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A hybrid graded element model is developed in this article
for solving the heat conduction problem of nonlinear function-
ally graded materials (FGMs), whose material properties not only
vary spatially but also are temperature dependent. In the proposed
approach, both Kirchhoff transformation and iterative method are
introduced to deal with the nonlinear term in the heat conduction
equation of nonlinear FGMs. Then, the graded element is formu-
lated based on two sets of independent temperature fields. One is
the intra-element temperature field, which is defined within the
element domain and constructed by a linear combination of fun-
damental solutions; the other is the frame field, which is defined
on the element boundary only and used as the boundary interpo-
lation functions of the element to ensure the field continuity over
the inter-element boundary. This model can simulate the graded
material properties naturally due to the inherent properties of fun-
damental solutions, which are employed in constructing the graded
element. Moreover, a multi-subdomain method is developed to deal
with the problem with different materials. Finally, the performance
of the proposed method is assessed by several benchmark examples.
The results are in excellent agreement with the analytical solutions.

Keywords graded element model, nonlinear functionally graded ma-
terials, hybrid FEM, heat conduction

1. INTRODUCTION
Functionally graded materials (FGMs) are new advanced heat

resistant materials that are formed using modern technologies
and used in advanced structures. The concept of FGM is to
make a composite material by varying the microstructure from
one material to another material with a specific gradient. Since
FGMs are expected to be used under high temperature and
high heating rate environment, it is necessary to understand
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their thermal behavior. However, thermal analysis of FGMs is
far more difficult than that of homogeneous materials due to
their possible temperature-dependent and continuously varying
material properties.

Two typical finite element models (the stepwise constant
model and the Gauss point sampling model) can be found in the
literatures to simulate physical behavior of FGMs. In the step-
wise constant model [1, 2], the element rows are aligned along
the gradient direction and the material property of each row of
the homogeneous elements is taken to be the property at the
centroid of the element, and the material gradient is achieved by
highly refined element mesh. In the Gauss point sampling model
[3–5], the material gradient is directly sampled by assigning cor-
responding material properties at the Gauss integration points.
In addition, other types of numerical methods, including finite
element method (FEM) [5, 6], boundary element method (BEM)
[7, 8], or dual reciprocity BEM [9, 10], the method of funda-
mental solution [11, 12] and meshless methods, which includes
local Petrov-Galerkin method [13] and local boundary integral
equation method [14], have also been used to analyze thermal
response of FGMs. Most of them used an exponential variation
of material constants along Cartesian coordinates and the heat
conductivity is assumed to be independent of temperature. As
a consequence, the problem can be modeled as a linear FGM
problem. The linearity, however, is not preserved in many prac-
tical engineering problems due to the temperature-dependence
of heat conductivity.

In this article, a nonlinear graded element model for the heat
conduction problem of functionally graded materials whose ma-
terial properties vary not only with Cartesian coordinates, but
also with temperature is discussed. The study extends the hybrid
fundamental solution based finite element method (HFS-FEM)
presented in [15, 16] to the case of nonlinear FMGs. HFS-FEM
is a newly developed hybrid finite element formulation with
fundamental solutions as intra-element interpolation. It inherits
all advantages of the hybrid Trefftz FEM (HT-FEM) over the
conventionally FEM and BEM (details in references [17–20])
and removes the difficulty encountered in constructing and
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GRADED ELEMENT FOR NONLINEAR FGMs 591

selecting T-functions. In the present hybrid graded model, a
linear combination of the fundamental solution for functionally
graded materials at different source points is used to approxi-
mate the field variable within the element and an independent
frame field defined along the element boundary is employed to
guarantee the inter-element continuity. A variational functional
is used to generate the final stiffness equation and establish
a linkage between the boundary frame field and internal field
within the element level. The proposed graded element for-
mulation can incorporate the graded material property at the
element level, so it is more natural than the conventional ho-
mogeneous elements model and Gauss point sampling model
mentioned above. In the analysis, both Kirchhoff transforma-
tion and iterative method are employed to deal with the nonlin-
ear thermal conductivity, which is the function of coordinates
and unknown temperature field. For the functionally graded bi-
material, a multi-subdomain method is developed to guarantee
the continuity of temperature and heat flux on the interface of
the two materials.

The article begins with a brief description of heat conduction
problems in FGMs in Section 2. Then, a detailed derivation of
the proposed nonlinear graded element and the corresponding al-
gorithm is described in Section 3, to provide an initial insight on
this new finite element model. Section 4 introduces the method
to deal with the nonlinear functionally graded bi-material. Sev-
eral numerical examples representing different kinds of non-
linear FGMs are also presented in Section 4 to demonstrate
the efficiency of the proposed algorithm, and some concluding
remarks are given in Section 5.

