-
rameters �0, a0 and ε. Fig. 5, in turn, shows the dependence of the

Figure 4. Structure of a wind-driving disc solution as a function of z/hT

for the disc parameters shown in the figure and two different configurations
of the conductivity tensor (whose listed components all pertain to the mid-
plane). The thick lines correspond to the ambipolar diffusivity limit (for
which σ̃H = 0 and σ̃O � σ̃P) and the thin lines to a case where σ̃H >

σ̃P. The normalized upwards mass flux is ρ̃wz = ρ̃s = 1.1 × 10−3 for
the solution in the ambipolar diffusivity limit and 1.4 × 10−6 in the Hall
case.

Figure 5. Top panel: density at the sonic point (ρ̃s ≡ ρs/ρ0) as a function of
the normalized inwards velocity at the mid-plane (ε) for three configurations
of the conductivity tensor characterized by the same values of σ̃O and σ̃⊥ but
different values of the ratio σ̃H/σ̃⊥. (All the listed conductivities pertain to
the mid-plane.) The other model parameters have the same values (indicated
in the figure) in each case. Bottom panel: as above, but now plotting the
vertical location of the sonic point (z̃s), the base of the wind (z̃b) and the
magnetically reduced scaleheight (z̃h ≡ h̃). In both panels, the solid lines
show the ambipolar diffusivity limit (σ̃H = 0), the dashed lines represent
the case where σ̃H = σ̃P and the dot–dashed lines depict a case where
σ̃H > σ̃P.

density decrement ρs/ρ0 at the sonic surface and of the character-
istic heights z̃h ≡ h̃, z̃b and z̃s on the parameter ε for the same two
choices of the conductivity components (as well as for a solution
with an intermediate value of σ̃H/σ̃⊥ = 5/

√
2) and the same values

of �0 and a0 as in Fig. 4.
The most noticeable differences between the two solutions shown

in Fig. 4 are the faster change of the flow variables (corresponding
to a smaller value of h̃) and the larger vertical extent of the displayed
solution (corresponding to a higher value of z̃s) in the Hall case.
The higher value of z̃s implies a lower density at the sonic surface
and therefore a lower normalized upwards mass flux (=ρ̃s) for the
Hall solution (see Fig. 5). The decrease (increase) of z̃h (z̃s) with
increasing |σ̃H|/σ̃⊥ when all the other parameter values are held
constant is also evident from the curves plotted in Fig. 5. The latter
figure further demonstrates that the behaviour of z̃s is similar to
that of z̃b, which suggests that z̃b could be used as a proxy for
z̃s in analysing this trend. The parameter dependence of h̃ and z̃b

can be estimated using the hydrostatic approximation, as discussed
in Paper I, and is given by equations (A5) and (A6), respectively.
Given that �0 → ϒ0|β i0| as |σ̃H|/σ̃⊥ → 1 and assuming that �0, a0
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and ε are held constant, the above equations imply that, to leading
order in |β i0|, h̃ ∝ |βi0| and z̃b ∝ 1/|βi0| in the ambipolar regime
and in the Hall sub-regimes (i) and (ii), for which s0 = βe0β i0 � 1.
On the other hand, equation (84) implies, given that σ̃⊥ = �0/a

2
0

(equation I.87) and σ̃O are fixed, that |β i0| decreases as |σ̃H|/σ̃⊥ goes
up [and σ̃P/σ̃⊥ = (σ̃ 2

⊥−σ̃ 2
H)1/2/σ̃⊥ goes down]. Taken together, these

results explain the manifested dependence of the solutions in Figs 4
and 5 on |σ̃H|/σ̃⊥.

As a further check on the applicability of the analytical frame-
work developed in Paper I, we note that equations (A5) and (A6)
imply a similar dependence of z̃h and z̃b on |σ̃H|/σ̃⊥ in the limit
s0 	 1 (i.e. in the Ohm diffusion-modified Hall regime; Cases
iii and iv). In fact, fixing the values of the same parameters as
before, these two equations imply that, to leading order in small
ratios, h̃ ∝ 1/|βe0| and z̃b ∝ |βe0| in this case, while equation (85)
shows that |βe0| increases as |σ̃H|/σ̃⊥ goes up (assuming again
that σ̃⊥ and σ̃O remain unchanged). We have verified that solu-
tions in these regimes indeed exhibit the expected dependence on
|σ̃H|/σ̃⊥.

Yet another test of the predictions of the hydrostatic analysis
regarding the dependence of the solutions on |σ̃H|/σ̃⊥ can be con-
structed using equation (83) for the parameter ϒ0. As discussed
in section I.6 and illustrated in fig. I.2, this analysis indicates that
the requirement ϒ0 � 1 (i.e. that the mid-plane neutral–ion mo-
mentum exchange time be shorter than the local orbital time) is a
fundamental constraint on viable wind-driving disc models of the
type that we consider, and applies to solutions in all the diffusivity
regimes (ambipolar, Hall and Ohm). This condition follows directly
from the inequalities ϒ0|β i0| > 1/2 and |β i0| < 1 that character-
ize the Hall Cases (i) and (iii), but, as can be seen by combining
the first two parameter constraints reproduced in the first row of
Table 1, it can be formally inferred (within the framework of the
hydrostatic analysis) to apply also in the other Hall sub-regimes.
The illustrative solutions for Cases (ii) and (iv) in Fig. 3 satisfy this
inequality, as verified explicitly in Table 1. One can further test the
foregoing result in these sub-regimes by holding �0, σ̃⊥ and σ̃O

