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1. INTRODUCTION

Both classical (electrodynamic, acoustic, etc.) and
quantum (electron wavefunction in crystals) waves
propagating in media periodic in one or several direc�
tions acquire new properties which differ fundamen�
tally from those inherent in homogeneous media. One
of the main properties is the appearance of allowed
bands and forbidden gaps for the propagation of waves
in the frequency–generalized wave vector dependen�
cies [1]. Studies in this direction have been mainly
performed for transparent media; however, the con�
sideration of absorption and/or amplification in peri�
odic media is quite important for optics. Examples are
distributed feedback lasers [2] and active waveguide
periodic structures in which dissipative Bragg solitons
can be formed [3]. Of special interest are photonic
crystals and layered materials whose efficient opera�
tion is restricted by considerable losses, which should
be compensated by introducing amplification [4].
Currently, considerable success has been achieved in
the development of methods for introducing amplify�
ing layers into metamaterials [5–8], which motivates
further investigations of schemes with active metama�
terials.

In this paper, we analyze the linear propagation of
optical radiation in a system consisting of alternating
absorbing and amplifying layers. Linearity of the
regime is achieved if the radiation intensity in the
medium is lower than the saturation intensity in this
medium, and such regimes are required for a number
of metamaterial applications, including superresolu�
tion [5]. As we will see, the presence of dissipation–
absorption and amplification fundamentally changes
the type of propagation of waves in such media and, in

particular, the concept of allowed and forbidden bands
itself. We will show that bands with the zero attenua�
tion coefficient in this scheme are realized when
absorption is compensated by amplification. Another
feature of the amplifying media is the possibility of
appearance of instabilities resulting in the generation
or unlimited amplification of spontaneous emission in
infinite amplifying media [9]. The compensation
problem can be considered solved if amplification in
the system remains below the instability development
threshold, and in this paper we determine conditions
for satisfying this requirement.

2. WAVES IN A SYSTEM OF AMPLIFYING
AND ABSORBING LAYERS

Consider an isotropic nonmagnetic medium (per�
meability μ = 1) with complex linear permittivity (z)
and monochromatic electromagnetic radiation at fre�
quency ω. We will mainly analyze the case of s�polar�
ization (the electric field strength is E =
eyRe{E(z)exp(ikxn0x – iωt)}, where ey is the unit vector
directed along Cartesian coordinate y, kxn0 is the x
component of the wave vector, and n0 is the refractive
index of a transparent and homogeneous medium for
z  –∞). The corresponding one�dimensional
Helmholtz equation for the complex field amplitude
E(z) has the form (c is the speed of light in vacuum)

(1)

However, to verify the stability of the s�polarization
regime, it is also necessary to consider perturbations
with p�polarization. For the latter in the linear regime,
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it is more convenient to perform transformations with
the magnetic field strength H = eyRe{H(z)exp(ikxn0x –
iωt)}. In this case, the analog of Eq. (1) contains an
additional term [10, 11]:

(1a)

The medium is a system of plane�parallel layers
unbounded in the transverse direction and separated
by coordinates z0, z1, z2, …, zN. The external layers (z <
z0 and z > zN) are semi�infinite, while the internal lay�
ers have the thickness dj = zj – zj – 1, i = 1, 2, …, N,
z

⎯1 = –∞, and zN + 1 = +∞. The permittivity is (z) =
 = εj + iej if zj – 1 < z < zj, where εj and ej are the fre�

quency�dependent real and imaginary parts of the per�
mittivity (for real positive frequencies, ej > 0 for
absorbing layers and ej < 0 for amplifying layers). The

complex refractive index is  =  = nj + iκj, where
the branch of the square root is chosen such that the signs

of κj and ej coincide (εj =  – , ej = 2njκj, nj > 0). The
external layers are assumed transparent, and e0 = 0,
eN + 1 = 0, ε0 > 0, and εN + 1 > 0 for them. We also
assume for simplicity that the refractive indices of
external semi�infinite layers coincide, n0 = nN + 1 > 0.