2. STATEMENT OF HEAT CONDUCTION PROBLEMS
IN NONLINEAR FGM

2.1. Basic Formulations
Consider a two-dimensional (2-D) heat conduction problem

defined in an anisotropic inhomogeneous media:

2∑
i, j=1

∂

∂ Xi
(K̃i j (X, u)

∂u(X)

∂ X j
) = 0 ∀X ∈ �. (1)

For an inhomogeneous nonlinear functionally graded mate-
rial, we assume the thermal conductivity varies exponentially
with position vector and also be a function of temperature, that
is,

K̃i j (X, u) = α(u)Ki j exp(2β · X), (2)

where α(u) > 0 is a function of temperature, which may be dif-
ferent for different materials (see examples 1 and 2 for details),
the vector β = (β1, β2) is a dimensionless graded parameter
and matrix K = [Ki j ]1≤i, j≤2 is a symmetric, positive-definite
constant matrix (K12 = K21, det K = K11 K22 − K 2

12 > 0).

The boundary conditions are as follows:

• Dirichlet boundary condition:

u = ū on �u . (3)

• Neumann boundary condition:

q = −
2∑

i, j=1

K̃i j
∂u

∂ X j
ni = q̄ on �q , (4)

where K̃i j denotes the thermal conductivity, which is the func-
tion of spatial variable X and unknown temperature field u. q
represents the boundary heat flux. n j is the direction cosine of
the unit outward normal vector n to the boundary � = �u ∪ �q .
ū and q̄ are specified functions on the related boundaries, re-
spectively.

2.2. Kirchhoff Transformation and Iterative Method
Two methods are employed here to deal with the nonlinear

term α(u), one is Kirchhoff transformation [11] and another is
the iterative method.

2.2.1. Kirchhoff Transformation
The Kirchhoff transformation is shown as follows:

�(u) = ψ(u(X)) =
∫

α(u)du. (5)

Making use of Eq. (5), Eq. (1) reduces to:

2∑
i, j=1

∂

∂ Xi

(
K ∗

i j (X)
∂�(X)

∂ X j

)
= 0 ∀X ∈ �, (6)

where

K ∗
i j (X) = Ki j exp(2β · X). (7)

Substituting Eq. (7) into Eq. (6) yields:

⎡
⎣ 2∑

i, j=1

Ki j
∂2�(X)

∂ Xi∂ X j
+ 2β · (K∇�(X))

⎤
⎦exp(2β·X) = 0, X ∈ �,

(8)
where

u = ψ−1(�). (9)

It should be mentioned that the inverse of � in Eq. (9) exists
since α(u) > 0.
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592 H. WANG ET AL.

The fundamental solution to Eq. (8) in two dimensions can
be expressed as [11, 21]:

N (X, Xs) = − K0(κR)

2π
√

det K
exp{−β · (X + Xs)}, (10)

where κ = √
β · Kβ, R is the geodesic distance defined as

R = R(X, Xs) =
√

r · K−1r and r = r(X, Xs) = X − Xs, in
which X and Xs denote the observing field point and source
point in the infinite domain, respectively. K0 is the modified
Bessel function of the second kind of zero order. For isotropic
materials, K12 = K21 = 0, K11 = K22 = k0 > 0, then the
fundamental solution given by (10) reduces to:

N (X, Xs) = − K0(κR)

2πk0
exp{−β · (X + Xs)}, (11)

which agrees with the result in [22].
Under the Kirchhoff transformation, the boundary conditions

(3) and (4) are transformed into the corresponding boundary
conditions in terms of �:

� = ψ(ū) on �u, (12)

p = −
2∑

i, j=1

K ∗
i j

∂�

∂ X j
ni = −

2∑
i, j=1

K̃i j
∂u

∂ X j
ni = q = q̄ on �q .

(13)

Therefore, by Kirchhoff transformation, the original nonlinear
heat conduction equation (1), in which the heat conductivity
is a function of coordinate X and unknown function u, can
be transformed into the linear equation (6), in which the heat
conductivity is just a function of coordinate X . At the same time,
the field variable becomes � in Eq. (6), rather than u in Eq.
(1). The boundary conditions (3) and (4) are correspondingly
transformed into Eqs. (12) and (13). Once � is determined,
the temperature solution u can be found by the reversion of
transformation (9), i.e., u = ψ−1(�).

