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Abstract-
As the Internet of Things grows to large scale, its 
components will increasingly be controlled by self­
interested agents. For example, sensor networks will 
evolve to community sensing where a community of 
agents combine their data into a single coherent struc­
ture. As there is no central quality control, agents need 
to be incentivized to provide accurate measurements. 
We propose game-theoretic mechanisms that provide 
such incentives and show their application on the 
example of community sensing for monitoring air 
pollution. These mechanisms can be applied to most 
sensing scenarios and allow the Internet of Things to 
grow to much larger scale than currently exists. 

I. INTRODUCTION 

With increasing progress of sensing and networking tech­

nology, it is now possible to deploy dense networks of low­

cost sensors that measure qualities of the environment, such 

as air pollution, noise, radiation or spectrum use. Progress in 

nanotechnology in particular allows complex sensing equip­

ment to be replaced by solid-state electronic sensors that can 

operate continuously and are available at low cost. The sensors 

will extend the notion of the Internet of Things beyond simple 

location measurements. 

Even though existing finite-volume physical models are 

capable of producing rough pollution estimates of large areas 

without any measurements, sensor data will be most useful 

when it can be integrated into a joint data-driven model 

that can produce a detailed street-level pollution map to be 

shared by many users. For the purpose of minimizing street­

level pollution exposure, we need a dense network of many 

sensors that are spread over different locations. Many of 

these locations will be owned by private individuals, and 

it would be most practical if these individuals themselves 

installed, maintained and operated the sensors. This is the 

idea of conununity sensing, where sensors are controlled by 

different agents and their results integrated in an open sensor 

network [7], [1]. 

We are involved in a project that explores community 

sensing for measuring air quality using both fixed and mobile 

sensors. Examples are shown in Figure 1. Initial experiments 

with such sensors suggests that air quality varies significantly 

978-1-4673-1346-9/12/$31.00 ©2012 IEEE 

Email: radu.jurca@gmail.com 

Fig. 1. Air quality sensors that could be used in community sensing. Top 
left: on top of a bus; bottom left: on top of a tram; top right: attached to a 
solar-powered weather station on a building; and bottom right: attached to a 
smartphone. 

throughout a city, and thus it would be very useful to maintain 

accurate maps that allow people to reduce their exposure to 

harmful pollution. 

Community sensing will allow much larger and comprehen­

sive sensor networks than can currently be imagined, and will 

be an important next step for the Internet of Things. However, 

ensuring that the data obtained is of sufficient quality is a 

significant challenge ([1]). As there are many individual and 

self-interested participants, it is not possible to control the 

network through a central authority. Instead, participants need 

to be given incentives that will make them cooperate with the 

sensor network in the best possible way. This is the topic of 

this paper. 

The most straightforward way to incentivize accurate mea­

surements is by payments that compensate for the effort of 

providing measurements. However, sometimes agents may 

have strong incentives to report incorrect values, for example 

to hide pollution they caused themselves, and small monetary 

incentives would fail to compensate for them. In such a case, 



the incentives can be used as a reputation so that agents that 

fail to consistently gather rewards loose their credibility. The 

mechanisms we consider can also be used to as part of such 

a reputation system. 

This paper is structured as follows. First, we define the 

setting and assumptions behind our mechanism. Following a 

review of game-theoretic mechanisms for incentivizing truthful 

information revelation, we define the novel mechanism we 

propose for community sensing, called Peer Truth Serum, and 

discuss its properties. Finally, we illustrate the mechanisms on 

an example. 

