
Validation of Streaming XML Documents
with Abstract State Machines

Klaus-Dieter Schewe
Information Science Research Centre
Palmerston North, New Zealand

kdschewe@acm.org

Bernhard Thalheim
Institute of Computer Science
University of Kiel, Germany

thalheim@is.informatik.uni-kiel.de

Qing Wang
Information Science Research Centre
Palmerston North, New Zealand

wang0qing@gmail.com

ABSTRACT
The exact validation of streaming XML documents can be realised
by using visibly push-down automata (VPA) that are defined by Ex-
tended Document Type Definitions (EDTD). It is straightforward to
represent such an automaton as an Abstract State Machine (ASM).
However, creating a whole VPA is not an efficient validation ap-
proach. In this paper it is shown, how the VPA construction can be
avoided by using a refined ASM that only requires knowledge of
the EDTD. In a second step this approach is extended to approx-
imate validation of streaming XML documents taking at most k
updates to the document into consideration.

Categories and Subject Descriptors
E.m [Data]: Miscellaneous; H.2 [Database Management]: XML

General Terms
theory, algorithms

Keywords
XML, Validation, Abstract State Machines

1. INTRODUCTION
The eXtensible Markup Language (XML) has become a stan-

dard for the data exchange on the world-wide web, and XQuery
has become the XML querying standard. Most current XQuery im-
plementations require that all XML data reside in memory in one
form or another before they start processing the data. This is un-
acceptable for large XML documents. Typical XQuery processors
such as Xalan, Qizz, and Saxon thus fail to handle very large XML
documents. Some others, such as Galax take advantage of the query
structure by storing in memory only those parts that are needed by
the query.
The Document Object Model (DOM) [7, 8] is a platform- and

language-neutral API that provides a standard set of interfaces for
manipulating an XML document. Scripts can dynamically access
and update the content, structure, and style of an XML document.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2008 Linz, Austria
Copyright 2008 ACM 978-1-60558-349-5/08/11 ...$5.00.

DOM is tree-based and requires that the entire document is repre-
sented in memory while processing it. Unfortunately, there are no
standard ways to support namespaces in the DOM, nor are there
standard ways to create empty DOM documents. The DOM speci-
fication does not define how namespaces are supported. Thus, some
DOM implementations have defined methods for retrieving various
information about the namespace used by a given node.
An alternative approach to the tree-based DOM is provided by

the Simple API for XML (SAX) [5, 6, 8, 13] is a non-W3C stan-
dard API for streaming document processing. The event-based API
reports parsing events directly to the application through callbacks.
It typically does not build an internal tree, but handlers deal with
the different events. This approach results in simpler parsing and
processing of XML documents. It does not keep XML documents
and their structure in the memory. Therefore SAX makes it pos-
sible to process very large XML documents without exceeding the
capacity of memory available for processing.
Event-based techniques such as SAX that do not require the ma-

terialisation of all data in memory have influenced the development
of theoretical tree transducer models for parsers such as visibly
pushdown automata [9].
Extended Document Type Definitions (EDTD), introduced by

Papakonstantinou and Vianu [10] provide a general schema formal-
ism based on special context-free grammars that generalises other
schema languages such as DTDs and XML Schema, the major ex-
tension to DTDs being the introduction of some form of typing.
Kumar et al. [9] have shown that the tree languages specified by
EDTDs are exactly the visibly pushdown languages (VPL), i.e.
those that can be recognised by a specialised class of push-down
automata, the visibly pushdown automata (VPA). That is, in order
to decide if a given XML document adheres to a specified EDTD,
the word representing the XML document must be accepted by the
derived non-deterministic or deterministic VPA. In particular, this
turns out to be extremely useful for validating streaming XML doc-
uments [11, 9], where the document is validated, while it is read.
General properties of VPLs such as equivalence of deterministic
and non-deterministic VPAs, closure under intersection and union,
etc. have been investigated by Alur and Madhusudan [1].
This processing by finite state machines, transducers, or VPA

does an excellent job as long as no predicates or complex queries
are required. However, these parsers are statically constructed in
advance based on the XSchema, DTDs or EDTDs. As XQuery is
a functional language and XQuery expressions can appear at any
place in a query, a recursive compositional translation of the query
is required, but the approaches based on finite state machines re-
quire a holistic view of an XPath expression before the automaton
is constructed.
In this paper we want to show how the problem of validating