2.2.2. Iterative Method
Since the heat conductivity depends on the unknown func-

tion u, an iterative procedure is employed for determining the
temperature distribution. The algorithm is given as follows:

Assume an initial temperature u0.

Calculate the heat conductivity in Eq. (2) using u0.

Solve the boundary value problem defined by Eqs. (1)–(4) for the
temperature u.

Define the convergent criterion |u − u0| < δ (δ = 10−6 in our anal-
ysis). If the criterion is satisfied, output the result and terminate the
process. If not satisfied, go to the next step.

Update u0 with u.

Go to step 2.

3. GENERATION OF GRADED ELEMENT
In this section, an element formulation is presented to deal

with materials with continuous variation of physical properties.
Such an element model is usually known as a hybrid graded
element that can be used for solving the boundary value problem
defined in Eqs. (6) and (12)–(13).

The proposed approach is based on a hybrid finite ele-
ment formulation in which fundamental solutions are taken as
intra-element interpolation functions (HFS-FEM for short) [16].
Similar to HT-FEM, the main idea of HFS-FEM is to estab-
lish an appropriate hybrid finite element formulation whereby
intra-element continuity is enforced on a nonconforming intra-
element field formed by a linear combination of fundamental
solutions at points outside the element domain under consider-
ation, while an auxiliary frame field is independently defined
on the element boundary to enforce the field continuity across
inter-element boundaries. But unlike in the HT-FEM, the intra-
element fields are constructed based on the fundamental solu-
tion, rather than T-functions. Consequently, a variational func-
tional corresponding to the new trial function is required to
derive the related stiffness matrix equation. As was done in con-
ventional FEM, the solution domain is divided into sub-domains
or elements. For a particular element, say element e, its domain
is denoted by �e and bounded by �e. Since a nonconforming
function is used for modeling an intra-element field, additional
continuities are usually required over the common boundary �Ief

between any two adjacent elements ‘e’ and ‘f ’ (see Figure 1)
[23]:

�e = � f (conformity)
pe + p f = 0 (reciprocity)

}
on �Ief = �e ∩ � f , (14)

in the proposed hybrid FE approach.

3.1. Nonconforming Intra-Element Field
For a particular element, say element e, which occupies sub-

domain �e, the field variable within the element is extracted

FIG. 1. Illustration of continuity between two adjacent elements ‘e’ and ‘f ’.
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GRADED ELEMENT FOR NONLINEAR FGMs 593

FIG. 2. Intra-element field, frame field in a particular element in HFS-FEM,
and the generation of source points for a particular element.

from a linear combination of fundamental solutions centered at
different source points (see Figure 2), that is,

�e (x) =
ns∑

j=1

Ne
(
x, y j

)
cej = Ne (x) ce ∀x ∈ �e, y j /∈ �e,

(15)

where cej is undetermined coefficients and ns is the number
of virtual sources outside the element e. Ne

(
x, y j

)
is the re-

quired fundamental solution expressed in terms of local ele-
ment coordinates (x1, x2), instead of global coordinates (X1, X2)
(see Figure 2). Obviously, Eq. (15) analytically satisfies the
heat conduction equation (8) due to the inherent property of
Ne(x, y j ).

The fundamental solution for FGM (Ne in Eq. (15)) is used
to approximate the intra-element field in FGM. It is well known
that the fundamental solution represents the field generated by
a concentrated unit source acting at a point, so the smooth
variation of material properties throughout an element can be
achieved by this inherent property, instead of the stepwise con-
stant approximation, which has been frequently used in the con-
ventional FEM. For example, Figure 3 illustrates the difference
between the two models when the thermal conductivity varies
along direction X2 in isotropic material.

FIG. 3. Comparison of computational cell in the conventional FEM and the
proposed HFS-FEM. (Color figure available online.)

Note that the thermal conductivity in Eq. (7) is defined in the
global coordinate system. When contriving the intra-element
field for each element, this formulation has to be transferred
into the local element coordinate system defined at the center
of the element, the graded matrix K∗ in Eq. (7) can then be
expressed by:

K∗
e (x) = KC exp(2β · x), (16)

for a particular element e, where KC denotes the value of con-
ductivity at the centroid of each element and can be calculated
as follows:

KC = K exp(2β · Xc), (17)

where Xc is the global coordinate of the element centroid.
Accordingly, the matrix KC is used to replace K (see Eq.

(10)) in the formulation of fundamental solution for FGM and
to construct an intra-element field in the coordinate system local
to element.