fixed (as was done above) and decreasing |σ̃H|/σ̃⊥ (or, equivalently,
increasing σ̃P/σ̃⊥) until (if �0 is sufficiently small) ϒ0 declines
to a value <1 where, according to the hydrostatic analysis, viable
solutions cease to exist. Such calculations are presented in Fig. 6,
where we plot σ̃H/σ̃⊥ as a function of ϒ0 for representative solu-
tions in these two sub-regimes. It is seen that all viable solutions
are indeed restricted to the region ϒ0 > 1, validating the above
prediction.

4.2.2 Dependence on the field polarity

As was noted in section I.2.1, the Ohm and Pedersen conductivities
are always positive, even under a global reversal of the field polarity,
since σ̃O is not a function of the magnetic field strength and σ̃P only
contains magnetic terms that scale as B2. The Hall conductivity,
however, has an overall linear dependence on B ≡ |B| sgn{Bz} and
can thus assume both positive and negative values depending on
the direction of the vertical field component. The dependence of
σ̃H on the magnetic field polarity was shown in Paper I to affect
both the extent of the parameter ranges where viable wind-driving
disc solutions can exist in the Hall domain and the properties of
these solutions. We now briefly summarize these results, which
were obtained in the hydrostatic approximation assuming an ion–
electron plasma.

Figure 6. Dependence of the ratio σ̃H/σ̃⊥ on the parameter ϒ0 for solutions
corresponding to the indicated parameter values. The solid and short-dashed
curves show solutions for the Hall sub-regimes (ii) (computed with σ̃O = 41
at the mid-plane) and (iv) (computed with σ̃O = 20 at the mid-plane),
respectively. In both cases, σ̃⊥0 = 3.1. All viable solutions lie to the right of
the vertical long-dashed line, where ϒ0 > 1, as predicted by the hydrostatic
analysis.

The range of values of the parameter β ≡ 1/β i0 for viable so-
lutions was found to be restricted by the following two conditions
(see section I.6):

(i) sub-Keplerian flow below the base of the wind. This implies
that the normalized azimuthal velocity wφ is <0 within the disc,
which translates into dbr/dbφ < 0 and β > −2ϒ0 (equations I.106–
I.108).

(ii) sub-Keplerian azimuthal velocity of the magnetic flux sur-
faces, or wEr0 = −r(�B0 − �K)/cs > 0, where �B0 = −cEr0/rB0 is
the angular velocity of the flux surfaces at the disc mid-plane. This
implies (see equation I.113) that either β < −2ϒ0 or β > −ϒ0/2
in the Hall domain.

The above two constraints together imply

β > −ϒ0/2 in all the Hall sub-regimes . (86)

By combining this inequality with the classification criterion
ϒ0/|β| > 1/2 that distinguishes the Hall sub-regimes (i) and (iii)
(see Section 4.1), one obtains

−ϒ0/2 < β < 2ϒ0 Cases (i) and (iii) . (87)

Equation (87) predicts that, although there could be both positive-
and negative-polarity solutions in the Hall sub-regimes (i) and (iii),
no viable solutions should exist in these cases when β decreases be-
low −ϒ0/2. This prediction of the hydrostatic analysis is examined
in Fig. 7, which plots ρ̃s, the normalized density at the sonic point,
as a function of the coupling parameter ϒ0 for Case (i) solutions
derived using the indicated model parameters and corresponding
to both positive and negative values of β ∝ σ̃H (see equation 84).
Since the magnitudes of all the conductivity-tensor components are
held constant, all the solutions are characterized by the same ab-
solute value of the ion Hall parameter (|β i0| = 1/1.45). The figure
verifies that viable solutions cease to exist in the region to the left
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Figure 7. Normalized sonic-point density ρ̃s as a function of the parameter
ϒ0 for solutions in the Hall sub-regime (i), illustrating the dependence of
viable disc models on the magnetic field polarity (i.e. the sign of σ̃H). Curves
for σH > 0 are shown by light lines and for σH < 0 by heavy lines, and
are labelled by the normalized mid-plane inflow velocity ε. (All the listed
conductivities pertain to the mid-plane.) The value of |β| ≡ 1/|β i0| is the
same (1.45) for all the solutions. The results are broadly consistent with the
prediction of the hydrostatic analysis (equation 87) that there should be no
viable solutions for σ̃H < 0 when ϒ0 drops below 2|β| (i.e. to the left of the
vertical dashed line).

of the vertical dashed line, which corresponds to |β| > ϒ0/2, when
β < 0.3

By similarly combining the inequality (86) with the classification
criterion ϒ0/|β| < 1/2 that distinguishes the Hall sub-regimes (ii)
and (iv), one obtains

β > 2ϒ0 Cases (ii) and (iv) , (88)

which implies that, for these sub-regimes, self-consistent solutions
exist only if the field has a positive polarity. We verified this predic-
tion by adopting the values of a0, ε and σ̃⊥ specified for Cases
(ii) and (iv) of Table 1 and changing the value of σ̃H/σ̃⊥: we
found that no negative-polarity solutions could be obtained in these
cases.