iiWAS 2008 Proceedings of iiWAS2008

147

streaming XML documents can be approached by using Abstract
State Machines (ASM) [3]. This is justified by the claim that dy-
namic construction of the parser based on a pattern specification of
the rule that may parse a sub-expression is the simplest and most ef-
fective way of parsing, analysing and processing sets of documents
and queries. The rule pattern used for the generation of concrete
parsing rules are very flexible and therefore support queries beyond
monadic second-order formula.
In a first straightforward approach we model the VPA that is

used for the exact validation of streaming XML documents with
a given EDTD by an ASM. This corresponds to creating a “ground
model” according to the ASM methodology introduced by Börger
[2]. However, first creating a rather big VPA out of a given EDTD
and then using this VPA for the validation task is not efficient.
Therefore, we refine the ASM by an ASM that does not use the
VPA at all, but works directly on the structure defined by the EDTD
and thus avoids the VPA construction step.
In a second step we generalise this approach to approximate val-

idation of streaming XML documents, i.e. accepting documents
that differ from the given EDTD by at most k edit operations – the
case k = 0 captures the exact validation problem as a special case.
Thomo et al. [12] showed that in case insertions, deletions and up-
dates of pairs of opening and closing tags are counted as individual
edit operations the approximate validation problem can be solved
by using the product of the VPA used for exact validation and a vis-
ibly pushdown transducer (VPT) with 2k + 1 states that captures
the count of edit operations1. We show that the switch from the
exact to the approximate validation problem for streaming XML
documents gives rise to another ASM refinement.
With these ASM refinements it does not matter, whether we first

switch from a specification exploiting VPAs to one avoiding the
VPA use and then take up to k edit operations into account or ap-
ply refinements the other way round. In this sense the problem of
validating streaming XML documents shows characteristics of hor-
izontal and vertical refinement same as the Java/JVM refinements
[4]. That is, we can regard the approximate validation problem
as one that is composed of the exact validation problem (the case
k = 0), and the generalisation by means of a simple VPT. Then
refining the corresponding ASMs and eliminating the direct refer-
ences to VPAs and VPTs amounts to a refinement that has at its
core a refinement of the component dealing with the exact valida-
tion problem.

2. EXTENDED DOCUMENT TYPE
DEFINITIONS

Document Type Definitions (DTD) provide the first and simplest
form of adding schema information to XML documents. Abstract-
ing from specific syntax of opening and closing tags and blurring
the dinstinction between subelements and attributes we can define a
DTD as follows, called labelled ordered tree object type definition
in [10].

DEFINITION 1. A document type definition (DTD) consists of
an alphabet Σ, a root r ∈ Σ and a mapping � : Σ → P(Σ∗)
assigning to each a ∈ Σ a regular language over Σ.

EXAMPLE 1. The following (adapted from [10]) denotes a DTD
with Σ = {root, dealer, used_cars, new_cars, ad,model, year} and
root ‘root’:

1Thomo et al. [12] also provided a solution for the case of counting
insertions, deletions and updates of tag pairs with the same name
as only one edit operation, which only requires a different VPT.

root: dealer dealer: used_cars new_cars used_cars: ad∗

new_cars: ad∗ ad: model year?

The assigned languages are

�(root) = �(dealer)

�(dealer) = dealer �(used_cars) �(new_cars)

�(used_cars) = used_cars �(ad)∗

�(ad) = ad �(model) (�(year) ∪ {ε})
�(new_cars) = new_cars �(ad)∗

�(model) = {model} and

�(year) = {year}
This corresponds to the (real) DTD

〈!DOCTYPE dealer [
〈!ELEMENT dealer (used_cars new_cars)〉
〈!ELEMENT used_cars (ad∗)〉
〈!ELEMENT new_cars (ad∗)〉
〈!ELEMENT ad ((model year)|(model))〉
〈!ELEMENT model PCDATA〉
〈!ELEMENT year PCDATA〉

]〉
While such DTDs provide some schema information, they can-

not express all desirable properties of XML documents. E.g., the
DTD in Example 1 would not allow us to request that the ‘year’
tag must be present for and only for used cars. This could only
be avoided by having two different tags such as ‘ad_used’ and
‘ad_new’. Extended DTDs as introduced in [10] (as specialised
labelled ordered tree object type definition) take care of this prob-
lem.