In practice, the generation of virtual sources is usually done
by means of the following formulation employed in the method
of fundamental solution (MFS) [24, 25]:

y = xb + µ (xb − xc) , (18)

where µ is a dimensionless coefficient (µ = 2.5 in our analysis
[16]), xb and xc are, respectively, boundary point and geomet-
rical centroid of the element. For a particular element shown in
Figure 2, we can use the nodes of element to generate related
source points.

The corresponding normal heat flux on �e is given by:

pe = −K∗
e

∂�e

∂ X j
ni = Qece, (19)
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594 H. WANG ET AL.

where

Qe = −K∗
e

∂Ne

∂ X j
ni = −AK∗

eTe (20)

with

Te = [ Ne,1 Ne,2 ]T, A = [ n1 n2 ]. (21)

3.2. Auxiliary Conforming Frame Field
In order to enforce the conformity on the field variable u, for

instance, �e = � f on �e ∩� f of any two neighboring elements
e and f , an auxiliary inter-element frame field �̃ is used and
expressed in terms of nodal degrees of freedom (DOF), d, as
used in the conventional finite elements as:

�̃e (x) = Ñe (x) de, (22)

which is independently assumed along the element boundary,
where Ñe represents the conventional FE interpolating func-
tions. For example, a simple interpolation of the frame field on
the side with three nodes of a particular element can be given in
the form:

�̃ = Ñ1�1 + Ñ2�2 + Ñ3�3, (23)

where Ñi (i = 1, 2, 3) stands for shape functions in terms of
natural coordinate ξ defined in Figure 4.

3.3. Modified Variational Principle and Stiffness
Equation
3.3.1. Modified Variational Functional

For the boundary value problem defined in Eqs. (6) and
(12)–(13), since the stationary conditions of the traditional po-
tential or complementary variational functional cannot guar-
antee the satisfaction of the inter-element continuity condition
required in the proposed HFS-FE model, a modified potential

FIG. 4. Typical quadratic interpolation for the frame field.

functional is developed as follows [16]:

�m =
∑

e

�me

=
∑

e

{
−
∫

�e

1

2
K ∗

i j�,i�, j d� −
∫

�qe

q̄�̃d�

+
∫

�e

(�̃ − �)pd�

}
, (24)

in which the governing equation (6) is assumed to be satisfied,
a priori, in deriving the HFS-FE model (for convenience, the
repeated subscript indices stand for summation convention). The
boundary �e of a particular element consists of the following
parts:

�e = �ue ∪ �qe ∪ �I e, (25)

where �I e represents the inter-element boundary of the element
‘e’ shown in Figure 1.

The stationary condition of the functional (24) can lead to
the governing equation (Euler equation), boundary conditions,
and continuity conditions, details of the derivation can refer to
[16, 17].

3.3.2. Stiffness Equation
Having independently defined the intra-element field and

frame field in a particular element (see Figure 2), the next step
is to generate the element stiffness equation through a variational
approach and to establish a linkage between the two independent
fields.

The variational functional �e corresponding to a particular
element e of the present problem can be written as:

�me = −1

2

∫
�e

K ∗
i j�,i�, j d�−

∫
�qe

q̄�̃d�+
∫

�e

p(�̃ − �)d�.

(26)

Applying the Gauss theorem to the above functional, we have
the following functional for the HFS-FE model:

�me = 1

2

[∫
�e

p�d� +
∫

�e

�(K ∗
i j u,i ), j d�

]
−
∫

�qe

q̄�̃d�

+
∫

�e

p(�̃ − �)d�. (27)

Considering the governing equation (6), we finally have the
functional defined on the element boundary only:

�me = −1

2

∫
�e

p�d� −
∫

�qe

q̄�̃d� +
∫

�e

p�̃d�, (28)
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GRADED ELEMENT FOR NONLINEAR FGMs 595

which yields by substituting Eqs. (15), (19), and (22) into the
functional (28):

�me = −1

2
cT

e Hece − dT
e ge + cT

e Gede, (29)

with

He =
∫

�e

QT
e Ned� Ge =

∫
�e

QT
e Ñed� ge =

∫
�qe

ÑT
e q̄d�.

(30)

Next, to enforce inter-element continuity on the common
element boundary, the unknown vector ce should be expressed
in terms of nodal DOF de. The minimization of the functional
�e with respect to ce and de, respectively, yields:

∂�me

∂cT
e

= −Hece + Gede = 0

∂�me

∂dT
e

= GT
e ce − ge = 0,

(31)

from which the optional relationship between ce and de, and the
stiffness equation can be produced in the form:

ce= H−1
e Gede and Kede= ge, (32)

where Ke= GT
e H−1

e Ge stands for the element stiffness matrix.