The medium is homogeneous in each layer, so that
solution (1) and (1a) inside the jth layer is a sum of two
counterpropagating plane waves (G = E or H):

(2)

Here, kz  = , k0 = ω/c is the wavenum�
ber in vacuum, and the choice of the root branch for
internal layers is not important, generally speaking,
because terms in (2) include both variants of the
choice (the choice of the sign determines the interpre�
tation of waves corresponding to these terms). The
choice of the root branch for external (semi�infinite)
layers requires explanation. Indeed, we consider here
the propagation of a wave through a layered system for
the wave incident on the system from a left external
layer z < z0. In this case, the incident radiation fre�

quency ω is real and the propagating waves (  < )
are characterized by the angle of incidence θ (in the
left semi�infinite layer). Then, in external layers

(3)

where kx = k0sinθ, kz = k0cosθ,  =  + (  –

)tan2θ, F0 and B0 are the amplitudes of the incident
and reflected waves, and a wave incident on the system
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from right is absent. For evanescent waves (  > ),
fields in external layers have the same form (3), but the
root branch for kz is chosen so that Imkz > 0. The con�
tinuity conditions at the boundaries of layers E(z) and
dE/dz for the s�polarization, and H(z) and ε–1dH/dz
for p�polarization allow us to solve the problem of
radiation propagation through a system of absorbing
and amplifying media.

Because the system contains amplifying layers hav�
ing the infinite transverse extension, the propagation
regime can be destroyed due to absolute and convec�
tive instabilities [12]. Absolute instabilities correspond
to the exponential (in the adopted linear approxima�
tion) growth of the field amplitude at each spatial
point of the system, i.e. to the complex frequency ω
with the positive imaginary part Imω > 0. In our prob�
lem, this means that the lasing threshold is exceeded
for longitudinal “laser” modes, for which the trans�
verse wave vector is kx = 0, while in external layers only
waves leaving the system (F0 = 0, BN + 1 = 0) exist. At
the lasing threshold, Imω = 0 and the real part of the
frequency takes a number of discrete values (different
frequencies of longitudinal modes). The amplification
threshold is determined by the minimal lasing thresh�
old for different longitudinal modes. Above this
threshold even in the absence of incident radiation,
lasing appears, which begins from the noise level
(spontaneous emission) and is established at the level
determined by the nonlinear saturation effect (in this
paper, nonlinear regimes, including the established
lasing regime, are not considered). Note also that
above the threshold, when Imω > 0, the energy flux in
a laser mode in external layers is directed from central
layers to periphery, and the amplitude of escaping
waves exponentially decreases with increasing  (the
amplitude of these waves at the threshold is indepen�
dent of z).

The convective instability in the system under study
corresponds to waveguide modes for which the fre�
quency is real, Imω = 0 and radiation propagates in
the transverse direction with the exponentially
increasing amplitude during propagation (amplified
spontaneous emission). In this case, the wavenumber
is complex. We do not consider here the case of back�
ward waves with opposite directions of the phase and
group velocities; therefore, the increase in amplitude
for Rekx > 0 corresponds to the condition Imkx < 0.
The instability threshold is achieved when the condi�
tion Imkx = 0 is fulfilled for at least one value of the
real frequency. Above the threshold, the energy flux is
directed, as in the case of lasing, from the central layers
to the periphery. Generally speaking, convective insta�
bility with a continuous frequency spectrum trans�
forms to absolute instability (generation of transverse
laser modes, a discrete frequency spectrum) if we take
into account the parasitic reflection of waves from
layer edges or some transverse inhomogeneities of the
system providing a feedback in the transverse direc�

kx
2 k0

2

z
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tion. However, we will not consider such regimes,
assuming that parasitic reflection is rather weak. The
propagation of the incident radiation through the sys�
tem is stable only if the threshold is neither achieved
for any longitudinal laser mode (the absolute instabil�
ity is absent) nor for any frequency of amplified spon�
taneous emission (the convective instability is absent).