II. THE SETTING 

We assume that there is an open group of agents distributed 

in space that take measurements of a continuous space-time 

physical process, such as air pollution levels in a city over the 

course of a day. While typically we measure several different 

quantities, for the purpose of this paper we assume that a 

single quantity called pollution is measured, and that at any 

given location I and time t, there are N possible pollution 

levels denoted as V = {VI, . . .  , VN}. 
Agents report each observation 0 as a report s to a center 

that they trust to aggregate their reports. The center integrates 

the reported data with the known emission and dispersion 

characteristics in an environmental model to produce a pol­

lution map. The model uses a partition of the space into 

different regions, with the assumption that pollution levels 

within each region are relatively homogenous. For each region, 

it has a prior expectation of pollution levels that is given 

by known emission and meteorological information, such as 

nearby chimneys, traffic volumes and current wind field. It 

combines this expectation with reports for the region to pro­

duce a maximum-likelihood estimate. This estimate also takes 

into account statistical correlation between regions. While the 

details of such a complex environmental model are beyond the 

scope of this paper (see for example [6] for more discussion), 

we only need to know that the output of the model is a 

pollution map represented as a full probability distribution over 

the possible pollution levels at every location t. In this map, we 

let Rl,t(v) denote the probability that the pollution at location 

I and time t is of level V; Rl,t( v) > 0 for all V E V. 
The center updates the map periodically using the measure­

ment reports it received during the last time instant. Depending 

on the frequency of reports, updates may happen as frequently 

as every hour or as infrequently as once a week. Each agent 

has private prior beliefs Prl,t (v) about the pollution levels 

that the model will report at the next update, Rl,t+l. Before 

measurement, these private beliefs will generally be close to 

the current map Rt,l, but they can diverge significantly after 

the agent makes a measurement. We let Prl,t (v) be the belief 

before measurement that the model will report Rl,t+l 
= v 

after the next update, and Pr�t be the belief after measuring 

value o. In the following, we will always consider a single 

location and time point only, and thus drop the I, t superscripts. 

Figure 2 illustrates how an agent's beliefs are influenced 

by its observation. The curve labelled Pr(x) shows the prior 

a b c 

Fig. 2. Probability distributions for a variable x. 

x 

probability distribution that the agent has about the value of 

variable x before measuring it. It shows that b is believed to 

be the most likely value. Once the agent measures the actual 

value of the variable to be a or c, its belief changes to the 

distribution Pr a (x ) or Pre (x ) , respectively. Note the infl uence 

of the prior belief: when the agent has measured c, the most 

likely value may not be c itself, but a value between c and b. 
While in general the prior beliefs of agents can be expected 

to be quite homogeneous and close to the public distribution 

R, the way that beliefs are updated is likely to be very 

different between agents. An agent who strongly believes 

its own measurements is likely to change its beliefs more 

dramatically, and thus obtain a significantly different posterior 

distribution. However, one assumption that is reasonable to 

make is that an agent believes that its own measurement is 

positively correlated with the measurements that other agents 

will report, meaning that the measured value has the biggest 

relative increase in probability: 

Definition 1: An agent's belief update from prior Pr to 

posterior Pr x after measuring x satisfies the rational update 

property if and only if: 

Prx(x) Prx(Y) I;j .../.. 
Pr(x) > Pr(y) 

y T X (1) 

If this property would not hold, agents do not believe that 

they are measuring the same quantities that are modelled and 

it makes no sense to compare or aggregate their measurements. 

It is thus an assumption that we will make in this paper. 

III. INCENTIVE MECHANIS MS FOR OBTAINING TRUTHFUL 

REPORTS 

Rewarding agents to provide truthful reports of their private 

information has been studied in game theory. In this section, 

we review this earlier work. All schemes are based on the 

fact that agents' posterior beliefs change according to their 

observation, as shown in the example in Figure 2. As agents 

will compute the rewards they expect from a report using 

this belief, the incentives can be scaled so that for each 

observation, reporting the true observation gives the highest 

expected reward given the associated posterior belief. 

Different schemes can be used depending on whether the 

goal is to get an agent to truthfully report its posterior 

probability distribution or the value it has actually observed. 



We first consider incentives to truthfully report the posterior 

probability distribution. 

