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On the Boundedness and Nonmonotonicity of Generalized

C. A. FIELD, Zhen PANG, and A. H. WELSH

We show in the context of the linear regression model fitted
by Gaussian quasi-likelihood estimation that the generalized
score statistics of Boos and Hu and Kalbfleisch for individual
parameters can be bounded and nonmonotone in the parameter,
making it difficult to make inferences from the generalized score
statistic. The phenomenon is due to the form of the functional
dependence of the estimators on the parameter being held fixed
and the way this affects the score function and/or the estimator
of the asymptotic variance. We note that in some settings, the
score statistic can be bounded and nonmonotone.

KEY WORDS: Confidence intervals; Estimating equations;
Quasi-likelihood estimation; Score test.

1. INTRODUCTION

The score test was introduced in the context of likelihood
inference by Rao (1948) and Aitchison and Silvey (1958). It
is widely used in econometrics where it is called the Lagrange
multiplier test (Breusch and Pagan 1980). The test has the at-
tractive property that the score statistic on which it is based uses
only the restricted parameter estimate under the null hypothesis
and avoids calculating the unrestricted parameter estimate. The
score test is widely used with likelihood models and has a limit-
ing chi-squared distribution under general regularity conditions.

Once we are no longer in the likelihood setting, the gener-
alized score statistic becomes appropriate. One natural setting
is that of estimating equations that are developed in general by
Godambe (1960), in robustness with M-estimation by Huber
(1964) and in longitudinal models with generalized estimating
equations or GEE by Liang and Zeger (1986). This widely used
approach of estimating equations provides a useful, general way
to define estimators in complicated situations where the model
is misspecified or incompletely specified. In particular, estimat-
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Score Statistics

ing equations do not assume (1) that the estimating equation is
necessarily obtained by differentiating the log-likelihood or in-
deed any objective function, and (2) any model used to generate
the estimating equations is not necessarily the underlying model
that generated the data. In such situations, it is natural to base
inference on generalized score-test statistics that are appropriate
for these general frameworks. General constructions have been
given by Kent (1982), Engle (1984), Breslow (1990), Roznitzky
and Jewell (1990), Boos (1992), and Hu and Kalbfleisch (2000).
An important feature is that unlike generalized versions of likeli-
hood ratio tests, the distribution of generalized score statistics is
asymptotically chi-squared even when the estimating equations
are obtained from a model different from that that generated the
data. In addition, some versions of the generalized score statistic
are invariant to smooth transformations of the parameters.

The score statistic and the generalized score statistic are usu-
ally presented and discussed from the point of view of carrying
out hypothesis tests. Like all tests, those based on these statistics
can in principle be inverted to produce confidence intervals for
the parameters. This is most straightforward when the statistic is
a pivotal quantity that is monotone in the parameter of interest.
We discovered that generalized score statistics can be bounded
and nonmonotone in a practical context when we actually tried
to use them to compute confidence intervals for variance compo-
nents in mixed models and failed. For a test, boundedness means
that the test may have zero power; for a confidence interval,
boundedness means that the equations defining the endpoints of
the interval may have no solutions and nonmonotonicity means
that they may have more than one solution, making it difficult
to solve the endpoint equations for confidence intervals. Thus,
boundedness and nonmonotonicity have real, practical conse-
quences for making inference in small samples. The purpose of
this note is to point out that the score statistic and the general-
ized score statistic can be bounded and nonmonotone even in
such simple problems as simple regression.

The score statistic and the generalized score statistics of Boos
(1992) and Hu and Kalbfleisch (2000) are described in detail
in Section 2 and applied to the slope parameter in the linear
regression model with the parameters estimated by Gaussian
quasi-likelihood estimation in Section 3. We show that the score
statistic is bounded and monotone and the generalized score
statistics can be bounded and nonmonotone even in this simple
situation. In Section 4, we show that in longitudinal models
the generalized score statistic is often bounded and nonmono-
tone and that in other simple models the score statistic itself
can be bounded and nonmonotone.
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2. SCORE AND GENERALIZED SCORE STATISTICS

Suppose that @ is a p-vector parameter and that we are in-
terested in making inference about a component of 6 that, by
reordering the elements of 6 if necessary, we can take to be the
first element 6, . Let 0, be the (p — 1)-vector of the remaining
elements of 0 so that 8y = (0, 0({2)7. Suppose we have inde-
pendent observations yy, ..., ¥, with common probability den-
sity function f that we want to use to make inferences about .