3. TRANSFER MATRIX

Due to the linearity of the problem, the character�
istics of the field in different layers can be intercon�
nected by a transfer matrix. The transfer matrix con�
necting the electric and magnetic field strengths at
layer boundaries is often used [11], but matrices acting
on the wave amplitudes Fj and Bj are more convenient
for us because they have a clear physical meaning and
can easily be used to formulate the coupled�wave
equations (for moving inhomogeneities [13]). Transfer

matrices on the jth layer, , and on the total system,

, are introduced by the relations

M̂j

M̂

(4)

The amplitude transmission and reflection coeffi�
cients, τ and r, respectively, in the problem of the
propagation of a wave through a system are expressed
in terms of the transfer matrix elements as

(5)

The modulus of the transmission and reflection coef�
ficients can exceed unity due to the presence of ampli�
fication in the system. Transfer matrices have the form
(we assume that d0 = 0)
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The absolute instability threshold (lasing threshold)
corresponds to the conditions Imω = 0, kx = 0, and

(7)

whereas for the convective instability, kx ≠ 0 (the trans�
verse wave vector is complex, whereas the frequency is
real even above the threshold) and condition (7) is pre�
served.

Consider now a system with alternating identical
absorbing and amplifying layers, so that the system is
obtained by periodic repetition of a pair of layers. We
assume that “odd” internal layers (with odd numbers)
absorb radiation and have a thickness of d1 and the

complex permittivity  = ε1 + ie1, e1 ≥ 0, while “even”

layers with parameters d2 and  = ε2 + ie2, e2 ≤ 0 pro�
vide amplification. The repetition period of the struc�
ture is d = d1 + d2. The one�period transfer matrix is

M11 0,=

ε̃1

ε̃2

 =  × . The determinant of this matrix is

Det  = 1, as follows from (6). The eigenvalues

of the matrix  are found from the quadratic equa�
tion λ2 – 2λcλ + 1 = 0, in which the quantity λc is

expressed in terms of the trace of the matrix  as

(8)

where qj = /  for the p�polarization and qj =  for
the s�polarization. As polarization changes, the values
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of λc and diagonal elements m11 and m22 of the 
matrix do not change, while nondiagonal matrix ele�
ments change their sign.

The transfer matrix  =  for p identical

pairs of layers is calculated by reducing the  matrix
to the diagonal form. In particular, its diagonal ele�
ment is

(9)

where

(10)

The transfer matrix of the total system with the odd

number of layers N = 2p + 1 has the form =  ×

 × . Unbounded photonic crystal or metama�
terial can be analyzed by considering the limit for
p  ∞. Because λ1λ2 = 1, two cases should be distin�
guished, analogous to the transparent (without
absorption and amplification) periodic structures.
In the first case, the moduli of two eigenvalues are dif�
ferent and then one of them necessarily exceeds unity.
In this case, according to (9), the matrix element

 ∞ in the limit p  ∞, while the transmis�

sion coefficient is τp = 1/   0 (the ideal forbid�
den band gap). In the second case, the moduli of both
eigenvalues are unity, corresponding to the ideal
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allowed band (the transparency band). The allowed
band is realized if two conditions are simultaneously
fulfilled: first, the quantity λc should be real and, sec�
ond, its modulus should not exceed unity:

(11)

Violation of at least one of these conditions corre�
sponds to the forbidden band gap.

A periodic structure of transparent layers with the
real refractive index contains the allowed and forbid�
den bands alternating with changing radiation fre�
quency (Fig. 1a). However, in the presence of arbi�
trarily small absorption, the quantity λc becomes com�
plex, so that, strictly speaking, the allowed and
forbidden bands are not defined or the entire spectral
range belongs to one forbidden band gap (Fig. 1b).
This is natural because radiation completely decays
after propagation through an infinite absorbing
medium. Note that the replacement of absorption by
amplification, when quantities  are replaced by

their complex conjugate ( ), leads, according to
(8), to the complex conjugation of eigenvalues, which,
naturally, preserves their moduli. Therefore, the
unlimited structure of periodically repeating amplify�
ing layers also proves to be opaque at any radiation fre�
quency (see also [14]).