A. Reporting the full posterior distribution 

For problems such as weather prediction, where a true value 

eventually becomes known, such incentives can be provided 

by proper scoring rules [12]. Agents submit a probability 

distribution p( x) on their best estimate of the value of the 

variable x that is to be predicted. Once the true value x 
becomes known, they get rewarded according to a scoring 

rule applied to the probability p(x) they predicted for this 

true value. Examples of proper scoring rules are: 

• the logarithmic scoring rule: 

pay(x, p) = a + b · logp(x) (2) 

• the quadrdatic scoring rule: 

pay(x, p) = a + b (2P(X) - � p(V)2) (3) 

It is also possible to use scoring rules to elicit averages, 

maxima and other functions of a set of measurements, see 

[5] for a complete characterization of the possibilities offered 

by scoring rules. 

However, in pollution sensing, it is generally not possible to 

ever know the ground truth as required by scoring rule. Peer 

prediction [8] is a technique for this setting. The principle is 

to consider the reports of other agents that observed the same 

variable, or at least a stochastically relevant variable, as the 

missing ground truth. A proper scoring rule is then used for 

the incentives. Provided that other agents truthfully report an 

unbiased observation of the variable, such a reward scheme 

makes it a best response to provide truthful and unbiased re­

ports of the observations, and truthful reporting thus becomes 

a Nash equilibrium. [8] describe such a mechanism and several 

variants, and [3] discuss further optimizations and variants. 

An important issue with implementing peer prediction 

mechanisms is that agents should report both the value they 

observed and the posterior probability distribution that re­

sulted: the value is needed in order to be able to score 

other reports, while the distribution is needed to determine 

a payment to the agent itself. In the approach originally 

proposed by [8], the agents report a value and the center 

replaces this by an assumed posterior distribution for agents 

that have observed this value. The limitation of this approach 

is the need to know agents posterior beliefs. The Bayesian 

Truth Serum [10] is a mechanism that elicits both the prior 

beliefs and the observation, but only applies when these are not 

revealed to other agents, which is not the case in community 

sensing. 

To overcome this limitation, in [14] the authors provide a 

mechanism where agents report both their prior and posterior 

beliefs about the observed value. Noting that Bayesian updat­

ing implies that the ratio of posterior/prior is the highest for the 

actually observed value (the rational update assumption), the 

two reports together also determine the true value. However, 

it is difficult to apply this technique to community sensing 

since we cannot enforce reporting the prior beliefs before an 

observation. 

Applying the peer prediction approach to our setting has the 

challenge that sensors are taking measurements at different 

locations, i.e. we do not have another sensor reading of 

exactly the same value. However, the peer prediction method 

as defined by [8] only requires a stochastically relevant signal. 

Similar to [13], we can obtain such a stochastically relevant 

signal by using a pollution model applied to the combined set 

of measurements reported by other agents. 

Work by Papakonstantinou, Roger, Gerding and Jennings 

investigated a multi-agent scenario where the center specifies 

the data wanted, and then incentivizes agents to provide that 

data [9]. The approach combines a first stage where the 

center selects the agent that can provide the measurement 

in the most cost-effective way with a second stage where 

either the observation is scored against a true value that 

becomes known later, or against another report using the peer 

prediction principle. The approach assumes a pull approach 

where the center decides what measurements are important 

and specifically asks agents to report these. 

B. Reporting only the measured value 

In community sensing, reporting entire probability distribu­

tions is not desirable as it greatly increases the load on already 

limited communication bandwidth. Therefore, it is desirable to 

only transmit a report s of the measured value itself. 

The most straightforward way is to let the center substitute 

a standardized posterior distribution for each reported value, 

and let the agent select the right distribution by reporting one 

of the values. This was the approach originally adopted in the 

peer prediction method ([8]). 

In [3]), the peer prediction principle is implemented directly 

without using scoring rules. Instead, for each combination 

of report and reference report, minimal truthful payments 

are computed directly using linear programming. It is shown 

that these payments can often be much more efficient than 

those obtained by assuming posterior distributions and ap­

plying proper scoring rules, and satisfy other properties such 

as resistance against collusion. However, they still require 

assumptions about the posterior beliefs of the agents. 

