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ABSTRACT
In astrophysical systems, radiation–matter interactions are important in transferring energy and
momentum between the radiation field and the surrounding material. This coupling often makes
it necessary to consider the role of radiation when modelling the dynamics of astrophysical
fluids. During the last few years, there have been rapid developments in the use of Monte
Carlo methods for numerical radiative transfer simulations. Here, we present an approach to
radiation hydrodynamics that is based on coupling Monte Carlo radiative transfer techniques
with finite-volume hydrodynamical methods in an operator-split manner. In particular, we
adopt an indivisible packet formalism to discretize the radiation field into an ensemble of
Monte Carlo packets and employ volume-based estimators to reconstruct the radiation field
characteristics. In this paper the numerical tools of this method are presented and their accuracy
is verified in a series of test calculations. Finally, as a practical example, we use our approach
to study the influence of the radiation–matter coupling on the homologous expansion phase
and the bolometric light curve of Type Ia supernova explosions.
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1 IN T RO D U C T I O N

In studying astrophysical objects, a detailed understanding and de-
scription of the radiation field is vital, particularly if synthetic ob-
servables are to be computed for comparison with observations.
Conceptually, the radiation field in a fluid is not independent of
the fluid state and their co-evolution has to be described self-
consistently within the framework of radiation hydrodynamics. De-
pending on the dynamical importance of the radiation field and
the strength of the radiation–matter coupling, different strategies
can be followed. If the energy associated with the radiation field
is negligible compared to the total energy content, a decoupled ap-
proach may be followed. For example, such a method has been
used for the determination of synthetic light curves and spectra
for Type Ia supernova (SN Ia) explosions around maximum light
(e.g. Kasen, Thomas & Nugent 2006; Kromer & Sim 2009; Jack,
Hauschildt & Baron 2011). In cases where the radiative terms are
dynamically important, however, a fully decoupled treatment of the
radiation field is not possible. For such applications a variety of dif-
ferent techniques have been used to follow the co-evolution of the
radiation–matter state. In optically thick environments, the radiation
field is well described by the diffusion approximation and its evolu-
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tion in radiation-hydrodynamical simulations can be incorporated
by using flux-limited diffusion methods (Levermore & Pomraning
1981). This numerical prescription is used, for example, in the
modelling of radiation-dominated accretion discs (e.g. Turner et al.
2003; Hirose, Krolik & Blaes 2009). In the opposite case of low
optical depth, the influence of the radiation field may be treated by
including a radiative cooling term (e.g. Townsend 2009; van Marle
& Keppens 2011), as is often done in studies of stellar winds (e.g.
Garcia-Segura, Mac Low & Langer 1996; Mellema & Lundqvist
2002). In the intermediate regimes between the two extremes, a
full radiation-hydrodynamical description of the radiation–matter
state is necessary, for example when accounting for convective mo-
tions in studies of stellar atmospheres (e.g. Stein & Nordlund 1998;
Asplund et al. 2000), shock breakouts in SNe (e.g. Blinnikov et al.
2000; Höflich & Schaefer 2009; Piro, Chang & Weinberg 2010) or
when studying interactions of stellar explosions with circumstellar
material (e.g. Fryer et al. 2010; Kasen 2010).

In this paper we present the numerical methods and the applica-
tion of a new approach to radiation hydrodynamics that is based on
Monte Carlo radiative transfer techniques. A similar strategy has
been pursued in the calculations presented in Kasen, Woosley &
Heger (2011). Monte Carlo methods have already shown tremen-
dous success in pure radiative transfer applications (e.g. Fleck &
Cummings 1971; Abbott & Lucy 1985; Mazzali & Lucy 1993;
Long & Knigge 2002; Carciofi & Bjorkman 2006; Kasen et al.
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2006; Harries 2011). Within this probabilistic approach, complex
radiation–matter interaction physics can be simulated and problems
with arbitrary geometries can be addressed. Here we aim to extend
the Monte Carlo method to radiation-hydrodynamical calculations
and explore its practicality for modern astrophysical applications.

The focus of this paper is to present the theoretical and numer-
ical foundations and to verify the operation of our Monte Carlo
radiation-hydrodynamical method. We begin with a brief overview
of the theoretical concepts that govern radiating flows in Section 2,
which is followed by an extensive description of the numerical
methods of our approach in Section 3. The physical accuracy and
the computational feasibility of the techniques presented here are
assessed in Section 4, in which the results of a series of test calcu-
lations are described. As a first application of the method in astro-
physical environments we report in Section 5 on our investigation of
SNe Ia ejecta. In particular, we study the influence of the radiation–
matter coupling on the ejecta structure and the resulting effects on
the bolometric light curve during the homologous expansion phase.
We summarize our results and conclude in Section 6.

2 T H E O R E T I C A L BAC K G RO U N D

To model environments in which a significant part of the total en-
ergy is stored in the radiation field, one must deal with the coupled
evolution of the matter state and the radiation field. The former
changes due to external forces, gradients of the thermodynamic
variables and the radiation pressure acting on the matter. Such ra-
diation pressure gradients are the consequence of anisotropies in
the radiation field whose temporal evolution is driven by its inter-
actions with the surrounding medium. Generally, these interactions
are strongly dependent on the state of matter, i.e. on its density, tem-
perature and composition. The theory of radiating fluids provides an
adequate self-consistent description of the dynamical behaviour of
the radiation-hydrodynamical state of the coupled radiation field–
matter system. In the following section, we will give a brief outline
of some important aspects of this theory. In-depth discussions can
be found in standard textbooks, e.g. Mihalas & Mihalas (1984).

To describe the energy and the momentum of radiating fluids,
the standard hydrodynamical equations expressing conservation of
momentum and energy are extended by including additional source
terms that account for the influence of the radiation field. In astro-
physical environments, the physical viscosity is typically insignif-
icant compared to the viscosity inherent to the numerical schemes
used to model fluid flows. Consequently, the ideal Euler equations
are commonly employed. Modified by the influence of the radiation
field, these take the form

ρ
D

Dt
u = f − ∇P + G, (1)

ρ
D

Dt
e = u · f − ∇ · (P u) + cG0. (2)

Mass conservation, expressed by the continuity equation

D

Dt
ρ + ρ(∇ · u) = 0, (3)

is not affected by the radiation field. Here, ρ, u, e and P denote the
fluid density, velocity, total energy and thermodynamic pressure,
respectively. Possible external forces are accounted for by the force
density f . The radiation field acts as an additional energy and
momentum source in the form of the radiation 4-force components
G0 and G (see below). Note that we have formulated the equations

in terms of substantial derivatives
D

Dt
= ∂

∂t
+ u · ∇, (4)

which capture changes in the comoving fluid frame.
The G terms essentially describe momentum and energy flows

caused by an imbalance of absorption and emission interac-
tions between the radiation field and its surrounding medium.
Quantitatively, these interactions are characterized by the opac-
ity, χ (x, t ; n, ν), and the emissivity, η(x, t ; n, ν), of the medium.
These material functions depend on the frequency (ν) and the prop-
agation direction (n) of the radiation and will in general vary with
time (t) and position (x), since the radiation–matter interactions
depend strongly on the fluid state. The radiation force components
can be specified in terms of these material functions and the specific
intensity, I (x, t ; n, ν):

G0 = 1

c

∫ ∞

0
dν

∫
d� [χ (x, t ; n, ν)I (x, t ; n, ν) − η(x, t ; n, ν],

(5)

Gi = 1

c

∫ ∞

0
dν

∫
d� ni [χ (x, t ; n, ν)I (x, t ; n, ν) − η(x, t ; n, ν)] .

(6)

These can be understood as the net absorbed or emitted energy and
momentum, respectively. The temporal evolution of the radiation
field itself is in turn driven by the interaction with the environment:(

1

c

∂

∂t
+ n · ∇

)
I (x, t ; n, ν)

= η(x, t ; n, ν) − χ (x, t ; n, ν)I (x, t ; n, ν). (7)

The combination of equations (1), (2), (3), (7) and an equation of
state, relating thermodynamic pressure with internal energy, pro-
vides the full set of radiation-hydrodynamical equations that de-
scribe a radiating fluid. In this formulation, equations (5) and (6)
describe how the energy and momentum transfer is obtained from
the temporal evolution of the radiation field. In the following, we
present in detail the numerical approach we developed to solve the
radiation-hydrodynamical problem formulated by this set of equa-
tions.