The latter conclusion may raise doubts because in
passing to a homogeneous amplifying medium the
transmission is not only nonzero but increases expo�
nentially with increasing thickness of an amplifying
layer (in the linear approximation). The discrepancy is
explained by the fact that transmission is determined
not only by the thickness (the number of periods) of a
layered structure but also by the contrast responsible
for repeated reflection of waves, which we define in the

general case as δ = (  – )/Re . In a simpler case

of the normal incidence, we have δ = (  – )/ε1, i.e.
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Fig. 1. Frequency dependences of eigenvalue moduli  of transfer matrix  for one period of a structure consisting of two

medium layers (solid and heavy dashed curves) and quantities  (thin dashed curve,  > 1 in forbidden bands); ε1 = 1, ε2 =

6.25, d2/d1 = 2, normal incidence, e2 = 0 (a), ±0.2 (b). In the case of ideal compensation for losses, the dependence of type (a)
is obtained again.
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this is the contrast of the complex permittivity in peri�
odically alternating layers. The contrast of a homoge�
neous medium is zero and transmission is

It follows from (9) that a structure can be considered
close to homogeneous if p  � 1. Note that the bands
characterize an unlimited periodic structure (p  ∞),
and therefore, it is difficult to say that the band struc�
ture is approximately preserved even for small absorp�
tion or amplification.

Thus, the ideal allowed bands (transparency bands)
are absent in the general case in structures with alter�
nating passive (absorbing) and active (amplifying) lay�
ers. However, if passive and active layers exist simulta�
neously, it is possible to reconstruct the alternating
allowed and forbidden bands under conditions when
amplification compensates for absorption. Below, we
will find these conditions.

Allowed bands or spectral ranges in which the com�
pensation of absorption by amplification is achieved in
a multilayered structure are found in the following way.
First of all, transparency conditions (11) should be ful�
filled for an unlimited structure (in the limit p  ∞).
This can be provided by properly selecting the fre�
quency dependence of the gain in active layers for a
specified frequency dependence of the absorption
coefficient of passive layers. In addition, for the cho�
sen frequency dependence of the gain, the absolute
and convective instability thresholds should not be
exceeded. It is natural that the transparency and com�
pensation conditions are determined by many pairs of
alternating internal passive and active layers in the
structure, whereas the characteristics of a small num�
ber of framing layers do not affect the compensation
criterion.

In cases important for the problem, when the
imaginary part of the permittivity of active and passive
layers is noticeably smaller than the real part (small
absorption and amplification), the solution of equa�
tions is simplified and can be obtained using perturba�
tion theory and the zero�order approximation corre�
sponding to completely transparent media. Thus, the
problem with the convective instability in the zero�
order approximation reduces to determining the
modes of a planar waveguide with the specified profile
of the real permittivity ε(0)(z), i.e., to determining the
field structure in the E(0)(z) mode for s�polarization or
in the H(0)(z) mode for p�polarization (this distribution
can be considered real) and the corresponding real

eigenvalue q(0) = ( n0)
2 (depending on the parame�

ters, a few local modes can exist) for the specified real
frequency ω. In first�order perturbation theory over a

τp 0( ) ipk0d ε1 ie1+( ).exp=

δ

kx
0( )

small addition (z) to the permittivity, the eigen�
value for the s�polarization receives the increment [15]

(12)

The denominator in the right�hand side of (12) corre�
sponds to the normalization of the waveguide mode
field, while the numerator is the integral from amplifi�
cation and absorption with the field intensity as a
weighting function. The instability threshold is
achieved for Imq(1) = 0. It follows from (12) that the
amplification threshold linearly depends on the
absorption coefficient in passive layers:

(13)

In the presence of absorption in external layers, addi�
tional terms appear in (13) which do not change the
linear type of the dependence of the amplification
threshold on the absorption coefficient. Thus, to find
the amplification threshold for perturbations with the
s�polarization, it is sufficient to solve the waveguide
eigenvalue problem in the absence of absorption and
amplification and then to calculate integrals in (13)
(integration is performed in the first and second terms
over passive and active layers, respectively). For per�
turbations with the p�polarization, this approach
requires refinements (see Section 4).