[16] investigates mechanisms that are robust to variations 

of these beliefs, and shows that this is only possible in very 

limited ways and leads to large increases in payments. 

[2] proposes a mechanism for truthful opinion polls with 

two possible values that requires no assumptions about poste­

rior distributions. While the mechanism is not always truthful, 

it is helpful in the sense that non-truthful reports only help 

to make the public poll outcome converge to the true dis­

tribution more rapidly. Thus, the mechanism is shown to be 

asymptotically truthful in the sense that it converges to the 

true distribution. [4] shows how to extend this mechanism to 

settings with more than two values. The setting assumed in 

their mechanism is very close to the pollution sensing problem: 

the publicly available prior corresponds exactly to the pollution 



map. We will therefore adopt a very similar mechanism for our 

problem. 

IV. THE PEER TRUTH SERUM 

We propose a new mechanism for incentivizing truthful 

measurement reporting, which we call the Peer Truth Serum: 

Definition 2: The Peer Truth Serum is a payment function 

that rewards an agent for reporting a value s of a variable 

that is compared against a reference estimate m for the 

same variable, given a publicly available prior probability 

distribution R for the variable. It rewards the agent according 

to the payment function 0: + (3. T (S, m, R): 
• T(s, m, R) = R(�) if s = m 
• T (S, m, R) = 0 otherwise. 

where 0: and (3 > 0 are constants. 

In our scenario, agent i measures the pollution level at location 

l and time t, and reports the value s = s�,t. The report is 

evaluated against a reference value m = ml,t+l from the 

model, based on an update using other reports received in the 

same time interval. The reward is computed using the known 

public prior R = Rl,t. 

As an example, consider a range of three values for the 

pollution level: a(low), b(medium) and c(high), and let the 

public prior for some l, t be: 

Pr(v) + E > R(v) > Pr(v) - E (4) 

the Peer Truth Serum incentivizes truthful reporting. 

Proof" We observe that an agent who observes ° and 

reports s expects a reward: 

1 
pay(o, s) = 0: + (3 L Pro(X)T(S, x, R) = 0: + (3Pro(s) R(s) x 

In order for the mechanism to be truthful, we require that 

for v i= 0, pay( 0, 0) ?: pay( 0, v), i.e.: 

Pro(v) Pro(o) R(v) R(o) 
--- < --- q --- > ---

R(v) - R(o) Pro(v) - Pro(o) 

Given the assumption 4, this holds under the condition that: 

Pr( v) - E 
> _

P
_
r(-,-o-,- ) --:-

+_E 
Pro(v) Pro (0) 

A 
Pro(o) > Pro(v)V I t s Pr(o) Pr(v) 0, v, e 

Pr(v) Pr(o) 
0(0, v) = 

Pro(v) 
-

Pro(o) 
> 0 

then the truthfulness condition holds for any E such that: 

E E 
(Vo, v)o(o, v) ?: Pro(o) 

+ 
Pro(v) 

As 0(0, v) > 0, such an E always exists and can be calculated 

as: 

(5) 

• 
Thus, when agents adopt to public prior within some 

tolerance E, the mechanism incentivizes truthful reporting. 

For the example given earlier, assume that an agent's prior 

and posterior beliefs are as follows: 

x a b c 

Pra(x) 0.6 0. 3 0.1 

Prb(X) 0.1 0.8 0.1 

Prc(x) 0.1 0. 3 0.6 

Pr(x) 0.2 0.6 0.2 

Now we can compute E according to Equation 5 as 

min(1/3, 1/7, 1/9) = 1/9. Thus, for example, if the public 

distribution R is within the bound of 1/9 from the agent prior: 

�(x) I 0.�5 1 0�5 1 0.�5 

depending on its observation 0, the agent would expect the 

following payments for its reports: 

s a b c 

o= a 2.4 0.6 0.4 

o= b 0.4 1.6 0.4 

o= c 0.4 0.6 2.4 

and thus truthful reporting always gives the highest payoff. 