3 N U M E R I C A L M E T H O D S

To determine the state of a radiating fluid, equations (1), (2), (3),
(7) and the equation of state have to be solved simultaneously.
Key to our approach is the application of a simple operator-split
scheme (see e.g. LeVeque 2002, for a detailed description of the
operator-split technique). In this Godunov splitting framework, the
temporal evolution is determined progressively, accounting for
the pure hydrodynamical effects and the influence of the radiation
field independently and in sequence. Specifically, in each time step,
a new radiation-hydrodynamical state is found by first performing
a fluid dynamical calculation neglecting all radiative influences. For
this step we employ a finite-volume hydrodynamical scheme,
namely the piecewise parabolic method (PPM; Colella &
Woodward 1984). This is followed by a second step which only
accounts for the influence of the terms in the equations governing
the evolution of the radiation field and the fluid-dynamics terms
are neglected. For this part of the simulation, we carry out time-
dependent Monte Carlo radiative transfer calculations, which allow
us to evaluate the radiation terms and use them to update the hydro-
dynamical state.

The following subsections describe our scheme and the involved
computational methods. We begin with an outline of the hydrody-
namics solver in Section 3.1, followed by a detailed presentation of
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the Monte Carlo radiative transfer techniques in Sections 3.2–3.11.
The final step of updating the fluid state to account for the influence
of the radiation field is described in Section 3.12.

3.1 Hydrodynamical calculation

The hydrodynamical subproblem of the operator-split approach is
solved with the PPM of Colella & Woodward (1984). This higher
order Godunov scheme is based on reconstructing a continuous fluid
state from a discrete representation on a computational grid by a
series of parabolas. In the spirit of finite-volume approaches, Rie-
mann problems are defined at the cell interfaces by discontinuities in
the fluid properties, which arise from integrating the reconstructed
fluid state over the domains of dependence, i.e. the regions that
can influence the interfaces. The solutions to the Riemann prob-
lems determine the flux through the interfaces. By balancing the
resulting inflows and outflows in the grid cells, the temporal evo-
lution of the fluid state can be calculated for one time step. This
second-order reconstruction scheme provides higher accuracy over
the traditional constant-reconstruction method of Godunov (1959).
The detailed implementation of PPM in our radiation hydrodynam-
ics code follows Edelmann (2010). After determining the new fluid
state, a Monte Carlo simulation is started to address the evolution
of the radiation field as the second half of the splitting scheme.

3.2 Monte Carlo techniques

In our Monte Carlo approach the radiation field is discretized into
a large number of Monte Carlo quanta, hereafter referred to as
packets. Each of them carries a fraction of the radiation field en-
ergy and is propagated through the medium. The propagation path
is determined stochastically but in accordance with the transfer
equation (7). From the ensemble of packet trajectories, all relevant
radiation field quantities can be reconstructed.

With the increasing availability of computational resources,
Monte Carlo techniques have become a very popular and reward-
ing approach to radiative transfer problems. Among the numerous
applications of Monte Carlo radiative transfer techniques in astro-
physics are the calculation of mass-loss rates in hot star winds (see
e.g. Abbott & Lucy 1985; Lucy & Abbott 1993; Vink, de Koter &
Lamers 2000; Sundqvist, Puls & Feldmeier 2010), light curves and
spectra of SNe Ia (see e.g. Mazzali & Lucy 1993; Lucy 2005; Kasen
et al. 2006; Sim 2007; Kromer & Sim 2009), ionization structure
and synthetic spectra of photoionized nebulae (e.g. Ercolano et al.
2003), mass outflows in cataclysmic variables (e.g. Long & Knigge
2002; Noebauer et al. 2010) or active galactic nuclei (e.g. Sim 2005).
Compared with classical ray-tracing techniques, the Monte Carlo
approach has certain advantages. Most important, from a physical
viewpoint, is the ease with which complex scattering and absorp-
tion processes can be incorporated. Since all interactions with the
surrounding medium can be directly simulated during the propa-
gation of the Monte Carlo packets, even the most complex atomic
processes can be included in the radiative transfer calculation (see
e.g. Lucy 2002, 2003, 2005). These interactions are all simulated
locally in the comoving frame, making the Monte Carlo algorithm
entirely independent of the large-scale properties of the simulation
and readily applicable even to problems with arbitrarily complex
multidimensional geometries.

Apart from these physically motivated advantages, the Monte
Carlo method also brings computational benefits. As the propa-
gation of one packet is independent of the behaviour of all others,
Monte Carlo radiative transfer calculations can be easily parallelized

and scale very well to large numbers of computational cores. This
is of great significance since the efficient use of high-performance
computing facilities is an important consideration for the feasibility
of modelling complex astrophysical systems.

Of course, Monte Carlo radiative transfer methods also have
their drawbacks. The accuracy and computational efficiency of the
Monte Carlo approach are limited by the number of packets that
discretize the radiation field and by the number of physical interac-
tions they simulate. Consequently, whether Monte Carlo radiative
transfer methods are appropriate strongly depends on the specific
problem under consideration (e.g. Pincus & Evans 2009). For exam-
ple, in some applications, a detailed radiative transfer treatment is
not required and the dynamical behaviour of the radiation field can
be adequately addressed with approximate methods which perform
faster than the Monte Carlo approach (e.g. Kuiper et al. 2010). Inde-
pendently of the specific application, Monte Carlo methods always
introduce a certain level of statistical fluctuations in the simulations.
We shall return to the subject of minimizing the influence of this
Monte Carlo noise in Sections 3.10 and 3.11.

3.3 Discretization

As mentioned above, in the Monte Carlo approach the radiation
field is discretized into packets. In early uses of the Monte Carlo
machinery, e.g. in Avery & House (1968), the number of photons
described by a packet was held constant throughout the simulation.
However, we follow Abbott & Lucy (1985) and instead choose to
discretize into packets of constant radiative energy. At every instant
in the simulation, each packet represents a monochromatic parcel
of radiative energy – i.e. a number of identical photons, all with
a certain frequency ν. When packets interact with the fluid, both
the number of photons and the photon frequency associated with a
packet can change but the energy it carries in the local rest frame
of the fluid remains fixed. In addition, the energy packets are in-
divisible – i.e. processes may create or destroy packets but never
cause them to be split into multiple packets (see Lucy 2002, 2003,
2005). This approach is motivated by the fact that total energy is
conserved in interactions between the radiation field and its sur-
rounding medium, but the number of photons generally is not. The
indivisible energy-packet method has been shown to be extremely
powerful in solving radiative equilibrium problems owing to the
ease with which it can ensure energy conservation (see e.g. Lucy
1999). By extending the method to include a net energy exchange
between the radiation field and the matter, we continue to exploit
the efficiency of this approach together with the properties of PPM
to ensure global energy conservation in our simulations. The use
of indivisible packets also avoids computational difficulties arising
in cases where a fixed-photon-number approach would require that
packets are split (e.g. in modelling fluorescence or recombination
cascades, where a physical process excited by a single photon leads
to the re-emission of many). With the indivisible packet method,
these processes are simulated with a probabilistic approach such
that no packet splitting is required but that all the cascade channels
are correctly sampled when a sufficiently large number of Monte
Carlo packets are included (see Lucy 2002).

With this discretization scheme, the Monte Carlo packets are
naturally well suited to represent the mean intensity of the radia-
tion field and its temporal evolution. In addition, all derived radia-
tion field characteristics can be easily formulated and reconstructed
from Monte Carlo estimators, and fully frequency-dependent opac-
ities could be readily implemented. However, the radiative flux
is in general less accurately captured by the ensemble of energy
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packets. We will discuss the implication of this in more detail when
considering statistical noise and the accuracy of our approach in
Section 3.11.

3.4 Reference frames

An accurate and detailed description of the dynamical behaviour
of the radiation field requires that special relativistic effects are
considered. We have therefore designed our Monte Carlo radiative
transfer algorithm to account for at least all first-order special rela-
tivistic effects. In principle, there are no obstacles to extending the
method to higher order corrections.

For handling relativistic effects, we must clearly distinguish be-
tween two reference frames. We define the spatial and temporal dis-
cretization of the problem (i.e. our numerical grid) in the ‘lab’ (or
‘observer’) frame. The initialization and propagation of the Monte
Carlo packets are also performed in that frame. However, the natural
choice for the treatment of matter–radiation interactions is the local
rest frame of the fluid, which we will refer to as the ‘comoving’
frame. Henceforth, a subscript 0 will be used to identify quantities
that are defined in the local comoving frame.

3.5 Simplifications adopted

For the sake of clarity, in this section and below, we adopt some
simplifications that apply to our current implementation and the
test problems that we address in Sections 4 and 5. In particular, we
restrict ourselves to one-dimensional problems, e.g. plane-parallel
or spherically symmetric media. By arranging the problem set-up
such that the symmetry axis coincides with the coordinate z-axis
the radiation propagation direction can be specified by the scalar

μ = n · ez. (8)

In spherically symmetric geometries, μ is measured with respect to
the radial direction. As a consequence of the symmetry properties of
the problems we consider, all radiation-hydrodynamical quantities
only vary along one spatial coordinate. Thus, the components of the
radiation force in the other two orthogonal directions (G1 and G2)
vanish and will not be considered further.