Even when both positive and negative values of β are allowed,
as is the case in sub-regimes (i) and (iii), changing the field polarity
modifies the properties of the solutions. This point, which was
already made in WK93, is illustrated in Figs 8 and 9, which compare
disc solutions that differ only in the sign of σ̃H.4 The main difference

3 Note that each of the β < 0 solution curves in Fig. 7 terminates at a
finite value of ϒ0 that is lower the higher the value of ε. To understand
this behaviour, note that, given the parameters that are held fixed in this
figure, ϒ0 scales as a2

0. For a fixed value of a0, ρ̃s increases as ε goes down
(as seen also in the top panel of Fig. 5). There is a maximum sonic-point
density ρ̃s that can be attained for the chosen value of a0, corresponding
to the maximum outflow rate for a consistent solution, and this, in turn,
determines the magnitude of ε for the solution curve that terminates at the
given value of a0. A lower value of a0 corresponds to a higher lower bound
on ε because it implies a higher value of |bφb| (see equations A3, A4 and
83) and hence a stronger torque on the disc and a correspondingly higher
mass accretion rate (reflected in the value of ε).
4 In discussing the differences between Hall-domain solutions with oppo-
site field polarities in section I.6 we explicitly referred to sub-regime (iii),
whereas the solutions shown in Figs 8 and 9 correspond to sub-regime (i).
It should, however, be clear from the present discussion that the behaviour
of solutions in these two sub-regimes is similar in this regard.

Figure 8. Comparison of two disc solutions that differ only in the sign of
the Hall conductivity: σ̃H > 0 for the solution shown by thin lines, and
σ̃H < 0 for the solution depicted by thick lines. The normalized upwards
mass flux ρ̃wz is 9 × 10−9 in the σ̃H > 0 case and 5 × 10−5 in the σ̃H < 0
solution. All the listed conductivities pertain to the mid-plane.

between the two solutions in Fig. 8 is evidently the value of the
sonic-point height z̃s (corresponding to the termination point of the
depicted solution), which is larger (�4.3) in the positive-polarity
case than in the negative-polarity solution (�2.4). Fig. 9 confirms
this trend: the wind-launching surface (z̃b) and the sonic surface (z̃s)
are located higher above the mid-plane, and the mass outflow rate
(measured by ρ̃s) is correspondingly lower, in the positive-polarity
solutions. The value of z̃h = h̃, which represents the scale on which
the density and transverse magnetic field components undergo their
strongest variation, is also different between the two sets of solutions
(it is larger for the negative-polarity model), although this difference
is modest in comparison with the change in z̃b and z̃s, and it goes in
the opposite direction.

The above behaviour can be understood using the analytic ex-
pressions derived in Paper I, and reproduced in Appendix A. Em-
ploying the same reasoning as in our analysis of Figs 4 and 5 in
Section 4.2.1, we employ the height z̃b of the base of the wind as a
proxy for z̃s in this analysis. Using equations (A5) and (A6), we es-
timate that, to leading order, h̃+/h̃− ≈ (2ϒ0 −|β|)/(2ϒ0 +|β|) and
z̃b+/z̃b− ≈ (ϒ2

0 +5ϒ0|β|/2+β2)/(ϒ2
0 −5ϒ0|β|/2+β2), where the

subscripts ‘+’ and ‘−’ refer to the positive- and negative-polarity
cases, respectively. Using also equations (83) and (84), we infer
that, for the parameters adopted in Figs 8 and 9, h̃+/h̃− ≈ 0.85 and
z̃b+/z̃b− ≈ 2.28. These estimates are entirely consistent with the
numerical results (for a fixed value of ε) shown in the two figures.
Furthermore, from equation (A3) we confirm that |brb/bφb| is �1
and hence (using equation A4) that brb ≈ √

2/a0, independently
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Figure 9. Variation of the normalized sonic-point density (upper panel)
and of the characteristic heights z̃s, z̃b and z̃h ≡ h̃ (lower panel; cf. Fig. 5)
with the model parameter ε for the same conductivity-tensor components
employed in Fig. 8. The solid lines correspond to σ̃H > 0 and the dashed
lines to σ̃H < 0.

of the sign of β, reproducing the actual behaviour of the solutions
in Fig. 8. Setting brb+ ≈ brb−, we then infer from equations (A3)
and (A5) that bφb+/bφb− ≈ h̃+/h̃− (≈0.85 for the adopted parame-
ters). This conclusion, too, is consistent with the result exhibited in
Fig. 8.

Although the specific angular momentum at the base of the flow
is mostly magnetic (corresponding to the wind model parameter
λ being �1), the fact that bφb+/bφb− < 1 does not imply that the
value of λ is larger in the negative-polarity case. In fact, the con-
verse is true, as can be seen using equation (63), from which it
follows that λ+/λ− ≈ (bφb+/bφb−)(ρ̃s−/ρ̃s+). Given that ρ̃s−/ρ̃s+
is typically �bφb−/bφb+ (as the solutions in Fig. 8 demonstrate),
we find that λ+/λ− � 1. Physically, the magnetic torque acting
on the disc (∝BzBφ) and correspondingly the mass accretion rate
and the rate of inwards angular momentum advection are slightly
larger in the negative-polarity case. However, the mass outflow rate
is significantly larger in this case and therefore the specific angu-
lar momentum (the angular momentum per unit mass) has to be
much smaller in order for the rate of inwards (radial) and outwards
(vertical) angular momentum transport to balance each other. An
alternative way of arriving at this conclusion is to consider the wind
solutions that are self-consistently matched to these disc solutions.
The matched wind solutions lie on a ξ b

′ = const curve in the κ −
λ wind parameter space (see equation 64), and along such a curve
higher values of κ ∝ ρ̃s (see equation 62) correspond to lower
values of λ (see fig. 2 in BP82).