B. Agents do not adopt the public prior 

In some cases, agents may be more informed than the public 

model. For example, they may observe that there are traffic 

jams, fires or other incidents that will cause the pollution level 

to be higher than expected by the model. In this case, their 

prior belief even before measurement could be considerably 

different from the public map R. 
If this means that the difference between R and the private 

belief Pr is larger than the threshold E, the agent may no 

longer be incentivized to report truthfully. For example, given 

the private beliefs as above, if R were as follows: 

�(x) I 0�5 1 0�1 I 0�4 

depending on its observation 0, the agent would expect the 

following payments: 

s 
o= a 
o= b 
o= c 

a 

1.2 

0.2 

0.2 

b c 

3 0.25 

8 0.25 

3 1.5 

and thus report b no matter what the actual observation was. 

While the fact that the report is not truthful may be 

considered undesirable, note that in this example, reporting 

b actually helps the public report R to converge more quickly 

to the agent's private belief than reporting truthfully. 

This is interesting in particular if the agent's private belief 

is more informed than the public map, i.e. that it is closer to 

the true value distribution: 

Definition 3: An agent's prior beliefs Pr[·] about a signal 

with true distribution Q[.] are informed with respect to a public 

prior R[·] if and only if for all v, either R[v] ::; Pr[v] ::; Q[v] 
or R[v] ;::: Pr[v] ;::: Q[v]. 
In such a case, it would be most helpful to make the public 

map R converge to the private beliefs as quickly as possible. 

We are now going to show that the Peer Truth Serum incen­

tivizes helpful reports that drive the public map closer to the 

true distribution without necessarily being truthful. 

Thus, convergence happens in two steps: 

1) first the diverse private prior distributions and the pub­

lished pollution map converge to the same distribution, 

establishing a common frame of reference, and 

2) once this is established, the incentives are for truthful 

reporting and both the public map and the private priors 

converge asymptotically towards the true distribution. 

Such a two-step process makes a lot of sense in community 

sensing, since a sensor is usually present in the system for an 

extended period of time and will only have to pass the initial 

phase once when joining the network. 

We first show the following property of the Peer Truth 

Serum: 

Proposition 2: Provided the the rational update assump­

tion (1) holds and all agents prior beliefs are informed, using 

the Peer Truth Serum no agent ever reports a non-truthful 

answer s = b when according to its beliefs, the true answer a 

is more under-represented in the current public prior R: 

Pr(a)/R(a) > Pr(b)/R(b) =? s(a) =J b; 

Proof For the case where the agent believes the reference 

report to be truthful, this follows directly from the rational 

update assumption and the payment rule. After observing a, 
the expected payments are for reporting a: 

Pra(a) 
R(a) 

and for reporting b: 

Pra(a) Pr(a) 
------

Pr(a) R(a) 

Pra(b) Pr(b) 
------

Pr(b) R(b) 

The first term is greater for a than for b by the rational update 

assumption, and the second term is greater for a than for b 
by the condition of the proposition. Thus, the agent will not 

report b instead of a. 
For the case where the agent believes that the agent pro­

viding the reference report also misreports using an informed 

prior, as it knows that this other agent will not report b instead 

of a, misreporting b for a would only lower the probability of 

matching reports and thus not be rational. 