In addition to the geometry restrictions, we treat radiative transfer
in a grey, i.e. frequency-independent, approximation. Scattering in-
teractions between the radiation field and the surrounding material
are assumed to be coherent and isotropic. We stress, however, that all
these simplifications are not necessary – the approach can be readily
generalized to multiple dimensions and frequency-dependent opac-
ities. Finally, we use an ideal gas equation of state to relate fluid
internal energy and thermodynamic pressure.

3.6 Packet initialization

At the beginning of a simulation, we need to generate an initial
population of Monte Carlo packets that describe the initial radiation
field. This generation process includes assigning each packet an
initial position, direction and frequency. All the steps involved in
this process have to accommodate the probabilistic nature of the
Monte Carlo machinery.

To initialize the population of Monte Carlo packets, an initial
condition for the radiation field has to be chosen. As an illustrative
example, we assume that the simulation is to be initialized in local
thermodynamic equilibrium (LTE). In this case, the radiation energy
density in the comoving frame, E0, follows the Stefan–Boltzmann

law:

E0 = aRT 4. (9)

To correctly initialize the Monte Carlo packets, the total energy is
first transformed into the lab frame and summed over the entire
computational domain:

Etot =
∑

i

γ 2

(
1 + 1

3
β2

)
aRT 4

i 
Vi. (10)

Here, β and γ denote the usual parameters of special relativity,

β = u

c
, (11)

γ = 1√
1 − β2

, (12)

and the index i runs over all grid cells. The total energy Etot is then
divided equally into a chosen number of Monte Carlo packets (all
packets are assigned the same initial lab-frame energy), which are
spread over the grid cells according to the local radiative energy
content. The initial position of a packet within a grid cell is chosen
randomly. In LTE, the radiation field is isotropic in the comoving
frame, i.e. it has no angular dependence. Due to angle aberration
effects, this isotropy is lost during the transformation into the lab
frame. Consequently, the assignment of the initial propagation di-
rection has to account for the angular dependence of the radiation
field in the lab frame. In the grey approximation and under the re-
striction to one-dimensional problems, the LTE lab-frame specific
intensity follows:

I (μ) = B(T )

γ 4(1 − βμ)4
, (13)

with B(T) denoting the frequency-integrated Planck function:

B(T ) = σR

π
T 4. (14)

This angular dependence can be translated into a probability density,

ρ(μ) = (1 − β2)3

2(1 + 1/3β2)

1

(1 − βμ)4
, (15)

which can be sampled to give the relativistically correct directional
distribution of the initial Monte Carlo packets. In the classical limit
(β → 0, γ → 1), the density simplifies to

ρ(μ) = 1

2
, (16)

which can be easily sampled by the random number experiment

μ = 2ξ − 1, (17)

where ξ denotes a random number drawn uniformly from the inter-
val [0, 1]. In the more general case, equation (15) must be sampled,
leading to a more complex expression for μ in terms of ξ , but the
same principle applies.

In general, each packet also has to be assigned a photon frequency
ensuring that the packets represent the correct spectrum of the radi-
ation field. In this work, however, this step can be skipped since we
currently adopt a grey approximation. A possible realization of the
more general sampling process can be found in Lucy (1999).

3.7 Sequence of Monte Carlo simulations

After their initialization at the beginning of the simulation, the
Monte Carlo packets are propagated through the medium. During
each time step, the packets are able to move (see Section 3.8), some
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Figure 1. Flow chart of the operator-split algorithm and a detailed outline
of the Monte Carlo radiative transfer step. During this process, the trajecto-
ries of all packets are determined and the radiation field characteristics are
calculated by the Monte Carlo estimators.

packets are destroyed and others are created (see Section 3.9). At the
end of each time step, the properties of the currently active packets
are stored so that these packets can be reactivated at the start of
the next time step, after the fluid properties have been updated (see
Section 3.12). A graphical outline of the program flow is shown in
Fig. 1.

3.8 Packet propagation

In the Monte Carlo simulation, the packets propagate with the speed
of light c through the medium. To simulate the dynamical evolution
of the radiation field, the packets undergo interactions with the sur-
rounding material as they propagate. In the Monte Carlo method,
the propagation and interactions are treated stochastically. In partic-
ular, the location of packet interactions are determined by random
number experiments – the trajectory of a propagating packet is ter-
minated by an interaction with the surrounding medium when it
covered a path-length

l = − ln ξ

χ
, (18)

which follows from sampling the extinction law

I = I0e−lχ . (19)

In addition to simulating physical interactions in this stochas-
tic manner, two additional events that stem from the spatial and
temporal discretization have to be taken into account. During the
propagation process, packets can cross grid cell boundaries or reach
the end of the current simulation time step. In the case of cell cross-
ings, the changing fluid properties have to be taken into account,
i.e. the interaction length l has to be recalculated. Since the Monte
Carlo packets propagate with the speed of light, they will at max-
imum travel a distance of d = c
t during a simulation cycle of
duration 
t. At this point the propagation of a packet is suspended,
and its properties are stored in order to resume the propagation at
the beginning of the next time step.

3.9 Interaction formalism

Since our Monte Carlo packets represent photon packets, their in-
teractions should model the physical interactions of photons with
the surrounding medium: scattering, absorption and emission pro-
cesses. When a packet experiences a physical interaction (i.e. once it
has propagated the path-length given by equation 18), we must first
determine the nature of the interaction. If we include both scattering
(σ ) and absorption (κ) contributions to the opacity

χ = σ + κ, (20)

the relative strength of these will determine the probability of the in-
teraction having been a scattering or absorption event. In particular,
we identify that a packet scatters if

ξ ≤ σ

σ + κ
(21)

is fulfilled. To treat a coherent scattering event, the packet is trans-
formed into the comoving frame:

ε0 = εγ (1 − βμ), (22)

where the packet energy is conserved and a new propagation di-
rection μ′

0 is drawn isotropically (cf. equation 17). Afterwards, the
packet properties are transformed back into the lab frame,

ε′ = ε0γ (1 + βμ′
0), (23)

μ′ = μ′
0 + β

1 + βμ′
0

, (24)

to resume the propagation. For all other outcomes of the experiment
(equation 21), an absorption event occurs, resulting in the destruc-
tion of the packet. Consequently, this packet stops its propagation
and is no longer considered in the remaining simulation process.

Destruction of packets by absorption interactions drains the en-
ergy content of the radiation field. However, radiation energy is
also created due to emission by the medium. In the case of thermal
emission, the radiative energy pool in a grid cell of volume 
V is
increased by


E = 4γ κσRT 4
V 
t (25)

during a time step of size 
t assuming constant temperature and
opacity. To represent this effect in the Monte Carlo calculation,
a number of new packets are created and launched during each
cycle whose total energy is consistent with this energy injection.
The initial packet properties (e.g. direction of propagation, which
we assume to be isotropic in the comoving frame) are assigned
by sampling appropriate probability distributions, in analogy to the
process of representing the initial radiation field at the onset of the
simulation (see Section 3.6). However, these emitted packets are
not all injected into the simulation at the start of a time step but at
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randomly determined times during the time step, thereby accounting
for the continuous energy injection by the thermal emission process.

In all interaction processes, momentum and/or energy are trans-
ferred between the radiation field and the surrounding material.
Through their interaction behaviour, the packets account directly
for the impact of the momentum and energy flows on the radiation
field. The complementing effect on the surrounding fluid material
is equally important (see equations 1 and 2). These flow terms can
be reconstructed from the Monte Carlo simulation with the help of
volume-based Monte Carlo estimators (see Section 3.10).

3.10 Monte Carlo estimators

The Monte Carlo packets were introduced to discretize the radi-
ation field and, during their propagation, simulate its interactions
with the medium. In principle, all properties of the radiation field
can be directly determined from the instantaneous properties of the
packets at any given time, e.g. from their instantaneous distribution
in real space, momentum space and frequency space at the end of
a time step. However, the accuracy with which radiation quanti-
ties can be reconstructed is limited by Monte Carlo noise, and it
is advantageous to consider how to extract maximum information
from the Monte Carlo simulation. Lucy (1999) showed that radi-
ation field quantities can be more accurately determined by using
volume-based Monte Carlo estimators rather than directly counting
properties of the packets. In this approach, the complete ensem-
ble of trajectories that packets traverse during a time step is used
to reconstruct the radiation field characteristics (see Lucy 1999,
2003, 2005). Thus, each packet contributes to the cell-averaged val-
ues of the radiation field characteristics according to the fraction
of the time that it spent in the cell. Compared to reconstruction
methods based on considering the final packet distribution at the
end of the propagation step, this cumulative approach significantly
reduces the Monte Carlo noise, which is in general the limiting
factor in the applicability of Monte Carlo methods. To reconstruct
the cell-averaged radiation field energy density, all packet trajec-
tory segments that cross the cell under consideration or lie within
it are taken into account. On each of these trajectory segments, the
packet contribution scales with its energy ε. Every contribution is
weighted according to the ratio of the time δti the packet spent on
the trajectory element to the full duration of the simulation time
step 
t. Replacing the propagation time with the path-length li =
cδti of the individual segments and summing up gives the estimator

E = 1


V c
t

∑
i

εli (26)

for the radiation field energy density. Here, the summation runs
over all trajectory elements in one cell, implying that a packet may
contribute several times to the estimator. Using the fundamental
relation between the radiation field energy density and the mean
intensity

J = c

4π
E, (27)

a Monte Carlo estimator for the latter can be formulated (see Lucy
1999, equation 12):

J = 1

4π
V 
t

∑
εl. (28)

By restricting the estimator sum to contributions by packets propa-
gating into a certain directional bin [μ, μ + 
μ],

I (μ)
μ = 1

2π
V 
t

∑
[μ,μ+
μ]

εl, (29)

the specific intensity can also be determined in a similar manner (see
equation 2 in Lucy 2005). With this expression, estimators for all
radiation field characteristics that depend on the specific intensity
or its moments can be easily formulated.