Figure 10. Vertical structure of a wind-driving disc solution for two differ-
ent values of the radial velocity parameter: ε = 1 (thick lines) and ε = 0.5
(thin lines). The other model parameters are listed in the figure (with all the
conductivity values pertaining to the mid-plane).

4.2.3 Dependence on the radial velocity parameter ε

To illustrate the dependence on the parameter ε (the normalized
mid-plane inflow velocity), we plot in Fig. 10 two solutions in the
Hall sub-regime (i) that differ only by the value of this parameter.
It is seen that, as ε decreases from 1.0 (thick lines) to 0.5 (thin
lines), the scaleheight h̃ (the scale on which the density and trans-
verse magnetic field components vary most strongly) increases and
z̃s (the vertical extent of the displayed solution, corresponding to
the location of the sonic surface) decreases. These trends are also
evident in the solutions depicted in Figs 5 and 9. As we did in
Sections 4.2.1 and 4.2.2, we use z̃b as a proxy for z̃s and employ
the hydrostatic-approximation equations (A5) and (A6) to analyse
this behaviour. These two expressions show that, with all the other
parameters remaining unchanged, h̃ ∝ 1/ε and z̃b ∝ ε, which
can directly account for the exhibited trends. In both cases, the
dependence on ε can be traced to the scaling jr ∝ wr implied by
the angular momentum conservation relation (equation 2) in the
hydrostatic limit (see section I.4.3).

The hydrostatic analysis presented in Paper I also leads to a lower
limit on the value of ε, derived from the requirement that the base
of the wind be located above a density scaleheight, i.e. z̃b > h̃.
This implies εϒ0 > (18)1/4 ≈ 2 (see Table A2) and represents the
third constraint listed in Table A1. To verify the applicability of this
condition, we constructed a solution using the same parameters as
in the illustrative Case (i) solution depicted in Fig. 2 except that
we chose a smaller value of ε so that the above constraint is no
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Figure 11. Same as the left-hand side of Fig. 2, but for ε = 0.2. In this case
ϒ0 = 9.1 (see Table 1), so the inequality εϒ0 > 2 [the third constraint on
viable solutions in the Hall sub-regime (i); see the first row in Table 1] is not
satisfied. As discussed in the text, the resulting disc solution is unphysical.

longer satisfied. The result, shown in Fig. 11, confirms that, when
the above inequality is violated, the solution is no longer physically
viable. This is evidenced by the downwards turn of the |bφ | and br

curves above a certain height. A similar solution was presented in
fig. 6 of WK93, who explained the origin of this behaviour by noting
that, when ε decreases to a sufficiently low value, z̃s becomes so
small and (correspondingly) ρ̃s so large that the upwards mass flux
carries more angular momentum than is brought in by the accretion
flow. Consequently, the gradient of bφ changes sign (with that of
br following suit) as the magnetic field starts depositing angular
momentum back into the flow even before the nominal top of the
disc is reached. Such a configuration is likely unstable (e.g. Cao &
Spruit 1994).

4.3 Matched disc–wind solutions

The solutions presented in Sections 4.1 and 4.2 have involved the
disc model alone. This was done in order to simplify the deriva-
tions and was an adequate approach given that we were primarily
interested in studying the constraints on the disc model parameters.
However, to justify this treatment, it is necessary to demonstrate
that matched disc–wind solutions can be obtained for similar disc
parameter combinations. This is done in this subsection, where we
present two examples of self-consistently matched (local) disc and
(global) wind solutions. These solutions correspond to the same
values of the parameters �0 and a0 and of the absolute values of
the conductivity-tensor components but have opposite signs of σ̃H:
they were obtained using the procedure described in Section 3.5

Figure 12. Illustrative disc–wind solution obtained by matching a radially
localized disc solution to a global (self-similar) wind solution using the
procedure outlined in Section 3.5. The disc model parameters are shown
in the figure (with all the conductivity values pertaining to the mid-plane)
whereas those of the matched wind solution are κ = 7.9 × 10−4, λ = 174
and ξ ′

b = 1.42. This solution satisfies the constraints specified in Table A1
for the Hall conductivity sub-regime (iii): 0.1 � 0.97 � 2 � 6.4 � 10.

and are shown in Figs 12 (the positive-polarity case) and 13 (the
negative-polarity case). As is evident from equations (62) and (63),
combining the two solutions requires a specification of the param-
eter cs/vK = hT/r: the above examples were computed for cs/vK =
0.05.