Thus, in all equilibria where agents have informed priors 

and believe each other to have informed priors, the proposition 

holds. • 
We now use this result to show the following: 

Proposition 3: In the current distribution R, let A be the set 

of underreported values (Va E A, R(a) < Pr(a» and B the 

set of overreported values (Vb E B, R(b) ;::: Pr(b». There will 

never be a non-truthful report for some answer b E B instead 

of another answer a E A. Thus, provided that the agent's prior 

beliefs are informed with respect to R and the true distribution, 

the combined frequency of reports of values b E B is not 

greater than the agent's believed frequency LbEB Pr(b). 
Proof For all a E A, R( a) / Pr( a) < 1 whereas for 

all b E B, R(b)/ Pr(b) ;::: 1. By Proposition 2, there are 

never any reports of values in B when the true values were 

in A. Thus, the combined frequency of all reports of values 

in B cannot be larger than the true frequency LbEB Q(b). 
By the assumption that the belief Pr is informed, we have 

LbEB Q(b) ::; LbEB Pr(b) ::; LbEB R(b), and thus the 

combined frequency is also not larger than LbEB Pr(b). • 
Now recall that the public statistic R is updated by averag­

ing the reports obtained from agents. Thus, we have: 

Proposition 4: Within some finite amount of updates, for 

all values of b E B, the public statistic R( b) < Pr(b) + E, and 

consequently for all values of a E A, R(a) > Pr(a) - E. 

Proof The frequency of values in B will be not larger 

than what is believed by the agent, so R will gradually be 

reduced to become arbitrarily close to Pro Likewise, the 

frequency of reports of values in A will be at least as large 

as what the agent believes, and thus also become arbitrarily 

close to Pro • 



Fig. 3. A spatial setting of four regions. 

Thus, agents that have prior distributions that diverge from 

the public prior in an informed way will provide helpful reports 

that drive the public map close to its own beliefs. 

When the private priors are not informed, such convergence 

may still happen, but cannot be guaranteed. However, such a 

case is not realistic: either an agent has background informa­

tion not accessible to the center, and in this case its beliefs 

should be more informed, or otherwise it should believe the 

distribution given by the center. Another issue is what happens 

when agents have informed private prior distributions but they 

differ significantly. 

Both cases are helped by the fact that rational agents 

should gradually adapt their beliefs about the model output 

to the published distribution R, and thus eventually converge 

to a single distribution. However, such convergence may be 

undesirably slow. 

For the case where the private prior Pr is equal to the true 

distribution Q, helpful reports actually speed up convergence 

to the true map. This is because the untruthful reports are 

always for values where R/ Pr is lower than for the true 

value, i.e. values where R should be increased more strongly 

to approach Pr. Helpful reports can thus be more valuable 

than truthful reports. 

V. EXAMPLE 

We consider the setting shown in Figure 3 where five 

agents {51, . . .  , 55} are making air-quality measurements 

in different locations. The center divides the area into four 

regions: the side street on the east (Rl), the main road on the 

south (R2), the library, which is the region north of the main 

street and east of the side street (R3) and the region south of 

the main street (R4), and uses three possible pollution levels 

V = {low, medium, high}. 
We compare two different incentive schemes: peer predic­

tion as described in [8], [9] using the quadratic scoring rule: 

pay(x, p) = 2p(x) - 2:: p(V)2 
v 

and the Peer Truth Serum mechanism we propose in this 

paper. In the peer prediction mechanism, for each possible 

value that an agent might report the center needs to define a 

posterior distribution to assume. For this example, we assume 

that the center derives an assumed probability distribution 
, 1 t 

Pr s
' 

for reported value s by taking the public map as the 

prior distribution, increasing the probability for the reported 

value by 50%, and then renormalizing the distribution: 

Pr�,t(x) = 1.5Rl,t(x)/ex if x = s, Rl,t(x)/ex otherwise 

A 1 t 
with ex chosen so that Lx Pr s

' 
(x) = 1. The difficulty with 

peer prediction is that agents might not actually have this 

posterior distribution, and this can cause failures as we will 

see below. 

We now illustrate the two incentive schemes on two example 

measurements, one where both encourage a truthful report and 

one where both encourage a non-truthful report. The incentives 

that are computed can become a payment to reward the agent 

for its effort, or they could be reputation that accumulates and 

determines an agent's influence on the public map. 