LetS(0) = n~'/? Yol ¥(yi, 0) be aset of p estimating func-
tions for @ in the sense that the estimating equations S(f) =
0 have a unique solution ) , which is a Fisher consistent estima-
tor of 6. Let S(0) be partitioned as S(0) = (5(0), S»(#)) so that
S1(0) is the (real) estimating function associated with estimating
the (scalar) component 8y; and S,(0) is the set of p — 1 estimat-
ing functions associated with estimating 6,. For each fixed 6,
let @,(6,) € R~ be the solution in @, of the equations

0 =S,(61,0,).

We call 8(6;) = (61,0,(6))) € R” the profile estimator of
0o when the null hypothesis 6y; = 6; holds, and 51{9(01)}, the
first component of the estimating equation evaluated at the pro-
file estimator, the profile estimating function for 6y, . We consider
basing inference about 8y, on statistics of the form

06)) = 11001}/ TB©O)}>, (1)

where U {6(0))} is an estimator of the asymptotic variance of
the profile estimating function when 6y, = 6;.

When f is parameterized by 6 and ¥(y;,0) = f'(vi,0)/
f(y, 0) is the derivative of log f with respect to #, we call the
p-vector S(@) the score function and the p x p matrix

W) =n""Y E{¥'(,0)}
i=l
the Fisher information. If W(@) is partitioned conformably
with S(@), we can use the large sample theory for maximum
likelihood estimators to show that the asymptotic variance of
51{0(91)} when 9()1 = 91 is

= W11(80) — W12(80)W22(00) "' W21 (80).
2

The statistic Q(0;) in Equation (1) with U {5(91)} estimating
Equation (2) is called the score statistic (Rao 1948; Aitchison
and Silvey 1958). More generally, in the theories of estimat-
ing equations, M-estimation and GEE, we consider estimating
functions in which ¥ (y;, @) is typically not the derivative of
log f and this needs to be taken into account in the asymptotic
variance of S; {9(91)} when 6y; = 6;. Let the variance matrix

Uy) = WO

VO) =n""Y var{¥(y:. 0))
i=1
also be partitioned conformably with S(@). Then, yvith b(6) =
W1, (0)~' Wy (8), the asymptotic variance of S;{#(#;)} when
9()1 = 91 is
U(6o) = Vi1(60) — 2b(80)" V21(80) + b(80)" V22(80)b(8).
3

As noted by Boos (1992), there are other ways to write
U(0,) but we only need to consider the above form. In this case,
the statistic Q(#,) in Equation (1) with U {6(6))} estimating
Equation (3) is called a generalized score statistic (Boos 1992;
Hu and Kalbfleisch 2000). When ¥ is the derivative of log f,
we find that V(0) = W(6) and U (#,) in Equation (3) reduces
to U(#y) in Equation (2). This means that the score statistic is
a particular generalized score statistic and we can treat the two
types of statistic together.

An important issue for Q(0;) in Equation (1) is how we
estimate the asymptotic variance. We need to estimate

e 6y when 6y, = 6;, and
e W(#)and V(0).

The minimal requirement is that the estimators are consistent
but, as we will see, this still leaves us with considerable freedom.

The estimator 6 is consistent for 0, but it is more usual to
use the profile estimator #(6),) in score statistics. The profile
estimator is used by both Boos (1992) and Hu and Kalbfleisch
(2000); so, to simplify notation, we have incorporated it into the
definition (1) from the start. However, it is useful to also explore
the effect of using other estimators, such as 0.