For radiation-hydrodynamical problems, the radiation force com-
ponents have to be reconstructed from the Monte Carlo simulation
to determine the energy and momentum flow between the fluid and
radiation field. The components of the radiation force can be in-
terpreted as the difference between absorbed and emitted radiation
energy and momentum. We clearly separate the contributions to the
radiation force terms caused by scattering interactions from the en-
ergy and the momentum transferred in pure absorption and emission
events. To identify the latter contribution, each packet trajectory is
considered to affect the cell-averaged absorbed energy, even if the
packet did not explicitly interact during the propagation cycle. Con-
ceptually, we are therefore counting all absorption events that could
have happened in the simulation (weighted by their probability of
occurring), rather than simply counting the events that did happen.
Thus, while propagating a path-length l, a packet contributes with


E = lκε


V
(30)

and with


p = μlκε

c
V
(31)

to the cell-averaged absorbed energy and momentum densities, re-
spectively. The complementing energy and momentum injection
due to thermal emission is determined analytically for each cell.
Accounting for the frame transformation into the lab frame, the
injection rates can be formulated as

Ė = 4γ κσRT 4, (32)

ṗ = 4

c
βγ κσRT 4. (33)

In addition to determining the contribution of pure absorption
and re-emission events to the energy and momentum transfer terms,
scattering interactions have to be incorporated. We consider scatter-
ing interactions formally as a combination of an absorption event,
followed immediately by the coherent and isotropic re-emission of a
Monte Carlo packet. This interpretation allows us to reconstruct the
scattering contribution analogously to equations (30) and (31). In
general, however, formulating an analytic expression to quantify the
re-emission part is non-trivial. This difficulty can be circumvented
by exploiting the fact that Monte Carlo packets are not destroyed in
scattering interactions. Thus, the packets can simulate both the ab-
sorption and re-emission parts of the scattering events at the same
time. By additionally assigning each packet a set of hypothetical
‘post-scatter’ properties, i.e. drawing a propagation direction μ′

0

that translates into an energy ε′ and a direction μ′ in the lab frame
according to the transformation rules (23) and (24), each packet tra-
jectory l contributes to cell-averaged energy and momentum transfer
according to


E = σ l


V
(εi − εf ), (34)


p = σ l

c
V
(μiεi − μfεf ). (35)

Here, the superscripts i and f denote the current packet properties
during the propagation and the formal post-scattering state, respec-
tively.
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Finally, volume-based Monte Carlo estimators for the radiative
force terms G0 and G3 are obtained by gathering all contributions
of scattering and pure absorption/emission events:

G0 = 1


V c
t

∑
l(χεi − σεf ) − 4

c
γ κσRT 4, (36)

G3 = 1


V c
t

∑
l(χμiεi − σμfεf ) − 4

c
βγ κσRT 4. (37)

Once transformed into the local comoving frame, these estimators
take the expected form for the corresponding radiation field char-
acteristics measured in this frame. In particular, the estimators (36)
and (37) become

G0
0 = 1


V0c
t0

∑
κ0l0ε0 − 4π

c
κ0B(T ), (38)

G3
0 = 1


V0c
t0

∑
χ0l0μ0ε0, (39)

after transformation into the local comoving frame1 using

G0
0 = γ (G0 − βG3), (40)

G3
0 = γ (G3 − βG0). (41)

These comoving frame estimators for G0
0 and G3

0 reproduce exactly
the radiative energy and momentum sources in this frame, which
can be formulated as

G0
0 = 4π

c
κ0(J0 − B(T )), (42)

G3
0 = χ0

c
F0. (43)

To obtain the same transformation behaviour for the Monte Carlo
estimators in spherically symmetric geometries, the direction scalar
has to be averaged over the trajectory segment.

3.11 Monte Carlo noise

Due to the stochastic nature of the Monte Carlo technique, all as-
sociated quantities are subject to statistical fluctuations, limiting
the accuracy of the radiative transfer calculation. The obvious ap-
proach to reduce the Monte Carlo noise by increasing the number
of active packets is limited by computational efficiency consider-
ations. In this context, the concept of volume-based Monte Carlo
estimators, as described in the previous section, is vital since it al-
lows us to extract the maximum amount of information from the
propagation behaviour of a given number of radiation packets. The
reduction of the statistical fluctuations in the reconstructed quanti-
ties is significant but still limited. In particular, the noise level in
the energy–momentum transfer and thus the accuracy with which
the radiation-hydrodynamical coupling is captured varies with the
state of the radiation field, due to our discretization scheme and to
the form of the radiation force components in the comoving frame.
Reconstructing the energy transfer from a difference of two terms
as in equation (42) yields accurate results if the contributions are
clearly separable. However, if the mean intensity deviates from the
equilibrium configuration [i.e. B(T)] only on the level of the Monte
Carlo noise, then the resulting heating/cooling term will be ob-
scured by statistical fluctuations. Similarly, the momentum transfer

1 For detailed derivations of the transformation laws for the radiation field
characteristics, see e.g. Mihalas & Mihalas (1984).

is only accurately captured if the radiative flux is well resolved (cf.
equation 43). To achieve high accuracy in the reconstruction via the
estimator formalism, the packet contributions to the estimators have
to be much smaller than the reconstructed quantity. This is the case
for the mean intensity, since our discretization scheme (indivisible
energy packets) is most naturally suited to well represent this radi-
ation field characteristic. In the reconstruction of the radiative flux,
however, the packet contributions to the estimator are weighted with
the propagation direction. As a consequence, the radiative flux is
only well resolved in our approach if F0 � 4πJ0, but obscured by
Monte Carlo noise for F0 � 4πJ0, i.e. for nearly isotropic radiation
field configurations.

In summary, our Monte Carlo approach is ideal for describing
the mean intensity and our estimators will accurately capture the
radiation forces when significant deviations from LTE or from
isotropy are present. However, in cases where the radiation field
is nearly isotropic or close to the LTE configuration, the radiation-
hydrodynamical effects, as described in the radiation force terms,
may be subject to significant statistical fluctuations. In order to
achieve a further suppression of the noise in this regime, we have
found it useful to smooth the reconstructed radiation field quanti-
ties over neighbouring grid cells. This additional noise reduction
method will be of importance when addressing SN Ia ejecta (see
Section 5.3).

3.12 Dynamical influence of the radiation field

With the numerical methods described in the previous sections, the
temporal evolution of the radiation field is determined in a Monte
Carlo step as part of the operator-split approach to radiation hydro-
dynamics. After solving the fluid dynamical evolution using PPM
and simulating the radiative transfer in the Monte Carlo simulation,
the calculation of the new radiation-hydrodynamical state ends with
the inclusion of the radiative influence on the dynamics specified
by G0 and G3. These terms are reconstructed from the Monte Carlo
simulation using the estimators defined in equations (36) and (37),
and describe the energy and momentum transfer on to the surround-
ing material. Consequently the fluid energy and momentum are
updated according to

ρ
∂

∂t
u = G3, (44)

ρ
∂

∂t
e = cG0, (45)

as the second and last step of the Godunov splitting approach. This
concludes the calculation of one time step and a new simulation
cycle is entered by stepping through the segments of the splitting
scheme again, starting by solving the fluid dynamics for the next
time step (see Fig. 1).