Our matched solutions correspond to the Hall sub-regime (iii) and
are seen to be very similar to the analogous solutions we obtained
by considering the disc alone (right-hand panels of Fig. 2). The
qualitative differences between the σ̃H > 0 and σ̃H < 0 solutions
(essentially a higher value of z̃s and lower values of h̃ and of |bφ |
in the positive-polarity case) are also the same as those found in the
‘windless’ solution (Figs 8 and 9). This is as expected, since the
matching to the wind solution does not affect the physical require-
ments on a viable disc solution; rather, what it does is fix – through
the imposition of the Alfvén regularity condition on the wind solu-
tion – the value of one of the disc model parameters that is chosen
arbitrarily when the wind solution is not taken into account. In our
treatment (see Section 3.5), the disc parameter that is determined
in this way is ε: it is equal to 0.68 in the σ̃H > 0 solution shown
in Fig. 12 and to 0.98 in the σ̃H < 0 solution shown in Fig. 13. In
an even more self-consistent solution, the value of the parameter
εB would also be determined by taking into account the conditions
outside the disc – in this case the magnetic flux distribution along
the disc surface (see section I.3.13) – rather than arbitrarily setting
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Figure 13. Same as Fig. 12, but with σ̃H having the opposite sign. All the
other disc model parameters except for ε, which is determined by impos-
ing the Alfvén regularity condition on the wind solution, are the same as
in Fig. 12. In this case the parameters of the matched wind solution are
κ = 1.2 × 10−3, λ = 144 and ξ ′

b = 1.43. This solution, too, satisfies the
hydrostatic-analysis constraints for the Hall conductivity sub-regime (iii):
0.1 � 0.97 � 2 � 9.2 � 10.

it equal to zero as has been done in this paper and in the analytic
derivations of Paper I.5

The ratio of the mass outflow rate Ṁout in the BP82-type wind
to the mass accretion rate Ṁin through the disc can be estimated by
combining Ṁin ≈ 2r2B2

z |bφb|/vK (see equation I.59) and |bφb| =
κ(λ − 1) (see Section 3.2) with equation (5.2) in BP82, which gives

Ṁout

Ṁin
≈ ln (rmax/rmin)

2(λ − 1)
, (89)

where rmax and rmin are, respectively, the outermost and innermost
radii of the wind-driving zone. For the solutions shown in Figs 12
and 13, the ratio estimated from equation (89) assuming rmax/rmin ≈
104 is ∼0.03, which is consistent with the values inferred from
observations (e.g. Ray et al. 2007).

5 C O N C L U S I O N

In this paper, we continue our study of the viability and properties
of weakly ionized protostellar accretion discs that transport their
excess angular momentum vertically through the surfaces by means

5 A self-consistent treatment along these lines has, in fact, already been
implemented in the fully global self-similar disc/wind model constructed by
Teitler (2011).

of centrifugally driven winds. In view of the suggestive evidence
that this situation is realized in at least some protostellar systems
(e.g. Ray et al. 2007), and yet mindful of the fact that the total
radial extent of such wind-driving disc regions is still unknown,
we consider radially localized disc configurations (which, however,
are joined to a global wind model). We employ the formulation de-
vised by WK93 for modelling steady, geometrically thin, vertically
isothermal and nearly Keplerian discs in which magnetic diffusivity
counters the shearing and advection of the magnetic field. WK93
assumed that the charge carriers were singly charged ions and elec-
trons and focused on the ambipolar diffusivity regime. In Paper I,
we extended this model to the Hall and Ohm diffusivity regimes
using the conductivity-tensor formalism, although we reverted to
using the multifluid approach employed by WK93 for deriving pa-
rameter constraints on physically viable solutions in these regimes.
This derivation generalized the corresponding results of WK93 for
the ambipolar diffusivity regime and was similarly carried out in
the context of the hydrostatic approximation, in which the vertical
velocity component is neglected inside the disc (which results in
several of the differential equations for the disc structure simplifying
to algebraic relations).

The hydrostatic analysis of Paper I indicated that viable wind-
driving disc solutions correspond to four parameter sub-regimes in
the Hall diffusivity domain and three in the Ohm domain. It also led
to analytic estimates of the magnetically reduced (due to magnetic
pressure-gradient ‘squeezing’) density scaleheight and of the loca-
tion of the disc’s surface (where the inflow turns into an outflow), as
well as of other pertinent quantities. These results are summarized
in Appendix A. In this paper we test these predictions by construct-
ing exact solutions of the disc equations. We concentrate on the Hall
regime in view of its expected importance in the inner regions of
real systems; we do not consider the low-ionization Ohm regime in
this paper given that it may have limited relevance to wind-driving
protostellar discs. We characterize the solutions in terms of the
conductivity-tensor components (i.e. the Pedersen, Hall and Ohm
conductivities). However, to facilitate the comparison with the an-
alytic results of Paper I, which were derived in the framework of
the multifluid formulation, we assume that the ratios of these terms
are constant with height in the disc and, more specifically, that they
scale with the density and field amplitude as ρ/B2, which implies
that the matter–field coupling parameter (the Elsasser number �)
is also constant with height. We require the derived solutions to
cross the sonic critical surface but we do not continue the integra-
tion past that surface; this is sufficient for the comparison with the
analytic results and greatly simplifies the calculations. However, as
recapitulated below, we also demonstrate that these solutions can
be matched to wind solutions that extend to large distances (and,
in particular, cross the Alfvén critical surface). Our findings can be
summarized as follows.