4. NUMERICAL CALCULATIONS

4.1. Normal Incidence

The propagation of s�polarized radiation was cal�
culated using the transfer matrix (Section 2). The
instability threshold in the form of lasing was found by
numerically solving complex equation (7). The insta�
bility threshold in the form of waveguide modes in the
general case was also determined by numerically solv�
ing Eq. (7). In the case of s�polarization, the use of
perturbation theory described in Section 3 proved effi�
cient. However, in a more complicated case of
p�polarization, we used, instead of perturbation the�
ory, the direct solution to Eq. (7) by specifying the ini�
tial approximation for the roots of the equation corre�
sponding to the real transverse wave vectors for a trans�
parent layered medium.

The main calculation parameters are indicated in
the caption to Fig. 1, where the frequency depen�
dences of the moduli of eigenvalues and  are pre�
sented for an infinite periodic system of two transpar�
ent (Fig. 1a) and amplifying or absorbing (Fig. 1b) lay�
ers. The calculations show that the introduction of
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absorbing or amplifying layers into a structure with a
finite number of such pairs weakly changes transmis�
sion and reflection in the bands which were forbidden
in a structure with transparent media. In this case, the
depth of interference oscillations of the transmission
and reflection coefficients in the transparency band
increases when amplification is introduced and
decreases for absorbing layers. However, the maximum
of the transmission coefficient considerably changes,
exceeding unity for a structure with a finite number of
amplifying layers and tending to zero for structures
both with absorption and amplification if the number
of periods p infinitely increases. This conclusion is
confirmed in more detail by the dependences of the
transmission coefficient on the contrast of the real part
τp(Reδ) of the permittivity, which are calculated for a
fixed radiation frequency, so that κ0d ≈ 0.48π (Fig. 2).
Negative contrasts Reδ < –1 correspond to the nega�
tive real part of the permittivity Reε2 < 0 (metal). Note
that the zero real part of the contrast in this case does
not mean that the medium is homogeneous because
the contrast of the imaginary part of the permittivity is
preserved both for the upper and lower curves in Fig. 2.
The dependence on the contrast is similar to a certain
extent to the frequency dependence, so that the
allowed and forbidden bands are observed here already
for p = 10. According to calculations, the presence of
the real part of the contrast, i.e., the difference
between refractive indices in alternating layers, can
considerably increase transmission or reduce reflec�
tion compared to a homogeneous medium. However,
this occurs only in a selected part of the transparency
band degenerating to a point for p  ∞. The relative
transmission coefficient τp(δ)/τp(0) in the main part of

the transparency band decreases compared to that for
a homogeneous medium layer (for which the contrast
is δ = 0).

Now in the presence of absorption in odd layers, we
will select amplification in even layers to compensate
for absorption for the specified contrast. If we intro�
duce frequency�independent amplification (the
amplification band is sufficiently broad), then trans�
mission exists in fact only under conditions when
allowed bands are attained for transparent media. At
the same time, the transmission coefficient strongly
oscillates near the chosen operation frequency. There�
fore, we will require the “ideal” compensation, i.e.,
compensation for any frequency in all transparency
bands. The corresponding spectral dependence of κ2

is shown in Fig. 3. In this case, compensation condi�
tion (1) is rigorously fulfilled in spectral ranges close to
transparency bands in a system of layers without
absorption and amplification. These ranges, which are
possible only in the case of ideal compensation, repre�
sent the transparency bands of the system under study.
The frequency dependence of the eigenvalue moduli

 again takes the form shown in Fig. 1a, i.e., alter�

nating allowed bands, in which  = 1, appear
again.

Consider now in detail the frequency dependences
of the transmission coefficient of a layered structure
for fixed refractive indices n1 = 1 and n2 = 2.5 of alter�
nating layers and absorption coefficient κ1 = 0.1 of odd
layers,  = 1 + 0.2i. Absorption at a selected fre�
quency in the middle of the transparency band (k0d =
0.23π) can be compensated by introducing small
amplification in even layers, κ2 ≈ –0.0174,  ≈ 6.25 –
0.087i. The frequency dependences of the transmis�
sion, , and reflection, , coefficients are
shown n Fig. 4. We can see from the figure that com�
pensation for the number of periods p = 10 somewhat

λ1 2,

λ1 2,
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Fig. 2. Dependences of the modulus of the transmission
coefficient of the structure containing p = 10 periods on
the contrast of the real part of the permittivity for three val�
ues of the imaginary part of the permittivity of even layers:
absorption (lower curve, e2 = 0.1), transparency (middle
curve, e2 = 0), and amplification (upper curve, e2 = –0.1);
odd layers are transparent (e1 = 0). The vertical dashed
straight line indicates the zero real part of the contrast.