We may be able to compute W(#) and V() directly and avoid
the need to estimate them. However, in the context of GEE, the
model often only describes the first two moments of y; and in
M-estimation we often specify a vague neighborhood of models,
so we do not have a fully specified parametric model and may
not be able to compute W(#) and V(@). In this case, we can use
the estimators

W@ =n"> ¥(i.0)
i=1

and

Vi@ =n"" Y Y, 0¥ (i, 0)"
i=l

—n 'Y YO Y Y(y;. 0,

j=1 j=1

which we call the observed versions of W(#) and V(#). When
W(6) can be computed, Boos (1992) argued that it is more
appealing than W, (#). In the Gaussian location-scale problem,
W, (#) depends on estimates of the third and fourth moments,
which Boos argues are unnecessary in Gaussian inference for
the mean, whereas W(#) is diagonal and these terms do not
appear. There are also hybrid schemes that use the estimates
from W, (0) of nonzero elements in W(@). In contrast, Boos
observed V,(0) seems generally to be preferred to V(6). When
we compute V() to estimate V(6), wehave E¥ (y;, 6) = 0so
we can consider the simpler estimator

Vi@)=n""Y Y. 09y, 0).

i=I

The observed V() is used by Hu and Kalbfleisch (2000) and
its simpler version V’;(ﬂ) by Boos (1992). The score statistic
uses W(0) in place of V(@).
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To summarize, we are considering statistics Q(6;) of the form
(1) with different estimators U {6(6)} of U(b) in Equation
(3). For the score statistic, V(0y) = W(f,) so ﬁs{é(el)} has
V(6)) estimated by W{é(@l)}; for the generalized score statistic
by Hu and Kalbfleisch (2000), 171.”({9(91)} has V(6,) estimated
by Vy{é(el )}; for the generalized score statistic by Boos (1992),
173{9(91)} has V() estimated by V;{é(@l)}. These estimators
differ only in how they estimate V(). From the definition of
6(0)), only the first component of 7! Z?Zl ¥{yi, 9(91)} can be
nonzero, so Vy11{8(61)} = V;;,{0(61)} — n~"'S1{6(6))}* and we
have Uyk{0(6))} = Up{0(6))} — n~15,{0(6,)}*. The fact that
the difference between the estimators depends on 6; means that
the generalized score statistics using these estimators are dif-
ferent functions of 6; and hence can have different shapes.
If the estimators are evaluated at the estimator § instead of
the profile estimator 6(6,), then Vy(é) = Vt(@) and they both
reduce to )

U®) = Vv},,8) — 2b®)" Vi, (8) + b®)" Vi, (8)b(®).

Both Boos (1992) and Hu and Kalbfleisch (2000) argued in
favor of their estimates over U (9) on the grounds that their
estimates make the generalized score statistic invariant to repa-
rameterization. The converse view is that using U (9) makes
the generalized score statistic for the location parameter in the
location-scale problem estimated by Gaussian quasi-likelihood
reduce to Student’s -statistic.

Under standard conditions, the distribution of Q(6;) in Equa-
tion (1) under Hy : 6y = 6, is asymptotically a standard Gaus-
sian distribution but we can also use other methods such as
the bootstrap to approximate the distribution. For example, Hu
and Kalbfleisch (2000) proposed using the estimating function
bootstrap as an alternative way to approximate the distribution
of Q(6,). With either distribution, it is in principle straight-
forward to use Q(6;) (or its square) to test the simple null
hypothesis Hy : 6y; = 6; (Boos 1992) and the test can be in-
verted to construct confidence intervals for 6y, . Specifically, for
a 100(1 — y)% confidence interval, we need to find the upper
and lower endpoints for the interval by solving equations of
the form Q(01) = q1—, 2 and Q(0:) = g, 2, Where g, is the uth
quantile of the distribution of Q(8;) (Hu and Kalbfleisch 2000).
This is straightforward when Q(6) is monotone and unbounded
in 6;. However, Q(6;) can be bounded and nonmonotone in 6;.
As noted in the Introduction, for a test, boundedness means
that the test may have zero power, and for a confidence inter-
val, boundedness means that Q(8;) = g may have no solutions
and nonmonotonicity means that Q(0;) = ¢ may have more
than one solution. It might be tempting to argue that we should
use U (9) instead so that the denominator does not depend on
0;. However, with general estimating equations for arbitrary
models, the profile estimating function can be bounded and/or
nonmonotone either from the functional dependence of 6(6)) on
0, or because the estimating function S;(#) is nonmonotone in
0 and, in the latter case, using U (9) does not resolve the prob-
lem. This raises difficulties when trying to use the Q(6;) to make
inference for 0; from small samples.