(i) Our numerical solutions are in broad agreement with the pa-
rameter constraints obtained under the hydrostatic approximation
for the four Hall parameter sub-regimes. In the regions of parameter
space that are excluded by the above constraints, wind-driving disc
solutions cannot be obtained or are unphysical.

(ii) All viable solutions satisfy the constraint ϒ0 � 1 (see equa-
tion A2). Physically, this condition expresses the requirement that
the mid-plane neutral–ion momentum exchange time be shorter than
the disc orbital time. As discussed in Paper I, this requirement is
predicted to apply in each of the diffusivity regimes and is evidently
a fundamental constraint on disc solutions of the type considered
here.
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(iii) For the same values of a0, �0 and ε (the normalized mid-
plane magnetic field amplitude, matter–field coupling strength and
radial speed, respectively), increasing the relative contribution of
the Hall conductivity (the ratio |σ̃H|/σ̃⊥) results in a smaller (mag-
netically reduced) density scaleheight h̃ and in larger heights of the
disc and sonic surfaces (z̃b and z̃s, respectively). A higher value of
z̃s in turn implies a lower density at the sonic surface (ρ̃s) and hence
a lower mass outflow rate.

(iv) The magnetic field polarity affects both the properties of
the solutions and the extent of the parameter regimes where viable
solutions exist when the Hall current is dynamically important,
reflecting the dependence of the Hall conductivity on the sign of
Bz. Specifically, we confirmed the following dependence of the
solutions on the field polarity (with a positive polarity corresponding
to Bz being parallel to the disc rotation vector):

(a) Hall sub-regimes (i) and (iii). The parameter β, which is
equal to the inverse of the mid-plane ion Hall parameter (equa-
tion A1) and thus scales inversely with the signed magnetic field
amplitude B, is predicted to lie in the range −ϒ0/2 < β <

2ϒ0. We verified that no solutions exist for β < −ϒ0/2 and that
positive- and negative-polarity solutions have distinct properties.
In particular, when the sign of σ̃H is changed from <0 to >0
and all the other parameter values remain the same, z̃b and z̃s are
increased and the wind outflow rate correspondingly goes down.

(b) Hall sub-regimes (ii) and (iv). These parameter regimes are
characterized by β > 2ϒ0. We verified that only positive-polarity
solutions can be obtained in this case.
(v) Decreasing the inwards radial speed (ε) increases the scale

over which the fluid variables vary most strongly (the magnetically
reduced density scaleheight h̃) but decreases both z̃b and z̃s. Fur-
thermore, when the lower limit on the value of ε, obtained from
the requirement that z̃b > h̃ (the third inequality in Table A1) is
violated, the computed solutions are found to be unphysical (in that
br and |bφ | start to decrease with z̃ above a certain height).

We also detail the procedure for obtaining global (radially self-
similar) ‘cold’ wind solutions following the methodology intro-
duced by BP82. We compute solutions of this type for a large range
of values of the wind model parameters κ , λ and ξ ′

b (the normalized
mass-to-flux ratio, specific angular momentum and field-line incli-
nation at the disc’s surface, respectively). A table of these solutions
is available as Supporting Information in the electronic version
of this article and on the VizieR data base of astronomical cat-
alogues (http://cdsarc.u-strasbg.fr/). As our radially localized and
geometrically thin model cannot be used to follow the propagation
of the outflow far from the disc, we match our disc solution to a
BP82-type wind solution by adjusting one of the disc model pa-
rameters (ε) and iterating on the disc and wind calculations until
the full solution converges. We present illustrative solutions of this
type that demonstrate that matched disc/wind configurations can
be obtained for parameter values that are very similar to those of
the merely transonic solutions employed in our parameter-space
analysis.

The accretion process in protostellar discs may involve a variety
of angular-momentum transport mechanisms, including, in partic-
ular, radial transport by gravitational torques and by MRI-induced
turbulence. In this paper we consider only vertical transport by
centrifugally driven winds in an attempt to model a radially lo-
calized disc region where this mechanism may dominate. (Note,
however, that both vertical transport and radial transport – notably
MRI-induced turbulence – could in principle operate at the same
disc radius; see Salmeron, Königl & Wardle 2007.) As discussed in

Paper I, the large-scale, ordered magnetic field envisioned in this
scenario could be either interstellar field advected by the accre-
tion flow or dynamo-generated field produced in either the star or
the disc. In view of the strong evidence for strong outflows from
the inner regions of protostellar discs, we also neglect alternative
modes of angular momentum transport that could be mediated by
such a field, including magnetic braking, ‘failed’ winds and non-
steady phenomena. Our treatment has been deliberately simplified
to facilitate comparison with the analytic results of Paper I; in par-
ticular, we assume that the matter is everywhere well coupled to the
field (i.e. � > 1) and that the same conductivity regime applies be-
tween the mid-plane and the disc’s surface. In reality, the disc may
be weakly coupled between the mid-plane and some finite height
and its diffusivity properties are expected to change with z̃ (e.g.
Salmeron & Wardle 2005). Our approximation should be adequate
for representing the behaviour of the dominant diffusivity regime
in the well-coupled region of the disc. However, if a significant
fraction of the local column density is magnetically weakly cou-
pled then the vertically averaged properties of the disc (such as the
inflow speed) could be significantly modified (see Li 1996; Wardle
1997).