A. Example of Truthful Reports 

First, we look at the peak hour of t1 = 18:00 where 

the public prior for the pollution level at the library (R3) 

is published. At the same time, agent 53 has a private 

prior distribution PrR3,tl that is influenced by observing the 

current weather and traffic conditions, and therefore somewhat 

different from the current map value. 

R ,t 
PrR3,tl 

low medium 

0.1 0.5 

0.15 0.7 

high 

0.4 

0.15 

The agent measures that the level is in fact medium, and 

updates her belief to obtain the posterior belief Pr:;'!�i
l
um as 

follows: 

high 

0.1 

During the same time interval, the center also receives 

reports of medium levels from 51 and 54, and high levels 

from 52 and 55, and thus concluded that the pollution level 

at the location of 53 is mR3,tl=medium. However, the agent 

does not know anything about these measurements except 

that it assumes them to be truthful, and so its best guess is 

that mR3,tl is drawn from the same distribution as its own 

posterior. 

1) Peer prediction with quadratic scoring rule: Using the 

assumption about the agent's posterior belief given above, the 

center computes the following assumed posterior probability 

distributions for each reported value s: 

s low medium 
A t 

Prlo� 0.14 0.48 

high 

0. 38 
A R3,tl Pr medium 0.08 0.6 0. 32 
A R3,tl Prhigh 0.08 0.42 0.5 

The agent can either obtain these distributions from the cen­

ter, or compute them itself using the public map RR3,tl and the 



rule the center uses to compute the assumed posterior. Using 

its true posterior distribution, the agent can now compute the 

expected reward when reporting the different values, given by 

the probability that the reported value matches the model times 

the reward that would result in that case: 

s 

low 
medium 
high 

E[pay(s)] 

0.1· (2 . 0.78 - 0.78 - 0.07 - 0.15 ) = 0.092 
0.4· (2 . 0.14 - 0.662 - 0.142 - 0.192) = -0.085 
0.5 . (2 . 0.27 - 0.642 - 0.092 - 0.272) = 0.025 

and so non-truthfully reporting low give the highest payoff. 

s E[pay(s)] Note that the scoring rule is not truthful because the posterior 

----;-lo-w---+--:O:-'.71--'. 7(2::--:-::. 0:::- . -=-1""" 4------:::-0""'. 1--: 4""---------:::-0--:. 4""" 8""---------:::-0.""" 3""" 8"')'---- =- -----:::- 0--:: . O:-:::-I -=-I--:aist ribution assumed by the center is very different from the 

medium 0.8· (2 . 0.6 - 0.082 - 0.62 - 0.322) = 0.58 agent's true distribution. Note also that this non-truthful report, 

high 0.1· (2 . 0.42 - 0.082 - 0.422 - 0.52) = 0.056 if taken into account by the center, will make the public map 

and so it can expect the highest reward when truthfully 

reporting medium. 
2) Peer Truth Serum: As above, upon measuring a level 

of medium the agent updates its belief and can compute its 

expected payment for the different possible reports (assuming 

a = 0 and b = 1): 

s low medium high 

E[pay(medium, s ) ]  0. 110. 1 

= 1 

0.8/0.5 0. 110.4 

= 1.6 = 0.25 

So the expected payment is highest for a truthfully reporting 

the pollution level to be medium. 

B. Example of Non-Truthful/Helpful Reports 

We now look at the situation one hour later (t2=19:00) 

and agent 81 is making measurements on the side street 

(Rl). The current public map of the pollution levels has a 

different distribution. At the same time, agent 81 might know 

that a moderate traffic jam has just developed on the main 

road, and that winds blow the pollution into the side street. 

Consequently, her private belief about the pollution value 

became skewed to the higher value. 

R ,t 

PrR1,t2 

low 

0.7 

0.3 

medium 

0. 1 

0.35 

high 

0.2 

0.35 

Subsequently, SI measures the level to  be high, and gets 

the following posterior: 

o high 

P ,t 0 5  rhigh . 