4 TESTI NG

The methods described in the previous section have been imple-
mented into a numerical code, hereafter referred to as MCRH. Cur-
rently, the program is able to calculate the temporal evolution of
radiating fluids in an Eulerian or Lagrangian reference frame, as-
suming grey radiative transfer and one-dimensional geometries (see
Section 3.5). Before using the code to model radiative flows in astro-
physical environments or implementing more complex geometries
and opacities, the computational feasibility and physical accuracy
of our approach and its implementation has to be verified. PPM is

C© 2012 The Authors, MNRAS 425, 1430–1444
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Monte Carlo radiation hydrodynamics 1437

commonly used to simulate fluid flows in astrophysical applications,
e.g. in SN Ia (e.g. Röpke & Hillebrandt 2005) and SN II explosions
(e.g. Janka & Mueller 1996) or in relativistic jets (e.g. Marti et al.
1997) and has already been tested extensively. Consequently, the
main focus of this discussion lies in testing the radiative transfer
and the radiation–matter coupling components of our approach.

We start this verification process by first testing the propaga-
tion behaviour of the Monte Carlo packets. In the next stage, the
interaction mechanism is checked by examining the equilibration
behaviour in a series of toy simulations. Finally, we turn towards
radiative shocks, the standard test problem for radiation hydro-
dynamics. In calculating subcritical and supercritical shocks, the
workings of both the radiation–matter coupling and our complete
radiation hydrodynamics method can be verified.

4.1 Random walk

As presented in Section 3.8, the Monte Carlo packets undergo a
multitude of physical interactions and numerical events on their
propagation trajectories. Since this behaviour is essential for accu-
rately simulating the temporal evolution of the radiation field, our
first test calculation aims to verify the packet propagation process.
For this purpose, we follow Harries (2011) and consider a purely
scattering medium in the optically thick limit. The entire radiation
field energy is initially concentrated in the central cell of the com-
putational domain (which has length L), mimicking a δ function. In
this problem, the initial radiation peak disperses according to the
diffusion equation

dE

dt
= −D

d2E

dz2
, (46)

yielding

E(z, t) = E(t0)
L√

4πDt
exp

(
− z2

4Dt

)
. (47)

With interactions restricted to scattering only, the diffusion coeffi-
cient is given by

D = c

3σ
. (48)

In a Monte Carlo simulation of this problem, the packets are ex-
pected to perform a random walk due to the large scattering optical
depth. Consequently, the temporal evolution of the radiative energy
constitutes a suitable test to verify the correct propagation behaviour
of the Monte Carlo packets.

Following Harries (2011), the test simulation is performed in a
planar symmetric box of length L = 1 cm that is divided into 101
equally spaced cells. In the central cell, an initial radiation field
energy density of E = 1010 erg cm−3 is deposited and discretized
by 105 Monte Carlo packets. Fig. 2 shows the temporal evolution
of the radiative energy density in our Monte Carlo simulation. The
results are compared with the theoretically expected behaviour set
by equation (47). The excellent agreement between the simulation
and the theoretical predictions demonstrates the accurate operation
of the basic Monte Carlo processes driving the packet propagation.

4.2 Equilibration behaviour

Equally important as the correct propagation behaviour is the accu-
rate calculation of the momentum and energy transfer between the
radiation field and the surrounding material. We verify this part of
our scheme by examining the relaxation behaviour towards equi-
librium in a series of toy simulations. Following Turner & Stone

Figure 2. Comparison between the theoretically expected diffusion be-
haviour (solid lines) of a centrally peaked radiation field in an optically
thick, pure scattering medium and the corresponding Monte Carlo simula-
tion (circles). The lower panel shows the absolute difference between the
theoretically expected (Eth) and simulated (Esim) energy densities, 
ER =
Eth − Esim.

(2001) and Harries (2011), we consider a radiating fluid initially
far from equilibrium. In these particular tests, only absorption and
thermal emission events occur in the medium and all influences of
the thermodynamic and radiation pressure can be neglected. There-
fore, the dynamical behaviour of the radiating fluid can be expressed
in terms of the radiation field energy density ER and the internal
energy density EG, which follow (see equation 23 in Harries 2011)

∂

∂t
EG = cκER − 4κσRT 4

G(EG) (49)

and

∂

∂t
ER = − ∂

∂t
EG. (50)

As a first test, we follow the relaxation behaviour of the radiation
field and the internal gas energy in a one-dimensional plane-parallel
box of length L = 4 cm, which is discretized on four cells.2 For this,
we adopt the parameters ρ = 10−7 g cm−3, ER(0) = 1012 erg cm−3,
κ = 4 × 10−8 cm−1, u = 0 and the adiabatic index γ = 5/3. For
these parameters, the equilibrium value for the internal energy of
the fluid is E

eq
G = 4.2 × 107 erg cm−3. We perform the relaxation

test twice, first with the initial internal energy of the fluid set to
EG(0) = 1010 erg cm−3 and then with EG(0) = 102 erg cm−3. To
predict the evolution of the systems, only equation (49) has to be
considered, since the radiation field energy can be assumed to be
constant in this configuration. The theoretical internal energy evolu-
tion obtained from numerical integration of equation (49) for both
set-ups is compared with the results of the corresponding Monte
Carlo simulations in Fig. 3. As illustrated in detail in the lower
panel, the agreement is excellent. Only a systematic deviation per-
sists, which is caused by the finite time resolution in the simulation.
In the operator-split approach, the gas temperature is assumed to
be constant during the radiation transfer cycle. Thus, the emissivity
and in turn the amount of emitted energy is slightly overestimated.

2 The finite-volume hydrodynamical solver based on PPM requires a do-
main size of at least four cells due to the parabolic reconstruction and the
discontinuity detection (Colella & Woodward 1984).
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Figure 3. Results of the equilibration simulations described in Section 4.2.
The blue symbols show the results of the Monte Carlo simulation with
an initial internal energy density of EG(0) = 102 erg cm−3 for a series of
selected snapshots. The corresponding results obtained for the initial energy
density of EG(0) = 1010 erg cm−3 are shown with red circles. The temporal
evolution of the internal energy density as predicted by equation (49) for
both cases is indicated by the solid black lines. The initial radiation field
energy density is set to ER(0) = 1012 erg cm−3 in both simulations. In
the lower panel, the relative difference between the theoretically expected
(Eth) and the simulated (Esim) evolution of the internal energy density,
(Eth − Esim)/Eth, is shown for both calculations.

In a second test calculation, the initial radiation field en-
ergy content was set to zero and the internal energy density to
EG(0) = 108 erg cm−3. The remaining simulation parameters are
adopted from the previous equilibration set-up. Over time, the fluid
will drive the radiation field towards equilibrium by the emission
of thermal photons. To theoretically predict the evolution of the
radiation–matter state, the coupled differential equations (50) and
(49) can be solved simultaneously by numerical integration. In con-
trast to the previous simulations, neither the radiation temperature
nor the gas temperature can be assumed to be constant. In Fig. 4,
the results of our Monte Carlo simulation are tested against the the-
oretically predicted evolution. Again, only systematic deviations,
which are caused by the finite duration of the simulation time steps,
persist on the per cent level.

The agreement between our test calculations and the theoreti-
cally predicted behaviour for the relaxation towards equilibrium is
excellent, as illustrated in Figs 3 and 4, indicating that our numer-
ical methods describing the matter–radiation interactions and their
implementation are accurate and work correctly.

4.3 Radiative shocks

The calculations presented above probed the propagation of the ra-
diation field, the basic interaction machinery and the determination
of heating and cooling terms, neglecting any effects of radiation
and thermodynamic pressure and the fluid motion. In our final,
most challenging test, we verify that the interaction processes and
our approach as a whole yield the correct radiation-hydrodynamical
coupling. For this purpose we examine subcritical and supercritical
radiative shocks. The seminal works describing this type of shocks

Figure 4. Equilibration calculation with an initially absent radiation field
and a starting internal energy density of EG = 108 erg cm−3. For a series of
selected time snapshots, the theoretical evolution of this system, obtained by
numerically integrating equations (50) and (49), is displayed as black lines.
The corresponding results form our Monte Carlo simulation are depicted as
blue and red circles for the radiative and internal energy density, respectively.
As in Fig. 3, the relative difference between the theoretically expected and
the simulated energy evolution is shown in the lower panel.

analytically date back to Zel’dovich (1957a) and Raizer (1957a)3

and to Marshak (1958). The results of the two former studies are
summarized in detail by Zel’dovich & Raizer (1967).

Radiative shocks exhibit a structure and dynamical behaviour
that is very different from their purely hydrodynamical counter-
parts, due to the presence of a radiative precursor. The pre-shock
material is heated by the flow of radiative energy through the shock
front. Depending on the strength of the shock and in turn on the
amount of heating of the pre-shock material, two classes of radiative
shocks can be distinguished. Following the discussion of Mihalas &
Mihalas (1984), we denote the gas temperature behind the shock
front with T2 and immediately in front of it with T−. In the case
of T− being much lower than T2, due to the small amount of pre-
heating, a subcritical shock is encountered. With increasing shock
strength, equivalent to the shock front moving faster, the radiative
precursor heats the material more and more until it reaches the crit-
ical configuration of T− = T2. At this point, a further increase in
the shock strength only results in a deeper penetration of the radi-
ation precursor. Consequently, T− never surpasses the temperature
behind the front in such supercritical shocks.