In conclusion, the results presented in this paper confirm the
validity of the parameter constraints derived in Paper I for physi-
cally viable configurations of Hall diffusivity-dominated protostel-
lar discs in which centrifugally driven winds dominate the local
angular momentum transport. They also demonstrate that the alge-
braic expressions derived on the basis of the hydrostatic approxima-
tion correctly identify the generic properties of such discs and are
useful for clarifying the behaviour of the full numerical solutions.
More generally, the theoretical framework developed in WK93, Pa-
per I and the present work can be used to study discs of this type
also in other diffusivity regimes and in other astrophysical envi-
ronments. In particular, it can help interpret observations of such
systems by relating the properties of the outflow to those of the
underlying disc (e.g. Königl 2010). It may also be useful for guid-
ing non-ideal-MHD numerical simulations of wind-driving discs.
One could in principle also combine a succession of localized disc
solutions, each matched to a global wind solution, to approximate
a radially extended wind-driving disc. This approach might be par-
ticularly useful for studying the time evolution of the mass and
magnetic flux distributions in such a disc; however, for modelling
steady-state configurations, a global self-similarity approach that
encompasses both the disc and the wind (e.g. Teitler 2011) would
be more accurate.
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APPEN D IX A : PARAMETER CONSTRAINTS
IN THE H A LL LIMIT

The parameter constraints on viable wind-driving disc solutions
were obtained in Paper I by applying the hydrostatic approximation
to a radially localized disc model under the assumption that the
charged component of the weakly ionized disc material consisted
of two particle species: positive ‘ions’ (subscript ‘i’) and negative
‘electrons’ (subscript ‘e’), each singly charged. Instead of employ-
ing two independent ratios of the conductivity-tensor components
as model parameters, as is done in this paper, we used the ion and
electron Hall parameters, i.e. the ratios of the gyrofrequency and
the collision frequency of these two species with the neutrals, which
are given by

βe = eB

mec

1

γiρ
, βi = eB

mic

1

γeρ
≡ qβe, (A1)

where c is the speed of light, m is the particle’s mass, e is the unit
electric charge and the total mass density ρ is used to approximate
the neutral mass density. The collisional coupling coefficient γ j is
equal to 〈σv〉j/(mj + m), where m is the mean mass of the neutral
particles and 〈σv〉j is the rate coefficient of momentum exchange of
species j with the neutrals. The product γ iρ (γ eρ) in equation (A1)
therefore represents the momentum-exchange collision frequency
of the ions (electrons) with the neutrals. In the above definitions,
B ≡ |B| sgn{Bz}, so the sign of the Hall parameter is sensitive to

the magnetic field polarity. It is further assumed that the ions are
‘heavy’ and the electrons are ‘light’, so that q 	 1.6

Another key parameter employed in Paper I (see also WK93) is

ϒ ≡ γiρi

�K
(A2)

(where ρ i is the ion mass density), the ratio of the Keplerian rotation
time to the neutral–ion momentum exchange time. In the ambipolar
diffusivity limit (σ O � σ P � |σ H| or, equivalently, |β i| � 1) the
Elsasser number � (Section 2.2) reduces to ϒ , whereas in the Hall
diffusivity limit (σ P 	 |σ H| 	 σ O or, equivalently, |β i| 	 1 	
|βe|) � = ϒ |β i|.

The parameter constraints for the four Hall sub-regimes are pre-
sented in Table A1, which reproduces table I.1. The physical origin
of the imposed constraints is summarized in the caption of this table.
The key predicted properties of the solutions in each sub-regime are
listed in Table A2, which reproduces table I.2. We also reproduce
below some of the expressions used in the derivation of these results
that are relevant to the analysis presented in this paper.

The ratio |dbr/dbφ |0 is given by∣∣∣∣ dbr

dbφ

∣∣∣∣
0

= 2ϒ0 + β

1 + qβ2
(A3)

(equation I.115), where β ≡ 1/β i0. This expression can be used to
approximate |brb/bφb |, the ratio of the corresponding magnetic field
components at the base of the wind. Another relationship between
the field components at z̃b is provided by

b2
rb + b2

φb ≈ 2

a2
0

(A4)

(equation I.90). Since |dbφ/dbr|0 is always <1 in the Hall regime,
one can approximate, to leading order, brb ≈ √

2/a0 and bφb ≈
−√

2(1+qβ2)/[(2ϒ0 +β)a0]. The assumption |dbφ/dbr|0 	 1 also
leads to the following simplified expression for the magnetically
reduced scaleheight:

h̃ ≈ 2a0

ε

1 + qβ2

2ϒ0 + β
(A5)

(equation I.119). The height of the base of the wind is, in turn, given
by

z̃b ≈ a0ε

3
√

2ϒ0

ϒ2
0 + (5/2)ϒ0β + β2

1 + qβ2
(A6)

(see equation I.120). Finally, the Joule dissipation term in Table A2
is evaluated from

( j ·e′)0 = ε2

4ϒ0a
2
0

(1 + qβ2)

[
1 +

(
2ϒ0 + β

1 + qβ2

)2
]

(A7)