DEFINITION 2. An Extended Document Type Definition (EDTD)
consists of a DTD (Σ′, r, �) and a mapping μ : Σ′ → Σ with an-
other alphabet Σ.

We can use the elements in Σ′ to fine-tune the desired structure
of XML document adhering to a given EDTD, while μ(a) defines
the actual tag that is to be used. E.g., in our example above we
could use ‘ad_used’ and ‘ad_new’ as elements of Σ′ with both be-
ing mapped by μ to ‘ad’ in Σ – all other elements of Σ′ would be
mapped to themselves.
We adopt the notational convention to write ab for element in Σ′

with μ(ab) = a ∈ Σ. The superscript b of ab is then also called the
type of the element. If μ−1(a) contains only one element, we omit
the superscript and assume that μ maps a to itself.

EXAMPLE 2. The following (adapted from [10]) denotes an
EDTDwithΣ = {root, dealer, used_cars, new_cars, ad,model, year}:

root: dealer dealer: used_cars new_cars
used_cars: (adu)∗ new_cars: (adn)∗

adu: model year adn: model

In an XML document adhering to this EDTD we would indeed
have ‘model’ and ‘year’ for each used car, but only ‘model’ for new
cars.

3. VISIBLY PUSHDOWN AUTOMATA
Kumar et al. [9] proved that the tree languages specified by

EDTDs are exactly the visibly pushdown languages (VPL), i.e.
those that can be recognised by a specialised class of push-down
automata, the visibly pushdown automata (VPA). Following [12]
we ignore internal actions, as these would just specify the kind of
strings associated with leaf elements or attributes. This leads to the
following simplified definition of a VPA.

Proceedings of iiWAS2008 iiWAS 2008

148

DEFINITION 3. A visibly pushdown automaton (VPA) consists
of a finite set Q of states, an start state q0 ∈ Q, a set of final states
F ⊆ Q, an (input) alphabel Σ that is partitioned into call symbols
in Σc and return symbols in Σr with a bijection¯ : Σc → Σr ,
a stack alphabet Γ containing a special (bottom of stack) symbol
⊥ ∈ Γ, and a transition relation τ = τc ∪ τr ∪ τε with τc ⊆
Q × Σc × Q × Γ, τr ⊆ Q × Σr × Γ × Q, and τε ⊆ Q × Q.

Intuitively speaking, a transition (q1, a, q2, γ) ∈ τc means that
if the automaton is in state q1 and reads the call symbol a, then it
changes the state to q2 and pushes γ onto the stack. A transition
(q1, ā, γ, q2) ∈ τr means that if the automaton in state q1 reads the
return symbol ā ∈ Σr and the symbol γ is on top of the stack, then
γ will be popped off the stack and the automaton moves to state q2.
A transition (q1, q2) ∈ τε just means that in state q1 the automaton
may read nothing, leave the stack unchanged and switch to state q2.
More formally, a VPA induces a transition relation T on configu-

rationsQ×Σ∗×Γ∗. A start configuration has the form (q0, w,⊥),
and a final configuration has the form (qf , ε,⊥)with qf ∈ F . Each
transition in τ induces a set of transitions in T .
A transition (q1, a, q2, γ) ∈ τc gives rise to configuration pairs

((q1, aw, v), (q2, w, γv)), a transition (q1, ā, γ, q2) ∈ τr gives rise
to ((q1, āw, γv), (q2, w, v)), and a transition (q1, q2) ∈ τε gives
rise to ((q1, w, v), (q2, w, v)) (with w ∈ Σ∗ and v ∈ Γ∗). Then
a successful run is a sequence of configurations σ0, . . . , σf with a
start configuration σ0, a final configuration σf , and (σi−1, σi) ∈ T
for all i = 1, . . . , f .
Using VPAs for validating streaming XML documents that are

to adhere to a given EDTD, a call transition corresponds to reading
an opening tag, for which a corresponding symbol is pushed onto
the stack, while a return transition would read the matching closing
tag and remove the corresponding symbol from the stack.