94 Statistical Practice

3. THE SLOPE IN REGRESSION-SCALE PROBLEMS

To demonstrate and gain more insight into the potential
boundedness and nonmonotonicity of Q(6;), we compute
Q(6,) for the slope parameter in a regression-scale model and
explore its properties. Let

yi=Mi +e, withu; =a+x;8, i=1,...,n,
where {e;} are independent and identically distributed random
variables with mean zero and variance o2. Suppose we are
interested in the slope parameter 8. Write 8 = (8, a, 02)” so the
parameter of interest 8 is the first element of §. The Gaussian

quasi-likelihood estimating function (Wedderburn 1974) for 6 is
S@) =n""2 3" ¥(yi. ), where

Vi, 0) = {xi(yi — ui)/o?, (i — pi)/o?,
—1/20% + (yi — wi)* /2047

The resulting estimating equations have a unique, explicit solu-
tion that includes the familiar least squares estimators of o and
B, and the method of moments estimator of o2.

To simplify notation, let ¥=n"'Y"  x;, Xy=n"
Y xiyi, X =n"" Y ", x;ipu, etc. Then the derivative matrix
for S(0) is

1

W, (6)
n_IZ:xiz/U2 %/o? xy — xp)/o*
i=1
x/o? 1/0? G — /o
| - et G-t —1204 41 |
x Y (i — )’ /o°
i=1

so the expected derivative matrix for S(@) (under the model) is

n
n’IX:x[z/a2 %/o? 0
i=1

x/o? 1/0? 0
0 0 1/20%

W) = —

If we regress y; on x; — X instead of x;, then W(@) is di-
agonal and all three parameters are orthogonal. These cal-
culations require only the first two moments of the model
E(y|x;) = u; and var(y|x;) = 0% to be correctly specified, es-
sentially because the estimating equations are linear. However,
for nonlinear and other M-estimation equations, the off-diagonal
terms are not necessarily zero, so using W(#) may not greatly
simplify W, (@). This point is often obscured by the popular
but misleading traditions of assuming either that the scale pa-
rameter o is known or that the e¢; have a symmetric distribu-
tion. Explicit expressions for V(@) and V’;(()) are given in the
Appendix.
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Suppose that we fix 8 and profile out the other parameters.
We obtain the estimators

ap) =y —xp
mi(B) =y + (xi = X)B

B =n""Y {yi — (B
i=1

The profile estimating function for g is $;{0(8)} = n'/*(xy—
m(ﬂ))/é(ﬂ)z = nl/z(sxy - Sxxﬂ)/é(ﬂ)z’ where s,y = n!
i =D — ) and  sy=n"' Y0 (- 0P so
Q(pB) given by Equation (1) is

Q(B) =n'(s0y — 5::B)/5(BY TP, “)
where ﬁ(ﬂ) = 17{9(;3)}. The score statistic for 8 uses

(B Us(B) = sxn™ Y (i — (B

i=1

the Hu and Kalbfleisch statistic uses

GBY Unx(B) =n"" Y {xiyi =%y — (xipi — XY

i=1

=250 ) (i — 5 = (i — )
im1
x {x;yi — Xy — (xip; — xp)}

+207 Y =5 (- Y

i=I

and the Boos statistic uses

B Us(B) =n"" Y x(yi — i) =280~ Y xi(yi — i)’

i=1 i=1
n
+ 2 (i — )
i=1

If we regress on x; — ¥ instead of x;, the score statistic is un-
changed but b(8) = 0, so the Hu and Kalbfleisch statistic uses