3.4. Recovery of Rigid-Body Motion
Considering the physical definition of the fundamental so-

lution, it’s necessary to recover the missing rigid-body motion
modes from the above results.

Following the method presented in [18], the missing rigid-
body motion can be recovered by writing the internal potential
field of a particular element e as:

�e = Nece + c0, (33)

where the undetermined rigid-body motion parameter c0 can
be calculated using the least square matching of �e and �̃e at
element nodes:

n∑
i=1

(Nece + c0 − �̃e)2
∣∣
node i = min, (34)

which finally gives

c0 = 1

n

n∑
i=1

��ei , (35)

in which ��ei = (�̃e − Nece)|node i and n is the number of
element nodes.

Once the nodal field is determined by solving the final stiff-
ness equation, the coefficient vector ce can be evaluated from

Eq. (32), and then c0 is evaluated from Eq. (35). Finally, the po-
tential field � at any internal point in an element can be obtained
by means of Eq. (33).

4. THE SUBDOMAIN METHOD FOR NONLINEAR
FUNCTIONALLY GRADED BI-MATERIALS

Consider the heat conduction problem in functionally graded
bi-material that occupy the domains �1 and �2:

2∑
i, j=1

∂

∂ Xi

(
K̃ (l)

i j
(X, ul)

∂ul(X)

∂ X j

)
= 0 ∀X ∈ �l, l = 1, 2,

(36)
where

K̃ (l)
i j

(X, ul) = αl(ul)K (l)
i j exp(2β(l) · X) = αl(ul)K ∗(l)

i j . (37)

As was done in (5), the Kirchhoff transformations are conducted
in �1 and �2 as:

�(1)(u1) = ∫
α1(u1)du ∀X ∈ �1

�(2)(u2) = ∫
α2(u2)du ∀X ∈ �2.

(38)

Therefore, after the Kirchhoff transformation, the heat conduc-
tion problem has to be solved in sub-domain �1 and �2, sep-
arately. Moreover, the continuities of temperature and normal
heat flow are required on the interface.

Making use of the hybrid graded element formulation on
each sub-domain, we have:

[K (l)]{�(l)} = {g(l)}, (39)

with{
�(l)

} = {
�

(l)
1 �

(l)
2 . . . �

(l)
NS

}
,
{
g(l)
} = {

g(l)
1 g(l)

2 . . . g(l)
NS

}
l = 1, 2,

(40)

where the superscript (l) stands for variables associated with
the sub-domain �l , and NS is the number of the nodes in each
sub-domain.

On the interface boundary �I , the following conditions must
be satisfied: {

u(1)
I

} = {
u(2)

I

}
{
q (1)

I

} = −{q (2)
I

} , (41)

where subscripts I represent the interface boundary between
sub-domain �1 and �2. It should be mentioned that the field
variables are �(i)(i = 1, 2) in Eq. (39) but the continuities
conditions (41) are defined in terms of temperature u.

To establish the finite element formulation for the bi-material,
the element discretization is done for sub-domains �1 and �2,
separately (see Figure 5). There are overlapped nodes on the
interface (in bold for the illustration in Figure 5). The overlapped
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596 H. WANG ET AL.

FIG. 5. Demonstration of element discretization and node types for the do-
main.

nodes have the same coordinate but belong to a different sub-
domain. We classify all the nodes in the whole domain into
their types: boundary nodes whose temperatures are already
known, interface nodes which locate on the interface, and the
other nodes (see Figure 5). NB , NI , and NO are the number of
boundary nodes, interface nodes and other nodes, respectively
(NB + NI + NO = NS).

Rearranging Eq. (39) according to the type of the nodes, we
have:

[
O (l)

]
NO×NO

{
�

(l)
O

}
NO×1 = −[B(l)

]
NO×NB

{
�

(l)
B

}
NB×1

−[I I ]NO×NI

{
�

(l)
I

}
NI ×1 l = 1, 2, (42)

where subscripts O, B, and I represent other node, boundary
node, and interface node, respectively. The matrix O, B, and
I can be formed by picking the corresponding entries ki j from
matrix K. The first term in the right hand side of the equation
is known variables since the temperature at boundary nodes is
prescribed (vector {�(l)

B } is known). So the field variable of other
nodes can be expressed in terms of the interface nodes by Eq.
(42) in the form:

{
�

(l)
O

} = −[O (l)
]−1[

B(l)
]{

�
(l)
B

}− [
O (l)

]−1[
I I
]{

�
(l)
I

}
, (43)

that is �
(l)
O = f (�(l)

I ) for simplicity.
Using Eqs. (19), (20), and (32), we have:

qe = −Kei j
∂ue

∂ X j
ni = −K ∗

ei j

∂�e

∂ X j
ni = −AK∗

eTeH−1
e Gede,

(44)
where de consists of �B, �O , �I . Since �B is already known
by the boundary condition and �O is the function of �I (see
Eq. (42)), finally, de can be expressed in terms of �I . That is
de = f (�B, �O , �I ) = f (�I ). Substituting Eq. (44) to Eq.