EXAMPLE 3. The following VPA (illustrated in Figure 1) can
be used to recognise XML documents that adhere to the EDTD in
Example 2:

Q = {q0, q1, . . . , q14}
Σc = {dealer, used_cars, new_cars, ad,model, year}
Σr = {ā | a ∈ Σc}
Γ = {⊥} ∪ {d, u, au, m, y, n, an}

with start state q0, final states F = {q14}, and the following
transitions:

τc = {(q0, dealer, q1, d), (q1, used_cars, q2, u), (q2, ad, q3, a
u),

(q3,model, q4, m), (q5, year, q6, y), (q8, new_cars, q9, n),

(q9, ad, q10, a
n), (q10,model, q11, m)}

τr = {(q4,model, m, q5), (q6, year, y, q7), (q7, ad, a
u, q2),

(q2, used_cars, u, q8), (q11,model, m, q12), (q12, ad, a
n, q9),

(q9, new_cars, n, q13), (q13, dealer, d, q14)}

4. VALIDATING STREAMING XML
DOCUMENTS

Let us now address the exact validation of streaming XML doc-
uments using Abstract State Machines. The straightforward idea is
to specify an ASM that models a validating (deterministic or non-
deterministic) VPA. In this case we only need four 0-ary functions,
i.e. variables in the signature of the ASM:

tag(0) monitored
parse(0), state(0), stack(0) controlled

We can assume that tag always contains the next input symbol or
the end of input symbol, say ⊥. Once the ASM reads this symbol,
tag will be updated to the next input symbol. The variable parse
is used for the result of the validation. It is set to 1, if the XML
document adheres to the EDTD, and to 0 otherwise. The variables
state and stack contain the values of the current state and the content
of the stack, i.e. a list of symbols. Furthermore, assume that rules
pop and push(x) for popping values from and pushing them onto
the stack, respectively, are defined elsewhere. Then we obtain the
following simple main rule for a validating ASM:

main = (state := q0 ‖ stack := ⊥ ‖ parse := 0) ; check
The check rule then has to read the next input symbol and de-

pending on the state and the stack either terminate with an error
or continue checking until there is no more input symbol. As we
may have to deal with a non-deterministic VPA we must also pro-
vide a choice of a case number – for deterministic VPAs this is not
needed. Thus, we obtain the following general form for the check
rule:

check =
read_next(tag) ;
if tag
= ⊥
then choose k ∈ N do

case . . .
case k = i and state = qi and tag = ai

then (push(γi) ‖ state := q′i) ; check endcase
case . . .
case k = j and state = qj and tag = aj

and top(stack) = γj

then (pop ‖ state := q′j) ; check endcase
case . . .
enddo

else parse := 1
endif

Here the two highlighted cases k = i and k = j correspond to
transitions in Σc and Σr , respectively. E.g., the i’th case for the
VPA in Example 3 could be

case k = 3 and state = q2 and tag = ‘ad’
then (push(au) ‖ state := q3) ; check

endcase

This approach to specifying the validating VPA by an ASM is
straightforward, the only advantage being that there is no need to
switch from a non-deterministic to a deterministic VPA. In order to
obtain a more suitable ASM specification we refine the ASM that
we obtained from the VPA by first making the concepts of state
and stack more explicit. Both together merely represent where in
the parsing of an XML tree we are actually located, which can be
as well represented explicitly by using relations for elements and
siblings. More precisely, let the ASM signature contain functions

sibling(3) static and element(3) controlled

Then element(n, t, i) = ⊥ means that there is no element with
name n, type t and identifier i in the EDTD, while element(n, t, i) =
k with k ∈ {0, 1, 2} means that there is an element with name n,
type t and identifier i in the EDTD, which is inactive, active, or one
of its children is active, respectively. Once we receive an opening
tag it will become active and remain so as long as its children are
processed, and become inactive after receiving the matching clos-
ing tag. Furthermore, sibling(i1, i2, i) := 1 means that an element
with identifier i1 may be the left neighbour of an element with iden-
tifier i2, both under the parent element with identifier i. The fact

iiWAS 2008 Proceedings of iiWAS2008

149

dealer,d

ad,an

used_cars,u

dealer,d year,yad,au

model,m

new_cars,n

model,m

ad,an model,m

new_cars,n

year,y

model,m

ad,au

used_cars,u
q
0

q
1

q
2

q
7

q
6

q
3

q
4

q
5

q
8

q
9

q
10

q
11

q
12

q
13

q
14

Figure 1: A VPA for validating streaming XML documents

that there is no left or right neighbour will be modelled by letting
i1 = ⊥ or i2 = ⊥, respectively.
As auxiliary controlled functions we further need depth(0), pre-

vious(1) with depth taking the actual depth in the XML tree as
value, while previous(d) will be set to the identifier of the last child
on depth d that has been processed.