The structure of radiative shocks has already been determined
in various numerical studies, including works by Heaslet &
Baldwin (1963) and Sincell, Gehmeyr & Mihalas (1999). Follow-
ing the proposal of Ensman (1994), these shocks have been used
as a common test problem to verify the accuracy of numerical ap-
proaches to radiation hydrodynamics. In particular, the realization
of the matter–radiation coupling in the ZEUS code has been tested
extensively using radiative shocks (Turner & Stone 2001; Hayes &
Norman 2003; Hayes et al. 2006). For comparison to our Monte
Carlo radiation-hydrodynamical simulations, we will use results
calculated with the latest version of this code, ZEUS-MP2 (Hayes
et al. 2006).

3 The corresponding translations to English can be found in Zel’dovich
(1957b) and Raizer (1957b).
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Figure 5. Temperature profiles of a subcritical radiative shock calculated
with our Monte Carlo radiation hydrodynamics (red lines) program and the
ZEUS-MP2 code (blue lines). The gas temperature is depicted with solid lines,
while the radiation temperature is shown as dashed and dotted lines. Profiles
are shown for t = 5.4 × 103, 1.7 × 104, 2.8 × 104 and 3.8 × 104 s and are
plotted in the rest frame of the unshocked material. Note the Monte Carlo
noise in the radiation temperature ahead of the shock. Here, the radiation
field is only represented by a small number of packets.

For the calculation of subcritical and supercritical radiative
shocks, we choose the properties of the radiating fluid according
to Hayes et al. (2006) which in turn were motivated by the simula-
tions performed by Ensman (1994). In particular, a one-dimensional
plane-parallel domain of length 7 × 1010 cm and a fluid with initial
density of 7.78 × 10−8 g cm−3 are considered. The temperature is
set to 85 K at the inner, reflecting boundary and decreased linearly
to 10 K at the outer open boundary of the domain. We adopt this
profile to facilitate comparison with the calculations performed by
Ensman (1994), in which a temperature gradient had to be imposed
for reasons of numerical stability. Throughout the domain, a uniform
grey absorption opacity of 3.1 × 10−10 cm−1 is chosen, resulting in
a photon mean free path that is roughly 20 times shorter than the
extent of the computational box. The shock is created by driving the
material into the reflecting inner boundary with a bulk velocity of
−6 km s−1 for the subcritical case and with −20 km s−1 for the su-
percritical calculation. We determine the evolution of the resulting
radiative shocks with our Monte Carlo program and as a reference
with the ZEUS-MP2 code. Figs 5 and 6 show comparisons between
the gas and radiation temperature structures calculated with both
codes for the subcritical and supercritical shocks, respectively. To
be compatible with Ensman (1994) we display the shock structure
in the rest-frame coordinates of the unshocked material (Hayes &
Norman 2003; Hayes et al. 2006).

As shown in Figs 5 and 6, the radiative shocks calculated with our
MCRH code exhibit the expected overall structure and characteristic
features. In the subcritical case, a weak radiative precursor leads to
mild heating of the pre-shock material. The effect of the precursor is
much more prominent in the second case of the supercritical shock.
Here, the sharp shock front is washed out by the strong heating
of the upstream material by the radiative flux penetrating the pre-
shock domain. As predicted for supercritical shocks, the material
immediately ahead of the shock is heated significantly, reaching
the same temperature as behind the front. Overall, our numerical
results agree very well with the ZEUS-MP2 calculations, especially

Figure 6. Analogous to Fig. 5, but now displaying the corresponding calcu-
lation of the supercritical shock. The results from the Monte Carlo simulation
are again shown in red and the ones obtained with ZEUS-MP2 in blue. Gas
and radiation temperature are indicated with solid and dashed/dotted lines,
respectively, and shown with respect to the unshocked material. Tempera-
ture profiles are presented for t = 8.6 × 102, 4.0 × 103, 7.5 × 103 and
1.3 × 104 s.

with respect to the location of the shock and the gas temperature
profiles. However, our Monte Carlo simulations predict a stronger
and deeper penetration of the unshocked material by the radiation
field. This results in increased heating of the material and differences
in the radiation temperature profiles with respect to the ZEUS-MP2
results. These differences are most likely caused by the simpli-
fications implemented in the ZEUS-MP2 code, which treats the
radiative flux in the diffusion approximation, augmented by the
introduction of a flux limiter (see equation 11 in Hayes et al. 2006).
The influence of this simplified scheme on the structure of radiative
shocks has already been studied by Ensman (1994). Calculating the
evolution of a supercritical shock on the one hand by relying on
the diffusion approximation and on the other hand by solving the
radiation-hydrodynamical equations without any simplifications di-
rectly revealed the same behaviour of the radiative precursor (see
fig. 15 in Ensman 1994). Despite its statistical nature, the Monte
Carlo approach provides a direct solution to the transfer equation
without introducing any physical simplifications. For these reasons
we believe that the differences are due to the employed methods
and not a shortcoming of our approach to radiation hydrodynamics.

The test calculations presented in this section have been carried
out without using the smoothing capability of our program (see
Section 3.11). In the simulations determining the structure of radia-
tive shocks, the noise suppression of the volume-based estimator
approach was sufficient to accurately resolve the heating effects in
the precursor regime with large deviations from LTE. For example,
in our simulation of the subcritical shock a maximum of 6 × 105

packets were active at a time, simulating the evolution of the radi-
ation field. However, as anticipated in Sections 3.3 and 3.11, in the
regions around the shock front, where the radiation field is close to
LTE, the radiation force components are subject to non-negligible
statistical fluctuations. However, this noise component is effectively
suppressed on the characteristic hydrodynamical time-scales, due to
a high packet recycling rate. Typically, the entire packet ensemble is
repopulated multiple times during a radiative transfer step, causing
a smooth temperature profile even in the near-LTE regions.
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With the calculations presented in this section, the different indi-
vidual mechanisms of our method have been successfully tested and
the correct radiation-hydrodynamical behaviour of the approach as
a whole has been demonstrated without applying any smoothing. A
first application to an astrophysical environment is presented in the
next section.

5 A PPLICATION

Our framework has been specifically designed to address radiation-
hydrodynamical problems in astrophysical systems with large out-
flows such as SN explosions. To verify our approach for problems
of astrophysical interest, we consider the homologous expansion
phase of SN Ia ejecta.

In the expelled material of SNe Ia, radioactive decays emit γ -rays,
which interact strongly with the ejecta. This coupling affects the ex-
pansion dynamics, leading to changes in the density and velocity
profile that could influence the observable display. The question of
whether this radiation-hydrodynamical effect is important for the-
oretical determinations of SN light curves and spectra has already
been addressed by Pinto & Eastman (2000) using a series of analyt-
ical estimates. This study concluded that the radiative influence on
the expansion of the ejecta is marginal and does not cause signifi-
cant changes in the light curve. These findings were verified in the
study of Woosley et al. (2007), which involved detailed radiation-
hydrodynamical calculations with the STELLA code (Blinnikov et al.
2006). Changes on a 10 per cent level in the density stratification of
the ejecta were identified when including the radiation–matter cou-
pling. Here, we readdress this problem for the purpose of testing our
radiation-hydrodynamical approach in astrophysical environments.

5.1 Code extensions

For the application to SN ejecta, our program is extended to account
for the energy release accompanying radioactive decays. The de-
termination of the energy injection into the radiation field involves
tracking the abundances of 56Ni and its daughter nucleus 56Co. Both
radio nuclides are proton rich and decay through electron-capture
reactions4 down to stable 56Fe. These decay reactions occur on
the characteristic e-folding time-scales of tNi = 8.80 d for 56Ni →
56Co and tCo = 113.7 d for 56Co → 56Fe and are accompanied by
a cascade of γ -ray emissions. The γ -photons interact with the sur-
rounding material through Compton scattering, production of e+e−

pairs and the photoelectric effect. As a result of these interaction
mechanisms, the γ -radiation heats the surrounding material and the
energy is reradiated as quasi-thermal emission. Assuming instant
thermalization we simplify the γ -interaction processes by relying
only on one effective absorptive opacity (Sutherland & Wheeler
1984; Swartz, Sutherland & Harkness 1995). We model the net ef-
fect of injecting energy into the thermal radiation field by a grey
Monte Carlo transport step. For each simulation time step, the num-
ber of radioactive decays is determined and an adequate number
of Monte Carlo packets representing the emitted γ -energy is cre-
ated. For this purpose we follow Lucy (2005) and integrate over
the γ -spectrum of the decay reactions (see table 1 of Ambwani &
Sutherland 1988), obtaining a total energy release in the form of
γ -radiation of ENi = 1.728 MeV and ECo = 3.566 MeV per decaying

4 Note that the 56Co decay proceeds via positron emission in about 20 per
cent of cases. As in Lucy (2005), we assume instantaneous local annihilation
of the positrons yielding a pair of γ -rays. We neglect the kinetic energy of
the positrons.