(41), a 2 × NI nonlinear equation for �
(l)
I (l = 1, 2) can be

obtained:

ψ−1
(
�

(1)
I

) = ψ−1
(
�

(2)
I

)
− A(1)K∗(1)

e T(1)
e H(1)−1

e G(1)
e f

(
�

(1)
I

) = A(2)K∗(2)
e T(2)

e H(2)−1
e

× G(2)
e f (�(2)

I ), (45)

�
(l)
I can be determined by solving nonlinear equations (45).

Once �
(l)
I are obtained, �

(l)
O will be determined by Eq. (42),

then all of the field variables bm� can be determined for each
sub-domain. Finally, the temperature u in the whole domain can
be found by u = ψ−1(�).

5. NUMERICAL ASSESSMENTS
In order to evaluate the performance of the proposed ap-

proach, here we consider three typical benchmark problem,
which are taken from Reference [11], for steady-state heat trans-
fer in 2-D functionally nonlinear graded material and the results
are compared with the analytical ones. These examples cover
the cases that thermal conductivity is a linear function of tem-
perature (example 1) and exponential function of temperature
(example 2). The functionally graded bi-materials plate is stud-
ied in example 3, which covers three cases that are, respectively,
two linear materials, two nonlinear materials with the same non-
linear term, and two nonlinear materials with different nonlinear
terms.

In the calculation, to provide a more quantitative understand-
ing on the accuracy of the results, the normalized error on a
variable f is introduced as:

err( f (X )) =
∣∣ f (num)(X ) − f (an)(X )

∣∣
max
x∈�

∣∣ f (an)(X )
∣∣ × 100% X ∈ �, (46)

where f (num) and f (an) are the numerical and exact result of the
field variable.

Example 1. The thermal conductivity being a linear function
of temperature:

A single nonlinear anisotropic FGM material square plate is
considered. Its dimension is � = (−1, 1)×(−1, 1). The thermal
conductivity is a linear function of temperature:

α(u) = 1 + γu, (47)

where γ is a constant. In the calculation, K11 = 2.0, K12 =
K21 = 0.0, and K22 = 1.0. β1 = 0, β2 = 1 (heat conductivity
varies along direction X2 only), γ = 0.5 are used. 2 × 2 8-
node quadrilateral elements are employed to model the solution
domain.
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GRADED ELEMENT FOR NONLINEAR FGMs 597

Under Kirchhoff transformation, we obtain:

�(u) =
∫

α(u)du =
∫

(1 + γu)du = u + 1

2
γu2. (48)

Since α(u) > 0, the function � is inverted such that taking only
the positive root of Eq. (48):

u(nu) = −1 + √
1 + 2γ�

γ
, (49)

and the heat flux is

q (nu)(X) = −
2∑

i, j=1

K̃i j
∂u(X)

∂ X j
ni (X)

= −
2∑

i, j=1

Ki j
∂�(X)

∂ X j
ni (X) exp(2β · X). (50)

When γ = 0.5, the analytical solution is [11]:

u(an)(X) = 2
√

�(X) + 1 − 2, X ∈ �, (51)

where

�(X) =
√

1 − c/p√
2p

sinh(p)e−X2 , X ∈ �, (52)

c = X1/
√

2 − 1, p =
√

c2 + X2
2. (53)

Moreover, the analytical solution for heat flux is obtained by tak-
ing the normal derivative of the analytical solution with respect
to coordinates and is given by:

q (an)(X) = −e2X2

{
2
∂�(X)

∂ X1
n1(X)+ ∂�(X)

∂ X2
n2(X)

}
, X ∈ �,

(54)
where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�(X)

∂ X1
= e−X2

2p
√

p

[(
(c/p)2 − 1

2
√

1 − c/p
− c

√
1 − c/p

2p

)
sinh(p)

+ c
√

1 − c/p cosh(p)

]
∂�(X)

∂ X2
= e−X2

√
2p

[(
cX2

2p3
√

1 − c/p
− X2

√
1 − c/p

2p2

−√
1 − c/p) sinh(p) + X2

√
1−c/p
p cosh(p)

]
(55)

In our analysis, the Direchlet boundary conditions are con-
sidered:

u(X) = f (X), X ∈ ∂�. (56)

FIG. 6a. Temperature distribution for Example 1. (Color figure available
online.)