EXAMPLE 4. For our EDTD in Example 2 we initialise the
functions as previous(d) = ⊥ for all d, depth = 0, and the values
for element and sibling are defined by tables:

element
name type id state
root ⊥ 0 1
dealer ⊥ 1 0

used_cars ⊥ 2 0
new_cars ⊥ 3 0
ad u 4 0
ad n 5 0

model ⊥ 6 0
year ⊥ 7 0

sibling
younger older parent

⊥ 1 0
⊥ 2 1
2 3 1
⊥ 4 2
4 4 2
⊥ 5 3
5 5 3
⊥ 6 4
6 7 4
⊥ 6 5
1 ⊥ 0
3 ⊥ 1
4 ⊥ 2
5 ⊥ 3
7 ⊥ 4
6 ⊥ 5

Similar as before the main ASM rule then takes the form main =
(initialise ‖ parse := 0) ; check, so we can concentrate on the check
rule, which can be defined as follows:

check =
read_next(tag) ;
if tag
= ⊥
then if ∃n, t1, i1, i2, t2 with element(n,t1,i1) = 1 ∧

element(tag,t2,i2)
= ⊥ ∧
sibling(previous(depth),i2,i1) = 1

then (element(n,t1,i1) := 2 ‖ element(tag,t2,i2) := 1 ‖
previous(depth) := i2) ; depth := depth + 1 ; check

elsif ∃n, t1, i1, n2, i2, t2 with element(n1,t1,i1) = 1 ∧
element(n2,t2,i2) = 2 ∧ tag = n̄1

then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖
depth := depth - 1) ;

previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥
endif)) ; check

else if element(root,⊥,0)=1
then parse := 1
endif

endif

Note that this ASM specification captures any EDTD, the dif-
ference being each time only the values for the functions sibling
and element. However, while this ASM makes the notion of state
and stack explicit – both used for characterisation of the position
within the ordered XML tree – it does not appear to look much
simpler than the ASM specification that was based on the recog-
nising VPA. In order to simplify the ASM specification we apply
a further refinement step by instantiating the ASM specification.
That is, we exploit the fact that our EDTD is finite, so the tables
for element and sibling will be finite. By substituting all possible
cases for the value of ‘tag’ in the check rule we blow up the size of
the ASM specification, but at the same time manage to get rid of
element and sibling. Furthermore, we eliminate the use of identi-
fiers, as tag name and type will be sufficient. Thus, we only require
a unary controlled function ‘state’, initialised with state(root) = 1.

EXAMPLE 5. For the EDTD in Example 2 and tag = dealer we
obtain the simplified case

case tag = dealer ∧ previous(0) = ⊥ ∧ state(root) = 1
then (state(root) := 2 ‖ state(dealer) := 1 ‖

previous(0) := dealer ‖ depth := 1) ; check
Similarly, for tag = model we obtain the case

Proceedings of iiWAS2008 iiWAS 2008

150

case tag = model ∧ state(model) = 1 ∧ state(adu) = 2
then (state(model) := 0 ‖ state(adu) := 1 ‖

previous(3) := model ‖ depth := 3) ; check

The resulting ASM covers the various cases resulting from the
EDTD, but avoids the creation of the VPA. Furthermore, the EDTD
is not explicitly stored anymore.

5. APPROXIMATE VALIDATION OF
STREAMING XML DOCUMENTS

The approximate validation of streaming XML documents works
in principle in the same way as the exact validation. The difference
is that we permit up to k edit operations, which can be the change
of a tag name, the omission of a tag, or the insertion of an additional
tag. As shown by Thomo et al. [12] the approximate solution (in
case all changes to pairs of opening/closing tags are counted as one
edit operation each) can be achieved by a VPA that is the product of
the VPA used for the exact validation problem and a visibly push-
down transducer (VPT) with 2k+1 states. The VPT just increments
the state count by one for every change of tag. So we need also up
to k additional call symbols that can be used as new or replacement
symbols and additional stack symbols indicating insertion, deletion
and update of tags. We omit the details of the VPT and the product
construction (see [12]), but instead illustrate the resulting VPA for
the EDTD in Example 2.