(see equation I.122). The rate of Joule heating at the disc mid-plane
should not exceed the rate of release of gravitational potential en-
ergy at that location. This requirement is expressed by the rightmost
inequality of Table A1, which involves the ratio of the tidal scale-
height to the disc radius, hT/r = cs/vK. This parameter does not

6 In a real disc containing two charged species, the value of q is fixed by
the physical properties of the charge carriers (see equations I.7– I.9). This,
in turn, constrains the values that the conductivity ratios σ̃H/σ̃⊥ and σ̃⊥/σ̃O

can take (see equations 84 and 85). We do not incorporate this constraint into
the parameter-space analysis in Section 4 so as not to unduly complicate
the discussion; however, we have verified that the ‘effective’ value of q,
obtained from the ratio of equation (84) to equation (85), remains 	1 for
all the solutions that we present.
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Table A1. Parameter constraints for wind-driving disc solutions in the limit where the Hall diffusivity dominates and assuming εB =
0. Four distinct cases can be identified, depending on how the values of s0 = βe0β i0 and of 2�0 = 2ϒ0|β i0| compare with 1. The first
inequality expresses the requirement that the disc remain sub-Keplerian below the wind zone (z̃ < z̃b), the second is the wind launching
condition (the requirement that the magnetic field lines be sufficiently inclined to the vertical for centrifugal acceleration to occur), the
third ensures that the base of the wind is located above the (magnetically reduced) density scaleheight and the fourth specifies that the
rate of Joule heating at the mid-plane should not exceed the rate of release of gravitational potential energy there.

Case Limits Parameter constraints – Hall limit
s0 = βe0β i0 �0 = ϒ0|β i0| (multifluid formulation)

(i) >1 >1/2 (2ϒ0)−1/2 � a0 � 2 � εϒ0 � vK/2cs

(ii) >1 <1/2 β
1/2
i0 � a0 � 2(ϒ0β i0)1/2 � ε/2β i0 � ϒ0β i0vK/cs

(iii) <1 >1/2 (2ϒ0)−1/2 � a0 � 2 � εϒ0βe0β i0 � vK/2cs

(iv) <1 <1/2 β
1/2
i0 � a0 � 2(ϒ0β i0)1/2 � εβe0/2 � ϒ0β i0vK/cs

Table A2. Key properties of viable disc solutions in the Hall regime. Listed, in order, are the mid-plane values of |dbr/dbφ |, the
magnetically reduced scaleheight in units of the tidal scaleheight (h̃ ≡ h/hT), the similarly normalized vertical location of the base of
the wind z̃b in units of h̃ and the normalized Joule dissipation rate j · e′ at the mid-plane.

Case Limits Solution characteristics – Hall limit
s0 = βe0β i0 �0 = ϒ0|β i0| |dbr/dbφ |0 h̃ z̃b/h̃ ( j · e′)0

(i) >1 >1/2 2ϒ0 (>1) a0/εϒ0 (εϒ0)2/3
√

2 ε2ϒ0/a2
0

(ii) >1 <1/2 1/β i0 (>1) 2a0β i0/ε ε2/6
√

2ϒ0β
3
i0 ε2/4 ϒ0 β2

i0 a2
0

(iii) <1 >1/2 2ϒ0βe0β i0 (>1) a0/εϒ0β i0βe0 (εϒ0βe0βi0)2/3
√

2 ε2 ϒ0 βe0 β i0/a2
0

(iv) <1 <1/2 βe0 (>1) 2a0/εβe0 (εβe0)2/6
√

2ϒ0βi0 ε2 βe0/4 ϒ0 β i0 a2
0

Table B1. Global, self-similar (BP82-type) wind solutions
in tabular form. The solutions are characterized by the values
of the parameters κ (the normalized mass-to-magnetic flux
ratio), λ (the normalized total specific angular momentum)
and ξ ′

b (the inclination of the magnetic field lines at the base
of the wind), as described in Section 3.2. The normalized
height of the Alfvén point (χA) is also listed. Only five en-
tries are displayed below; the complete library of tabulated
solutions is available as Supporting Information in the elec-
tronic version of this paper and via the VizieR data base of
astronomical catalogues (http://cdsarc.u-strasbg.fr/). Fig. 1
shows the full range of solutions in graphical form.

κ λ ξ ′
b χA

1.000 × 10−1 4.100 × 101 5.092 1.553
1.000 × 10−2 2.750 × 102 5.018 4.660
1.000 × 10−3 2.015 × 103 5.006 12.98
1.000 × 10−4 1.500 × 104 5.013 35.78
1.000 × 10−5 1.135 × 105 5.001 97.59

appear explicitly in the normalized equations for the disc structure
(Section 2.1), but it is used in matching the disc solution to a self-
similar wind solution (via equations 62 and 63). We have verified
that this constraint is satisfied by the matched disc/wind solutions
presented in Section 4.3.

APPENDIX B: G LOBA L, SELF-SIMILAR W IND
SOLUTI ONS I N PA RAMETER SPACE

Table B1 displays five entries of a tabulated library of the BP82-type
wind solutions shown graphically in Fig. 1. The complete table is
available electronically as Supporting Information for this article
and via the VizieR data base of astronomical catalogues.

SUPPORTI NG INFORMATI ON

Additional Supporting Information may be found in the online ver-
sion of this article:

Table B1. Global, self-similar (BP82-type) wind solutions in tabular
form.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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