F(B) Unx(B) = n~" > [(x; — )(yi — 5)

i=I
— Sxy — {(xi - -f)z - sxx}ﬂ]2

and the Boos statistic uses

(B Us(B) =n"" D {(xi = ®)vi — F) — (x; — XY

i=1

The score, Hu and Kalbfleisch, and Boos statistics for re-
gression on x; are plotted in the subfigures in Figure 1 for
n = 10 observations generated with the x; independent uniform
(0, 1) random variables, the e¢; independent standard Gaussian
random variables, and @ = (0.5, 1, 1)7. The score statistic is
monotone and bounded while the Hu and Kalbfleisch and Boos
statistics are nonmonotone and bounded for these data. All three
subfigures have two outer dashed boundaries, while the second
and the third have also a shaded gray strip above the lower
boundary. The equation Q(8) = g has two solutions for ¢ in

the gray strip, one solution for g between the upper edge of the
gray strip and the upper dashed boundary, and no solutions for g
either above the upper dashed boundary or below the gray strip.
The Boos statistic runs into difficulties solving Q(8) = ¢ for
q = £1.96, the value large sample theory would suggest for
95% confidence intervals. The Hu and Kalbfleisch statistic runs
into difficulties for ¢ slightly larger than 2 and between —2 and
—3 and the score statistic for ¢ slightly larger than 3 or slightly
smaller than —3. These values are not the usual values we en-
counter when we use the Gaussian approximation, but they can
arise when we use bootstrap values. For the slope parameter 8,
the plots from regression on x; — X are very similar to those for
regression on x; and hence are not included.

Figure 1 is a useful illustration but it does raise some ques-
tions such as when and how often does boundedness and/or
nonmonotonicity happen? What are the values of Q(pB) at the
asymptotes and of Q(f) at the turning point when it is non-
monotone? What is the turning point? We can obtain precise
answers to these questions by studying Q(8) as a function of 8.

A key simplifying step is to notice that after we square the
denominators and gather the resulting terms, we can write all
three functions of Q(8) in the form

cB+d
(ef? —2fB + &)'/?

with different values of ¢, d, e, f, and g. For Q(B) to be well
defined, we require the quadratic function ef”> —2fB + g >
0 for all B. This implies that ef> — 2 f8 + g has no real roots
and hence eg — f2 > 0. This in turn implies that e # 0. Letting
B — oo, we see that Q(B8) — £n'/%c/e!/?, giving the values
of the asymptotes. These depend on n and are further apart for
larger sample sizes. We can study the monotonicity properties of
Q(B) by computing its derivative with respect to 8 and checking
whether it changes sign or not. We find

, o ¢ 12 (B + d)2ep — 2f)
OB = v " e 275+ 9
_ pceB=2fB+g)  (B+d)Nep—f)
(B -2fB+gY? (e -2fB+g)1

172 —(cf +de)p +cg +df
(ef* —2fB +8)**
The function Q is monotone if and only if the numerator is

constant, thatis, cf + de = 0.If cf + de # 0, there is a turning
point at

o) =n'?

cg +df
,31 =
cf +de
at which
0B = n'2(c’g + 2cdf + d%e)

T (Peg?—c2f2g — 2cdf3 — d2ef? + 2cdefg + d2e2g)\/?’

To apply these calculations to the different versions of Q(8),
we compute the coefficients c, ..., g and then the asymptotes
+n'/2¢c/e'/?, the monotonicity condition cf + de = 0, and the
turning point {8;, Q(B;)}. We can summarize these results as fol-
lows. The score statistic is monotone and bounded with asymp-
totes Fn'/?> as B — +oo. The Hu and Kalbfleisch and Boos
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Score

Hu and Kalkbfleisch

Boos

Figure 1.

beta

Plots of the score, Hu and Kalbfleisch, and Boos score statistics for n = 10 observations generated from a simple linear model with

uniformly distributed covariates and normally distributed errors. All three subfigures have two outer dashed boundaries, while the second and
the third have also a shaded gray strip above the lower boundary. The equation Q(8) = ¢ has two solutions for ¢ in the gray strip, one solution
for g between the upper edge of the gray strip and the upper dashed boundary, and no solutions for ¢ either above the upper dashed boundary or

below the gray strip.