EXAMPLE 6. The following VPA can be used to recognise
XML documents that adhere to the EDTD in Example 2 up to k
edit operations (for simplicity let us assume that insertions and re-
placements of tags always used new tags):

Q = {qi,j | 0 ≤ i ≤ 14, 0 ≤ j ≤ 2k}
Σc = {dealer, used_cars, new_cars, ad,model, year}

∪ {newi | 1 ≤ i ≤ k}
Σr = {ā | a ∈ Σc}
Γ = {⊥} ∪ {d, u, au, m, y, n, an} ∪ {ιi | 1 ≤ i ≤ k}

∪ {δx | x ∈ {d, u, au, m, y, n, an}}
∪ {σx,j | x ∈ {d, u, au, m, y, n, an}, 1 ≤ j ≤ k}

with start state q0,0, final states F = {q14,2j | 0 ≤ j ≤ k}. The
following transitions (with 0 ≤ j ≤ 2k) are those from Example
3 capturing the processing of tags without edit – note that the only
change is the replacement of state qi by qi,j :

τc ⊇ {(q0,j , dealer, q1,j , d), (q1,j , used_cars, q2,j , u),

(q2,j , ad, q3,j , a
u), (q3,j ,model, q4,j , m),

(q5,j , year, q6,j , y), (q8,j , new_cars, q9,j , n),

(q9,j , ad, q10,j , a
n), (q10,j ,model, q11,j , m)}

τr ⊇ {(q4,j ,model, m, q5,j), (q6,j , year, y, q7,j),

(q7,j , ad, a
u, q2,j), (q2,j , used_cars, u, q8,j),

(q11,j ,model, m, q12,j), (q12,j , ad, a
n, q9,j),

(q9,j , new_cars, n, q13,j), (q13,j , dealer, m, q14,j)}

Similarly, we obtain transitions for the deletion of tags, i.e. in-
stead of the tag x expected as specified by the EDTD we read ε,
but nevertheless treat this as if x were read, and use δx as the cor-

responding stack symbol:

τc ⊇ {(q0,j , ε, q1,j+1, δd), (q1,j , ε, q2,j+1, δu),

(q2,j , ε, q3,j+1, δau), (q3,j , ε, q4,j+1, δm),

(q5,j , ε, q6,j+1, δy), (q8,j , ε, q9,j+1, δn),

(q9,j , ε, q10,j+1, δan), (q10,j , ε, q11,j+1, δm)}
τr ⊇ {(q4,j , ε, δm, q5,j+1), (q6,j , ε, δy, q7,j+1),

(q7,j , ε, δau , q2,j+1), (q2,j , ε, δu, q8,j+1),

(q11,j , ε, δm, q12,j+1), (q12,j , ε, δan , q9,j+1),

(q9,j , ε, δn, q13,j+1), (q13,j , ε, δd, q14,j+1)}
For insertions of tags we simply allow to read an additional new

symbol, i.e. we obtain transitions

τc ⊇ {(qi,j , newh, qi,j+1, ιh) | 0 ≤ i ≤ 14,

1 ≤ h ≤ k, 0 ≤ j ≤ 2k}
τr ⊇ {(qi,j , newh, ιh, qi,j+1) | 0 ≤ i ≤ 14,

1 ≤ h ≤ k, 0 ≤ j ≤ 2k}
Finally, for replacements we obtain transitions similar to the case

of deletions, but reading a new symbol newh instead of the one
expected according to the definition of the EDTD. In this case we
use σx,h as the stack symbol:

τc ⊇ {(q0,j , newh, q1,j+1, σd,h), (q1,j , newh, q2,j+1, σu,h),

(q2,j , newh, q3,j+1, σdau,h), (q3,j , newh, q4,j+1, σm,h),

(q5,j , newh, q6,j+1, σy,h), (q8,j , newh, q9,j+1, σn,h),

(q9,j , newh, q10,j+1, σan,h), (q10,j , newh, q11,j+1, σm,h)}
τr ⊇ {(q4,j , newh, σm,h, q5,j+1), (q6,j , newh, σy,h, q7,j+1),