Under Kirchhoff transformation and assuming γ = 0.5, the
condition remains a Dirichlet condition for � and is given by

�(X) = f (X) + 1

4
f 2(X) , X ∈ ∂�. (57)

Figure 6a illustrates the temperature distribution in the FGM
plate and Figure 6b shows the corresponding isothermal dis-
tribution. It can be seen that the numerical solution matches

FIG. 6b. Isothermals for Example 1.
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598 H. WANG ET AL.

FIG. 7a. Percentage of normalized error distribution for temperature (by
Kirchhoff transformation) for Example 1.

very well with the analytical solution. The calculation is also
conducted by an iterative method and convergence is achieved
using 31 iterations. The corresponding percentage of normal-
ized error distributions by these two methods are presented in
Figures 7a and 7b, respectively. Comparing Figure 7b with 7a,
the error level in the iterative method is higher than that in the
Kirchhoff transformation method. It indicates that the results

FIG. 7b. Percentage of normalized error distribution for temperature (by iter-
ative method) for Example 1.

FIG. 8. Temperature distribution at X1 = 0 with different γ.

from the Kirchhoff transformation method are more accurate
than those from the iterative method. In addition, to assess the
effect of linear coefficient, γ = 0, 0.2, 0.5, 0.8 are employed
in the calculation. Figure 8 shows the temperature distribution
along direction X2 (X1 = 0), which is the graded direction with
different γ. It can be seen from Figure 8 that the curve becomes
more steep when γ becomes bigger.

Example 2. The thermal conductivity being an exponential
function of temperature:

In this example, the thermal conductivity being an exponen-
tial function of temperature is considered:

α(u) = eu . (58)

The discretization of the problem domain and other parame-
ters are the same as those in Example 1.

Making use of the Kirchhoff transformation, we have

�(u) =
∫

eudu = eu, u = ln �. (59)

Its analytical solution is

u(an)(X) = ln(�(X)) = ln

(√
1 − c/p√

2p
sinh(p)e−X2

)
, (60)

where candp are defined in Eq. (53).
Figure 9a shows the temperature distribution in the FGM

plate. We can see that the lowest temperature occurs at the cor-
ner (1,1), then increases gradually along a diagonal direction
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GRADED ELEMENT FOR NONLINEAR FGMs 599

FIG. 9a. Temperature distribution for Example 2. (Color figure available on-
line.)

and reaches the highest value at the corner (−1,−1). Figure 9b
illustrates isothermal distribution of the FGM plate. It can be
seen from Figure 9b that the numerical solution is in excel-
lent agreement with the analytical solution. The calculation is
also conducted by the iterative method and the convergence
is achieved using 16 iterations. Figures 10a and 10b illustrate
the corresponding percentage of normalized error distributions
from Kirchhoff transformation method and iterative method,
respectively. It can be seen from Figure 10 that the Kirchhoff
transformation method can again achieve more accurate results
than those from the iterative method. The reason might be that
the error is accumulated by each iteration step in the iterative

FIG. 9b. Isothermals for Example 2.

FIG. 10a. Percentage of normalized error distribution for temperature (by
Kirchhoff transformation) for Example 2.

method. Further, the choice of initial value and convergent cri-
terion can also affect the accuracy of the results. In addition,
the iterative method needs more computing time because of the
complex iterative process. Therefore, the performance of the
Kirchhoff transformation method is more stable, accurate, and
time-saving than the iterative method. We choose the Kirchhoff
transformation method in the following numerical simulation.

FIG. 10b. Percentage of normalized error distribution for temperature (by
iterative method) for Example 2.
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600 H. WANG ET AL.

FIG. 11a. Percentage of normalized error distribution for heat flux q1.

The percentage of normalized error for heat flux in direction X1

and X2 are shown in Figures 11a and 11b, respectively. It can
be seen from these two figures that the proposed model yields
high accuracy for the heat flux field as well.

Example 3. Functionally graded bi-materials:

A bi-material of FGM with the solution domain � = �1∪�2

is considered, where �1 = (−1, 1)× (0, 1) and �2 = (−1, 1)×

FIG. 11b. Percentage of normalized error distribution for heat flux q2.