56Ni nucleus and 56Co nucleus, respectively. The γ -packets propa-
gate in the same manner as the Monte Carlo packets describing the
thermal radiation field, but the interactions with the ejecta material
are described by different opacities. Each γ -packet that undergoes
an absorption is automatically transformed into a thermal radiation
packet, which is then treated according to the methods laid out in
Section 3.8.

5.2 Toy simulations

To verify the correct operation and the validity of the adopted sim-
plified treatment of the radioactive energy injection, we present the
results of a simple toy simulation following Lucy (2005). In his
study, Lucy developed a Monte Carlo radiative transfer method to
determine spectra and light curves in SNe Ia. In the verification
process, Lucy performed a grey radiative transfer simulation for a
simplified ejecta structure under the assumption of homologous ex-
pansion. A comparison of the bolometric light curve determined in
the Monte Carlo simulation with the results of a moments-equation
solution technique (Castor 1972) yielded excellent agreement. Us-
ing the results of Lucy (2005) as a reference, we test the imple-
mentation of the radioactive decay mechanism and the γ -transport
module in our Monte Carlo radiation hydrodynamics program. In
addition, this simulation provides yet another test for the accurate
operation of the Monte Carlo radiative transfer procedures. Partic-
ularly, the determination of the emergent light curve is sensitive to
the correct implementation of first-order relativistic effects, such as
angle aberration and Doppler shifts, due to the high ejecta veloci-
ties in this application. The parameters for this test calculations, as
described in Lucy (2005), are adopted from a model SN presented
in Pinto & Eastman (2000). We consider an SN with a total ejecta
mass of M = 1.39 M
. The ejecta are in homologous expansion
with a maximum velocity of umax = 104 km s−1 and a uniform den-
sity of ρ = 3.79 × 10−11 g cm−3. In the ejecta, the radioactive 56Ni
is assumed to be strongly concentrated in the core, resulting in a
56Ni distribution of f Ni(Mr) = 1 for Mr < 0.5 M
 that linearly
drops to zero at Mr = 0.75 M
. Here, Mr denotes the mass con-
tained within a sphere of radius r. Throughout the entire material, a
constant interaction opacity for the thermal radiation field of χ /ρ =
0.1 cm2 g−1 is used. Following Lucy (2005), we assume radiative
equilibrium which allows us to simplify the interaction mechanism
to only include scattering events. The grey absorption cross-section
for γ -radiation of κγ /ρ = 0.03 cm2 g−1 is adopted from Sutherland
& Wheeler (1984) and Ambwani & Sutherland (1988).

We start the Monte Carlo simulation at t = 3.0 d. At much ear-
lier times, the high optical thickness of the ejecta material prevents
an efficient use of the Monte Carlo radiative transfer methods. We
bridge the time between the explosion and the start of the simu-
lation by an analytic homologous expansion calculation. Here, we
assume that the entire energy released in the radioactive decay re-
actions of 56Ni and 56Co immediately thermalizes, raising the gas
temperature to the values shown in Fig. 7 at the time of the on-
set of the Monte Carlo simulation. This figure also illustrates the
distribution of radioactive 56Ni after the initial homologous expan-
sion phase. Since the calculations of Lucy (2005) did not include
any radiation-hydrodynamical coupling, this interaction mechanism
was also switched off in our test simulation. Consequently, the ra-
diative transfer is not affecting the homologous expansion of the
ejecta material.

Fig. 8 presents the bolometric light curve determined in our
Monte Carlo simulation and shows the comparison with the results
of Lucy (2005). The excellent agreement between our simulation
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Figure 7. Initial conditions for our Monte Carlo simulation of the Lucy
(2005) model SN ejecta at t = 3.0 d. The time before the onset of the
simulation was bridged by an analytic homologous expansion calculation,
resulting in the temperature profile shown as a blue solid line. The dashed
red line describes the distribution of 56Ni.

Figure 8. Comparison between the bolometric light curve calculated with
our Monte Carlo program (red) and the results of the Lucy (2005) calculation
(blue). In addition, the rate at which the γ -radiation deposits its energy in
the thermal radiation field is illustrated for both calculations (magenta and
cyan). As a reference, the actual energy release in the decay reactions in the
form of γ -radiation is also shown as the green line.

and the calculations performed by Lucy (2005) demonstrates the op-
eration of the energy injection process together with the γ -transport
scheme and once more verifies the accurate performance of our
Monte Carlo approach as a whole.

5.3 Application to the W7 model

With the SN-specific extensions, our program is well suited to ex-
amine the influence of the radiation-hydrodynamical coupling on
the observed bolometric light curve. For this purpose we consider
an SN that is described by the well-known W7 model, first pre-
sented by Nomoto, Thielemann & Yokoi (1984) and extended by
larger nuclear networks in the studies of Thielemann, Nomoto &
Yokoi (1986) and Iwamoto et al. (1999). This parametrized one-
dimensional SN Ia explosion model reproduces important observ-

Figure 9. The temperature profile (green line) of the W7 model after dis-
cretization of the original data set on to a spherical grid of 2000 cells and
performing an homologous expansion calculation up to t = 3 d after explo-
sion. In addition, the mass fraction of the radioactive 56Ni is illustrated with
the dashed blue line. It illustrates the characteristic concentration of 56Ni
in the extended shell in the intermediate ejecta regions of the W7 model
(3 × 108 < u < 109 cm s−1). All elements with Z ≥ 20 are denoted as IGEs
whose combined distribution is shown as the red dashed line.

ables and has thus become a standard reference in the literature.
Nomoto et al. (1984) determined the evolution of the fluid dynam-
ical state of the ejecta material until t = 20 s after the ignition
of the thermonuclear explosion. Characteristic for the W7 model is
the concentration of the bulk of 56Ni in an extended shell, spanning
the velocity region from 3 × 108 to 109 cm s−1, instead of being
concentrated in the core. To accurately resolve this 56Ni shell, we
discretize the original W7 profile to a one-dimensional spherical
grid with 2000 equidistant cells. In addition, we slightly adjust the
velocity profile of the original model to match exactly the homology
condition, allowing us to make a clear and unperturbed identifica-
tion of the influence of the radiation–matter coupling on the ejecta
dynamics. As in our calculation for the Lucy (2005) toy model,
we start the Monte Carlo radiation hydrodynamics calculation at
t = 3 d assuming perfect homologous expansion behaviour of the
ejecta up to this point. The resulting temperature profile after this
pure homologous phase at t = 3 d is shown in Fig. 9 together with
the distribution of 56Ni. The density stratification at this time is
visualized in Fig. 10. In analogy to the model simulation presented
in Section 5.2, we follow Lucy (2005) and assume that the ejecta
material is in radiative equilibrium. Consequently, we can simplify
the interaction mechanism between the thermal radiation field and
the surrounding material by a pure scattering description. The grey
scattering opacity is not constant throughout the ejecta radius, but
follows the distribution of heavy elements, which constitute the
dominant opacity source for the thermal radiation photons. In par-
ticular, we follow Mazzali & Podsiadlowski (2006) and Sim (2007)
in setting the scattering opacity to

χ/ρ = N (0.9XIGE + 0.1), (51)

where the iron group elements (IGE) include all elements with Z ≥
20 (the combined distribution of these elements can be read off from
Fig. 9). The scaling factor N is chosen to ensure a mean interaction
cross-section of 〈χ /ρ〉 = 0.1 cm2 g−1. Fig. 10 shows the effect of
the heavy elements on the interaction cross-section throughout the
ejecta material. All interactions of the γ -radiation are described by
a single constant absorption opacity of κγ /ρ = 0.03 cm2 g−1 (see
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Figure 10. The density profile of the W7 model at the start of our Monte
Carlo simulation at t = 3 d (blue, left-hand scale) and the scattering cross-
section per gram (red, right-hand scale) obtained from equation (51).

Figure 11. Temporal evolution of the mean intensity of the radiation field
in the radiation-hydrodynamical simulation of the W7 model. Initially, the
radiation field is confined to the 56Ni shell, but with decreasing optical depth
it penetrates the inner and outer regions of the ejecta.