(q7,j , newh, σau,h, q2,j+1), (q2,j , newh, σu,h, q8,j+1),

(q11,j , newh, σm,h, q12,j+1), (q12,j , newh, σan,h, q9,j+1),

(q9,j , newh, σn,h, q13,j+1), (q13,j , newh, σd,h, q14,j+1)}

As for the exact validation of streaming XML documents it is
straightforward to specify the VPA by means of an ASM. Each
transition gives rise to a case as before. We omit the details. Let us
instead refine the ASM dealing with the exact validation of stream-
ing XML documents in general to one that permits at most k edit
operations. This also arises as refinement of the ASM specification
based on the VPA for approximate XML document validation by
making again the state and stack explicit. In doing so, we change
the definition of the check rule to

check = choose x ∈ {0, i, d, u} do check’(x) enddo

letting the values 0, i, d, u capture the normal case and the cases
of insertion, delete and update, respectively. We then need two
more functions in the ASM signature

change(3) controlled count(0) controlled

Initially, count will be set to 0, while change is completely un-
defined. Later, change(n, t, n′) = � will indicate that the tag name
n with type t has been changed to n′ – the value ⊥ for n and n′

covering insertions and deletions, respectively – and � gives a count
for this change.
Let us now look at the four cases in the new check rule. Obvi-

ously, check’(0) is specified in the same way, as check was speci-
fied before the refinement (keeping the call of the check rule). Now,
look at the other cases.

iiWAS 2008 Proceedings of iiWAS2008

151

for insertion:
check’(i) =
read_next(tag) ;
if count < k ∧ ∃h.tag = newh

then choose n, t1, i1 with element(n,t1,i1) = 1 do
(element(n,t1,i1) := 2 ‖ count := count + 1 ‖
change(⊥,⊥,newh) := count + 1 ‖
choose x with ∀n′, t′, x.element(n′, t′, x) = ⊥ do

element(newh,⊥, x) := 1 enddo) ;
depth := depth + 1 ; check

elsif ∃h with tag = newh

then choose n, t, i, i1 with element(n, t, i) = 2 ∧
element(newh,⊥, i1) = 1 do
(element(newh, ,⊥, i1) := ⊥ ‖ element(n, t, i) := 1 ‖

depth := depth - 1) enddo ; check
endif

for deletion:
check’(d) =
if count < k
then if ∃n, t, i, n2, t2, i2 with element(n, t, i) = 1 ∧

element(n2,t2,i2)
= ⊥ ∧
sibling(previous(depth),i2,i1) = 1
then (element(n, t, i) := 2 ‖ element(n2,t2,i2) := 1 ‖

previous(depth) := i2 ‖ depth := depth + 1 ‖
count := count + 1 ‖
change(n2, t2,⊥) := count + 1) ; check

elsif ∃n, t, i, n2, i2, t2 with element(n, t, i) = 1 ∧
element(n2,t2,i2) = 2 ∧
∃x
= ⊥.change(n, t,⊥) = x ∧ ∀n′, t′, i′, y.

(change(n′, t′, i′) = y ⇒ y ≤ x)
then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖

depth := depth - 1 ‖ change(n, t,⊥) := ⊥) ;
previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥
endif)) ; check

endif

for update:
check’(u) =
read_next(tag) ;
if count < k
then if ∃h.tag = newh∧

∃n, t1, i1, n2, t2, i2 with element(n, t1, i1) = 1 ∧
element(n2, t2, i2)
= ⊥∧
sibling(previous(depth)),i2, i1) = 1

then (element(n, t1, i1) := 2 ‖
element(newh, t2, i2) := 1 ‖
previous(depth) := i2 ‖
change(n2, t2, newh) := count + 1 ‖
count := count + 1) ; depth := depth + 1 ; check

elsif ∃h.tag = newh∧
∃n1, t1, i1, n2, t2, i2 with element(newh, t1, i1) = 1

∧ element(n2, t2, i2) = 2 ∧
∃x
= ⊥.change(n1, t1, newh) = x ∧ ∀n′, t′, i′, y.

(change(n′, t′, i′) = y ⇒ y ≤ x)
then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖

depth := depth - 1 ‖
change(n1, t1, newh) := ⊥) ;

previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥

endif)) ; check
endif

endif

While this ASM handles again any EDTD specified by means
of the ‘element’ and ‘sibling’ functions, we can further refine it
to obtain an ASM for approximate validation of streaming XML
documents under a specific EDTD. As before, we substitute for
all cases in the check/check’ rules the possible values for tag, i.e.
dealer, new_cars, etc., and eliminate identifiers. For this we would
again require the unary controlled function ‘state’ in the signature.
Furthermore, we would still use the functions count and change.