statistics for § are bounded: they asymptote to

12
q:nl/zsxx/ n! Z(xi -5t = sfx} and
i

1/2
:Fnl/zsxx/lnl Z(xi - i)4} 5

respectively, as § — Zoo. They are monotone in g if

Hg = Sxxnt ! Z(xi -0 -5 - sxyn_1 Z(xi —0)r=0;

i i

otherwise they have a single turning point at

{swn-1 Z(x,-—ff(y,-—y)—smn-IZ(xi—ﬂz(yi—y)z} /Hﬂ

and hence are nonmonotone. These results are illustrated in
Figure 1; when the Hu and Kalbfleisch and Boos statistics are
nonmonotone, both asymptotes are approached from below.
The different statistics of Q(8) differ only in the denominator.
The common numerator S;{#(B)} is bounded, behaving like
—n'/2/B as B — o0, and has two turning points at {s,, +
(SxxSyy — $5,)'/?}/8xx, s0 is nonmonotone. The score, Hu and

96 Statistical Practice

Kalbfleisch, and Boos statistics for 8 have a different shape
from S, {6#(B)}, so the properties of the Q() statistics are due to
both $1{0(B)} and the way we choose to estimate the variance
of $1{0(B)}.

The monotonicity condition for the generalized score statis-
tics can be rearranged to show that Q(f8) is monotone if

R D ST OO )

Sxx - n-1 Zi(xi - X)4
One interpretation is that, for regression of y; on x; — X,
the statistic Q(B) is monotone if the least squares estimator
of B is the same as the weighted least squares estimator
of B with weights (x; — X)?. According to condition Z8
in the article by Puntanen and Styan (1989), this occurs if
and only if for any b; and b, we can find ¢; and ¢, such
that 0 = b] + bz(x,' - }E) - C](xi - )f)z - cz(x,- - X)S, for all
i =1, ..., n. This is possible when x; takes on just two distinct
values but usually not otherwise, so Q(8) is often nonmonotone.
The results depend on the estimation method (through the
estimating equations) and the model being fitted but not on
the actual underlying distribution. Thus, they apply even when
the distribution is misspecified. Finally, the results hold for
any fixed sample size n. They show that the boundedness and
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nonmonotonicity have decreasing impact as the sample size
increases in the sense that the asymptotes and the value of the
statistic evaluated at a turning point diverges at the rate n'/2.
This shows that the problem does not conflict with standard
asymptotic results, although this is little consolation in practice
with small samples.

4. DISCUSSION

We have shown in the context of the linear regression model
fitted by Gaussian quasi-likelihood estimation that the score
statistic is bounded and the generalized score statistics of Boos
(1992) and Hu and Kalbfleisch (2000) for individual param-
eters can be bounded and nonmonotone in the parameter of
interest. We obtained simple theoretical results that character-
ize the boundedness and nonmonotonicity of these generalized
score statistics and illustrated their applicability on simulated
datasets. As shown in the theoretical results, the phenomenon
depends on the particular configuration of the data. It occurs in
simulation runs holding the covariate x; fixed and varying the
errors e; and also in simulation runs holding the errors e; fixed
and varying the covariate x;. It occurs even when the parameters
are orthogonal. The problem can be avoided in the regression
context by treating the variance as known (actually a common
strategy in illustrative examples) or by using the unrestricted es-
timator 6 instead of 6(6;) in estimating the asymptotic variance.
This latter approach is somewhat against the spirit of score-
based inference and sacrifices the property of invariance under
parameter transformation. More seriously, it does not work in
general because the profile estimating function can be a com-
plicated function of 6, through 9(91) that is not easily made
unbounded or monotone. These subtleties can make it difficult
to carry out inference based on generalized score statistics.