Section 5.2). With these parameters, the temporal evolution of the
hydrodynamical state of the W7 ejecta is calculated up to t = 45 d.
Fig. 11 illustrates the behaviour of the radiation field, quantified by
the mean intensity J, during this period of time. At the beginning,
the radiation field is concentrated at the location of the 56Ni shell,
where initially most of the γ -interactions take place due to the high
optical depth of the ejecta. As time progresses, the ejecta become
increasingly transparent to the radiation field, which begins to pen-
etrate the inner regions and propagates to the outer edge of the SN
ejecta. Here, the Monte Carlo packets escape and are recorded to
determine the bolometric light curve. Due to the radiation pressure,
the initially confined radiation field leaves imprints on the velocity
and density profiles of the ejecta material as it propagates inwards
and outwards. The changes in the ejecta structure are indicated in
Fig. 12, which shows the velocity and density profiles with respect
to a purely homologous expansion that would occur in the absence
of the radiation-hydrodynamical coupling. The radiation pressure
accelerates the ejecta motion in the outer parts of the 56Ni shell and
decelerates the expansion in the inner regions. Both effects dilute the

Figure 12. Illustration of the influence of the radiation field on the evolution
of the fluid state. In the upper panel, the velocity profile in the ejecta is
displayed with respect to a purely homologous expansion for a variety of
temporal snapshots (see labels in figure). In the lower panel, the density
stratification is displayed in a corresponding fashion. The decelerating and
accelerating effects of the radiation pressure are clearly visible in the velocity
profiles, as is the resulting dilution of the 56Ni shell in the lower panel.

56Ni shell and pile-up material at the edges of this region. The influ-
ence of the radiation pressure is strongest in the early phases of the
expansion, where the high optical depth causes a strong coupling of
the radiation field to the surrounding material and stalls as the ejecta
become more and more transparent. In total, the radiation pressure
induces deviations from the purely homologous density profile of
the order of 10 per cent, which are compatible with the findings of
the previous study by Woosley et al. (2007). The structural changes
in the density stratification are, however, not prominent enough to
significantly alter the shape of the emergent bolometric light curve.
Neglecting the radiation-hydrodynamical coupling and assuming a
purely homologous expansion yields nearly the same bolometric
light curve as a detailed calculation. A comparison of both simula-
tions is shown in Fig. 13. Even if the bolometric light curve remains
unaffected by changes in the fluid state, colour light curves may be
affected since the radiation pressure changes the velocity of ejecta
regions in which different elements are concentrated. However, this
effect cannot be studied with the current grey implementation of our
approach to radiation hydrodynamics and remains to be readdressed
with a chromatic version of the code.

All simulations presented in this section required about 3.5 × 1013

floating point operations. In these calculations the initial radiation
field at t = 3 d was discretized by 106 Monte Carlo packets. Due to
the energy release in the decay reactions and the outflow of radiation
packets at the outer edge of the ejecta, the number of active packets
varied greatly during the simulation, but a maximum of 2.43 × 106

packets were used to represent the radiation field at any time.
Despite the large number of packets, the Monte Carlo estimators

for the radiation force are subject to a significant level of statistical
noise. In this particular case, the entire energy–momentum trans-
fer is determined by the radiative flux in the comoving frame (cf.
equations 42 and 43). As pointed out in Sections 3.3 and 3.11, our
discretization approach is not ideally suited to accurately capture
this quantity in regions where the radiation field is nearly isotropic,
such as the inner parts of the 56Ni shell. However, despite being
subject to a considerable level of Monte Carlo noise, the radiative
flux captures the expected effect of the radiation field inflating the
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Figure 13. Comparison between bolometric light curves calculated for the
W7 model with the radiation-hydrodynamical coupling (blue line) and with
a pure radiative transfer calculation and homologous expansion of the ejecta
material (red line). The emergent γ light curve is also displayed for both
simulations (green and cyan, respectively). No significant influence of the
radiation–matter coupling or the resulting changes in the ejecta structure
can be identified in the bolometric light curves.

Figure 14. Illustration of the influence of smoothing on the density evolu-
tion of the ejecta. The density profiles at t = 14.3 d are displayed with respect
to a purely homologous expansion (cf. Fig. 12). We show the results of two
simulations: one that employs smoothing over the neighbouring 30 cells (red
line) and one with very mild smoothing over three cells (blue line). As this
comparison shows, the smoothing approach removes the strong stochastic
cell-to-cell fluctuations, but retains the overall physical variation.

56Ni bubble (see Fig. 14). Thus, we employed a smoothing kernel
(cf. Section 3.11) in our simulations, averaging over 30 neighbour-
ing cells and thereby avoiding difficulties in the hydrodynamical
solver. In the absence of this smoothing, cell-to-cell fluctuations in
the fluid state lead to convergence problems in the Riemann solver
that could not be averted by increasing the number of active packets
on computationally feasible scales. Using the smoothing capability
gives a significant reduction of the cell-to-cell fluctuations without
damaging the physical variations in the quantities, as Fig. 14 illus-
trates. Here, the density stratification at t = 14.3 d is shown both
for a simulation that includes smoothing over 30 neighbouring cells

and for one with very mild smoothing over three cells only, proving
that the approach preserves the physical signal.

6 D I SCUSSI ON

In this paper we presented a Monte Carlo approach to radiation-
hydrodynamical problems in astrophysical environments. By com-
bining Monte Carlo radiative transfer methods that rely on the indi-
visible packet formalism (Abbott & Lucy 1985) with the finite-
volume hydrodynamical technique PPM (Colella & Woodward
1984), we have aimed to retain the benefits of the Monte Carlo
machinery for the modelling of complex interaction physics and
arbitrary geometries. Here, our main focus lay on the development
and presentation of the necessary numerical tools and on demon-
strating the operation of this method, its physical accuracy and its
computational feasibility. By using volume-based Monte Carlo es-
timators (Lucy 1999, 2002, 2003) in the reconstruction of radiation
field characteristics, the maximum amount of information is ex-
tracted from the propagation behaviour of Monte Carlo packets and
the Monte Carlo noise is minimized.

A series of toy calculations has been performed to test the op-
eration of the main components of our Monte Carlo radiation-
hydrodynamical method. In particular, the simulation of radiative
shocks verified the accuracy of our approach to a standard radiation-
hydrodynamical test. As expected, due to the nature of the Monte
Carlo method, calculations in optically thick environments are time-
consuming but feasible and accurate, as the radiative shock exam-
ples showed. In general, all calculations were completed within
hours to a day on a single desktop processing core. However, due to
the very efficient scaling behaviour of the Monte Carlo algorithm to
large numbers of processor cores, a future parallel implementation
of the method provides the scope for significant decreases in the run
time.

The application to SN Ia ejecta successfully demonstrated the
operation of our method to an astrophysical problem for which this
method was primarily developed. In this exercise, the influence of
the radiation–matter coupling on the density stratification during
the near-homologous expansion phase of the ejecta has been inves-
tigated. The results we obtained are in agreement with the previous
study by Woosley et al. (2007) who used the radiation hydrody-
namics code STELLA (Blinnikov et al. 2006). The induced changes in
the ejecta structure, however, were confirmed to have no significant
influence on the bolometric light curve, as predicted by Pinto &
Eastman (2000).

Despite the agreement of our results with previous studies, the
SN Ia application also illustrated some difficulties of our approach.
Our discretization scheme into packets of radiative energy allows us
to easily construct all relevant radiation field characteristics and can
be generalized to a fully frequency-dependent transport treatment in
a straightforward manner. However, in regions where the radiation
field is close to LTE or to isotropy, the radiation force compo-
nents are subject to considerable statistical fluctuations due to this
discretization choice. Here, we suppressed this noise component
by applying a smoothing kernel. Although beyond the scope of this
work, in the future further reduction of the statistical noise should be
explored by incorporating implicit Monte Carlo techniques (Fleck
& Cummings 1971) or a Monte Carlo radiative transfer approach
that is based on the difference formulation (Brooks et al. 2005;
Szöke & Brooks 2005). For such schemes, it will be important to
consider how all the physical processes necessary to adequately
address particular astrophysical applications can be implemented.
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As the main aim of this work was to establish the methods and
the numerical framework of the Monte Carlo radiation hydrody-
namics approach, all calculations were performed with a simplified
implementation of the method. In particular, we restricted our tests
to one-dimensional geometries, and the radiative transfer was per-
formed in a grey approximation with a very simple opacity prescrip-
tion. However, we stress that these simplifications were made only
to reduce the complexity and the computational effort of the test
simulations. They do not affect the applicability and operation of
the Monte Carlo radiation-hydrodynamical approach itself. In the
future, we aim to introduce more sophisticated opacity prescriptions
and make the transition from grey transport to a fully frequency-
dependent radiative transfer scheme. This will add a further level
of sophistication to the method, but will not impact the operation
of the radiation–matter coupling in our approach. The tools to real-
ize the frequency-dependent transfer have already been developed
and are provided, for example, in the framework of the macro-atom
formalism by Lucy (2002). In addition to improving the physical
accuracy of the radiative transfer, our long-term efforts will be di-
rected towards a generalized implementation for multidimensional
problems. With this generalization our radiation-hydrodynamical
method will include all major capabilities that have already made
the Monte Carlo technique a very successful and rewarding ap-
proach for pure radiation transport applications.
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