EXAMPLE 7. For the EDTD in Example 2 and tag = dealer we
obtain the simplified case dealing with an update to the new tag
name newh:

case tag = newh ∧ previous(0) = ⊥ ∧ state(root) = 1
then (state(root) := 2 ‖ state(dealer) := 1 ‖ depth := 1 ‖

previous(0) := dealer ‖ count := count + 1 ‖
change(dealer,⊥,newh) := count + 1) ; check

Similarly, for the deletion of tag = model we obtain the case

case state(model) = 1 ∧ state(adu) = 2 ∧
∃x. change(model,⊥,⊥) = x ∧ ∀n′, t′, i′, y.

(change(n′, t′, i′) = y ⇒ y ≤ x)
then (state(model) := 0 ‖ state(adu) := 1 ‖

change(model,⊥,⊥) := ⊥ ‖
previous(3) := model ‖ depth := 3 ‖) ; check

6. CONCLUSION
In this paper we showed how ASMs can be used for the exact

and the approximate validation problem of streaming XML doucu-
ments on the basis of EDTDs and corresponding VPAs. In partic-
ular, we showed that the two problems can be related by means of
ASM refinements. On one hand it is straightforward to see that a
VPA for XML document validation can be represent as an ASM –
naturally, ASMs provide the much more expressive computational
model. However, the advantage of the ASM approach is that it pro-
vides a single specification dealing with any kind of EDTD – only
an encoding of the EDTD in two input relations ‘element’ and ‘sib-
ling’ is required. This specification can then be refined to result in
a specification of a parser that is specific for a given EDTD.
In particular, there is no need to store the complete XML doc-

ument as in tree-based parsing approaches such as DOM. In this
sense our solution follows the line of event-based approaches to
XML such as SAX. Due to the expressiveness of ASMs it even
supports the recursive compositional translation of queries, which
is a requirement resulting from the nesting within XQuery that can-
not be easily accommodated in automata-based approaches.
The elimination of automata in the approach can also be seen

as ASM refinements. As this shows ressemblance to the Java/JVM
study, in which horizontal and vertical refinements co-exist, it gives
rise to the question, whether decomposition of ASM specifications
and refinements of components can be defined as a general add-on
to the ASM development methodology.

7. REFERENCES
[1] R. Alur and P. Madhusudan. Visibly pushdown languages. In

L. Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC 2004), pages
202–211. ACM, 2004.

Proceedings of iiWAS2008 iiWAS 2008

152

[2] E. Börger. The ASM refinement method. Formal Aspects of
Computing, 15:237–257, 2003.

[3] E. Börger and R. Stärk. Abstract State Machines.
Springer-Verlag, Berlin Heidelberg New York, 2003.

[4] E. Börger, R. Stärk, and J. Schmid. Java and the Java Virtual
Machine: Definition, Verification and Validation.
Springer-Verlag, Berlin Heidelberg New York, 2001.

[5] D. Box, A. Skonnard, and J. Lam. Essential XML: Beyond
Markup. Addison Wesley, 2000.

[6] L. M. Garshol. Definitive XML Application Development.
Prentice-Hall, 2002.

[7] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. DOM-based
content extraction of HTML documents. In Proc. 12th WWW
conf., pages 207–214. ACM Press, 2003.

[8] E. R. Harold. Processing XML with Java: A Guide to SAX,
DOM, JDOM, JAXP, and TrAX. Addison Wesley, 2002.

[9] V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly
pushdown automata for streaming XML. In C. L.
Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J.
Shenoy, editors, Proceedings of the 16th International
Conference on World Wide Web (WWW 2007), pages
1053–1062. ACM, 2007.

[10] Y. Papakonstantinou and V. Vianu. DTD inference for views
of XML data. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS 2000), pages 35–46. ACM, 2000.

[11] L. Segoufin and V. Vianu. Validating streaming XML
documents. In L. Popa, editor, Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 2002), pages 53–64.
ACM, 2002.

[12] A. Thomo, S. Venkatesh, and Y. Y. Ye. Visibly pushdown
transducers for approximate validation of streaming XML. In
S. Hartmann and G. Kern-Isberner, editors, Foundations of
Information and Knowledge Systems – Proc. 5th
International Symposium, FoIKS 2008, volume 4932 of
LNCS, pages 219–238. Springer-Verlag, 2008.

[13] E. Wilde. Advanced XML Technologies. CRC Press, 2004.

iiWAS 2008 Proceedings of iiWAS2008

153