When we fit the simple linear regression model with Gaussian
quasi-likelihood estimation, the score statistic treating the errors
as actually having Gaussian distributions is bounded but mono-
tone. However, in general, score statistics can also be nonmono-
tone. A simple example to show this is when the data follow
the simple regression model with Student #-distributed errors.
The estimating function derived from the Student ¢-likelihood is
bounded and nonmonotone and the Fisher information depends
on the variance but not the slope or intercept so, if the variance
is known, the score statistic inherits nonmonotonicity from the
estimating function. This example illustrates that boundedness
and nonmonotonicity can occur with the score statistic as well
as the generalized score statistic and that it can occur even when
there are no nuisance parameters.

We chose to examine the slope in the simple linear regression
model to illustrate the issues in the simplest possible case. As
there are alternatives to basing inference on score or generalized
score statistics for this problem, its use as the example in the
article risks giving the impression that the difficulties are eas-
ily avoided by using other methods. However, in the estimating
equation or GEE context, there are fewer alternative choices:
Likelihood ratio-like statistics are often not available and Wald
statistics are usually thought to perform less well, so the prob-
lem cannot be so easily avoided. We have computed the Hu
and Kalbfleisch and Boos generalized score statistics for the

parameters of longitudinal data models (regression with corre-
lated errors) used in the GEE context and shown that the gener-
alized score statistics can be bounded and nonmonotone under
both the exchangeable correlation structure and autoregression
of order 1 (AR(1)) correlation structure. For example, with the
AR(1) correlation structure, the generalized score functions for
the intercept and slope are bounded and nonmonotone most of
the time, the generalized score function for correlation is gen-
erally bounded above but monotone, and, for the variance, the
Hu and Kalbfleisch statistic seems to always be unbounded and
monotone while the Boos statistic seems to be always bounded
below and nonmonotone. As we showed in our theoretical re-
sults, boundedness and nonmonotonicity also occur when the
model is misspecified. This means that boundedness and non-
monotone behavior also occur when, as often happens with
GEE, the working or fitted correlation matrix is different from
the actual correlation matrix. Incidentally, while n = 10 is small
in a simple regression problem, it is less unusual to have 10 or
fewer independent groups in more structured problems such as
arise with longitudinal or clustered data.

Recall that we discovered that generalized score statistics
can be bounded and nonmonotone in a practical context when
we actually tried to use them to compute confidence intervals
for variance components in mixed models and failed. We have
shown that this is a real problem with practical consequences
for making inference in small samples and developed some
understanding of why it occurs.

APPENDIX

To find the elements of the estimator U4Vy (0) = (cij(#)) used
by Hu and Kalbfleisch (2000), note that ¥ (y;,0)—
n~'/28(0) has elements {y; — y — (u; — @)}/0?, {x;y; — Xy —
(ipi — X} /0% and {(y; — wi)* —n=' Y0 (v — mi)?} /20,
respectively. So,

en@) =n"Y "y =3 — (w — WY

i=1

cn®) =n"" Y (yi—F—(u — WXy — X3 — (i — X))
i=1

@) =n"" Z{xiyi — Xy — (i — X))
i=1

@) =n""Y (i — ¥ — (i — )}
i=1

) A =i =0y (i =)’ [ 207

i=1

c3(0) =n"! Z{xiyi —xy — (i — X))

i=1

< i =i =n" Y (i —pw)z}/Zcr2

i=1
2

@ =n"" > i — ) —n7 > (i — )’ 4ot

i=1 i=1
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For the simplified observed estimator U4Vy*(9) = (cf‘j (0)) used
by Boos (1992), we find

@ =n""Y - ) O =n""Y x(i—w)

i=l1 i=1

@) =n"" Y X — ),

i=1

ch®) = —GF —W/2+n"" Y (i — )’ /207

i=l

5(0) = & —Xm)/2+n"" Y xi(yi — i)’ /207,

i=1
5@0) =n"" Y {(vi — i) — o?Y /40",
i=1

Regressing on x; — ¥ instead of x; simplifies some terms but
does not eliminate the third and fourth power terms.

[Received May 2011. Revised May 2012.]
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