1) Peer prediction with quadratic scoring rule: Using the 

assumption about the agent's posterior belief given above, the 

center computes the following assumed posterior probability 

distributions for each reported value s: 

s 
A ,t 

Prlow 

low medium 

0.78 0.07 
A Rl,t2 

Pr medium 0.66 0. 14 

high 

0. 15 

0. 19 
A Rl,t2 

Prhigh 0.64 0.09 0.27 

Using its true posterior distribution, the agent can now 

compute the expected reward when reporting the different 

values, given by the probability that the reported value matches 

the model times the reward that would result in that case: 

diverge even more from the truth. 

2) Peer Truth Serum: 81 believes that other agents, for 

example 82 or 85, would also report much higher pollution 

levels, and assumes the reference value predicted by the model 

to follow this posterior distribution, to obtain the expected 

payments: 

s 

Ef,pay(high, s ) ]  
low 

0. 1/0.7 

= 0. 143 

medium 

0.4/0. 1 

= 4  

high 

0.5/0.2 

= 2.5 

So in this case the highest expected payment is for the agent 

to report medium. Although this is not the truthful report, we 

have shown in section IV-B that it is nevertheless a helpful 
report, which drives the public map closer to the agent's private 

beliefs. When the two coincide, reporting the truth will become 

the best policy. 

V I. CONCLUSIONS 

For the Internet of Things to grow to large scale, it needs 

to develop mechanisms to self-organize in the presence of 

multiple self-interested agents controlling the devices. For 

sensor networks, this next step is community sensing[7], [1], 

where sensors are operated by individuals that feed their 

measurements into a common network. 

We proposed the Peer Truth Serum, an incentive mechanism 

for a community sensing scenario that rewards accurate and 

truthful measurements as well as providing information that 

updates the public model. It is the first mechanism that does 

not need to make strong assumptions about the agents' prior 

beliefs or updating mechanism, and is thus realistic for a 

practical setting. After an initial adaptation phase where agents 

adjust their private beliefs and the publicly available map, the 

incentive scheme motivates agents to contribute truthful and 

accurate measurements. It thus provides the necessary quality 

control to ensure that the result of the conununity sensor 

network are valid in spite of the absence of explicit control. 

[11] have shown a way to use truthful information elicitation 

based on scoring rules as reputation feedback that can adjust 

the influence of raters to their credibility. A similar approach 

could be used to adjust the influence of sensors to their 

accuracy and thus use the reward scheme as a reputation 

system. Such a reputation system could provide much stronger 

quality control, including guarding against reports that are 

intentionally false. 

While the mechanism ensures that agent beliefs will con­

verge to a COlmnon value even when they start out from very 



different values, in community sensing agents observe the 

same local phenomena and should have similar prior beliefs 

(even these are unknown to the center). For example, if some 

area experiences pollution due to fires, this will be apparent to 

agents in the area, although it would not be to the center. We 

therefore expect that the mechanism will quickly converge to 

the truthful reporting regime, while still being robust to new 

agents that may not share the prior beliefs. 

Other issues that have been of concern in other applications 

of truthful elicitation mechanisms are less of a concern in our 

setting. In particular, collusion among agents that measure in 

related locations is not very likely, as measurements are not 

anonymous as for example in product rating. Also, strategic 

timing of reports is unlikely as pollution values change in ways 

that are hard to predict. 

An important open issue is that besides encouraging agents 

to report accurate measurements, we also want them to provide 

measurements that improve the map as much as possible. [9] 

addresses this problem in the framework of scoring rules. 

However, in their framework, sensing is driven by requests 

of the center who may not be aware of where additional 

measurements are needed. In future work, we plan to develop 

a similar framework that is driven by the conununity itself, so 

that agents are incentivized to provide the measurements that 

they believe will provide the most information to the map. 
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