(−1, 0) represent the domains occupied by the two materials. In
the calculation, β(1) = (1, 1), β(2) = (1, 2), K11 = 2.0, K12 =
K21 = 0.0, and K22 = 1.0 are used and Direchlet boundary
conditions ul = exp(−2β(l) · X), X ∈ �l, l = 1, 2 are enforced
on the four edges of the plate. 4×2 8-node quadrilateral elements
are employed to model each sub-domain. Three different kinds
of functionally graded bi-materials plates are investigated in this
example, which almost covers all types of bi-materials.

Case 1. Two linear materials

For the two linear materials, α1(u1) = α2(u2) ≡ 1. The
analytical solutions for the temperature are [11]:

u(an)
l = exp

(− 2β(l) · X
)
, X ∈ �l l = 1, 2. (61)

Figure 12a illustrates the isothermals in the linear bi-
materials FGM plate and Figure 12b presents the corresponding
percentage of normalized error distribution. It can be seen that
the numerical solution agrees with the analytical solution very
well.

Case 2. Two nonlinear materials with the same nonlinear term

In this case, a two nonlinear material FGM plate with the
same nonlinear term γ = 0.5 is considered.

Figure 13 shows the isothermal distributions in the nonlinear
bi-material FGM plate. It can be seen through comparing with
Figure 12a that the isothermals of case 2 are curlier than those
of case 1 due to the nonlinear term of the heat conductivity.

Case 3. Two nonlinear materials with different nonlinear terms

For the two nonlinear materials in a FGM plate with different
nonlinear terms, here, γ1 = 0.5, γ2 = 0.2 are used. Kirchhoff

FIG. 12a. Numerical of isothermals for two linear FGMs for Example 3.
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GRADED ELEMENT FOR NONLINEAR FGMs 601

FIG. 12b. Percentage of normalized error distribution for temperature for
Example 3.

transformation is conducted in the two sub-domains �1 and �2,
and are written as:

�1(u) = u + 1

4
u2, �1 ∈ �1,

�2(u) = u + 1

10
u2, �2 ∈ �2.

FIG. 13. Isothermals for two nonlinear FGMs with the same nonlinear term.

FIG. 14. Isothermals for two nonlinear FGMs with different nonlinear terms.

The method introduced in Section 4 is employed to solve the
problem. It should be mentioned that the temperature continuity
on the interface is 2

√
1 + �1−2 = 5

√
1 + 0.4�2−5. Figure 14

illustrates isothermal distributions in the nonlinear bi-materials
FGM plate with different nonlinear terms. It can be seen that
the temperature level is lower than the previous two cases and
the isothermals are more straight than that in Figure 13, since
the smaller nonlinear coefficient (γ2 = 0.2) was used in this
case. Figure 15 compares the temperature distribution on the
interface for the three cases. For cases 1 and 3, the temperature

FIG. 15. Temperature distribution along the interface for the three cases.
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602 H. WANG ET AL.

monotone decreased along the interface. We also can observe
this trend from Figures 12a and 14 that the isothermals (valued
5.45, 2.75, 1.45, 0.85, 0.45, 0.25, 0.1) go through the interface.
But for case 2, the temperature on the interface goes up, reaches
the peak value 11.57, and then decreases. It can also be seen
from Figure 13 that the isothermal valued 11.57 is tangent to the
interface and some isothermals, like the one valued 9.45, cross
the interface twice.

6. CONCLUSIONS
In this article, both the Kirchhoff transformation and iterative

method are used to deal with the nonlinear term for heat con-
duction problem of the nonlinear functionally graded materials.
A 2-D hybrid graded element model is developed for analyz-
ing thermal behavior of nonlinear FGMs. In the present model,
the graded elements, which incorporate the material property
gradient at the element level, have been presented in an inter-
nal element domain. A linear combination of the fundamental
solution at points outside the element domain is used to ap-
proximate the field variable in the internal element domain,
and the boundary interpolation functions are used to construct
the frame field. Moreover, the multi-subdomain method is de-
veloped to deal with the bi-material problem. Several typical
examples are considered to evaluate the performance of the
proposed method. The results indicate that the graded element
model can simulate the graded material naturally and conve-
niently and the Kirchhoff transformation is very effective to deal
with the nonlinear material property. It should be mentioned that
the Kirchhoff transformation used in this article may have some
limitations. For example, it may be difficult for multi-material
problems with different nonlinear terms, because different trans-
formations are used for different material domains, which
makes the problem more complicated. This can be compen-
sated by using the multi-subdomain method introduced in this
article.
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