4

κ2

k0d6

−0.08

8

−0.12

2

0

−0.06

−0.04

−0.02

−0.10

Fig. 3. Frequency dependence of amplification in even
layers required for the ideal compensation for absorption
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Fig. 1a. Forbidden band gaps, in which compensation is
impossible, are shaded.
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increases transmission, retaining interference oscilla�
tions. For p = 100, the compensation effect is more
pronounced, but the problem of suppressing lasing
appears (see Section 4.3 below).

The boundary of the first forbidden band for the
specified absorption coefficient κ1 = 0.1 in odd layers
is determined as the value k0d = kbnd satisfying the rela�

tion Re[λc(k0, κ1, κ2)] = 1, but only for the compensa�
tion gain value κ2 = –κg, for which the additional con�
dition Im[λc(k0, κ1, –κg)] = 0 is valid. For parameters
used here, kbnd = 1.287. In this case, we can select the
gain in even layers in the allowed band (k0d ≤ kbnd) so
that the eigenvalue moduli would be  = 1,
thereby providing compensation. Compensation in
the forbidden band (k0d > kbnd) is impossible because
in this case  ≠ 1, as follows from Fig. 5.

The ideal compensation in the form presented here
corresponds to the selection of the spectral depen�
dence of the imaginary part of the permittivity (gain)
for the specified real part of the permittivity (refractive
index). Generally speaking, the causality principle
establishes certain relations between the real and
imaginary parts of the permittivity (Kramers–Kronig
relations) [10], which are somewhat modified in
amplifying media. The specific features of the situa�
tion under study are as follows. First, absorption and
amplification are small; i.e., the imaginary part of the
permittivity is small. Second, the gain band within
which broadband absorption can be compensated is
comparatively narrow. Third, any frequency depen�
dence of the complex permittivity can be approxi�
mated with any accuracy within a limited spectral

λ1 2,

λ1 2,

Fig. 4. Dependences of the moduli of the transmission (1) and reflection (2) coefficients on the normalized component of the
wave vector π–1kz(d1 + d2) for the cases of uncompensated (a, b) and compensated (c, d) absorption in the second layer; p = 10
(a, c) and 100 (b, d); the vertical straight line indicates the middle of the transparency band corresponding to the minimum of

 (dashed curve). The case of normal incidence, kz = k0.λc

0.002

|λ1,2|

kg

0.003

1.00

0.004

0.97

0.001

1.01

1.02

0.98

0.99

1.03

1

1

2

2
3

3
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range without violating the causality principle [16].
For this reason, the causality principle does not pre�
vent the compensation of absorption by amplification.

4.2. Oblique Incidence and Propagating
and Evanescent Waves

The angular dependence of transmission of evanes�
cent waves is especially important in the image trans�
mission problem. The angular dependence of trans�
mission for propagating waves incident on a system
(z = 0) at an angle of θ is shown in Fig. 6 (regions to the
left of the vertical dashed straight line). It follows from
this dependence that the compensation for absorption
tends to increase in transmission, but interference
oscillations are observed in multilayer systems. Figure 6
also shows the dependences of the transmission mod�
ulus on the transverse wavenumber kx for evanescent
waves in the case of a system of transparent layers and
compensated absorption. We can see that the absorp�
tion compensation preserves large transmission coeffi�
cients for modes (~10), but these values are finite
because, unlike the system of transparent layers, the
real values of kx do not correspond to the poles of the
transmission function τp(kx) (zeroes of the matrix ele�
ment M11(kx)). In addition, the transmission coeffi�
cient as a function of kx oscillates near the poles of
waveguide modes (see Section 4.3 below) correspond�
ing to the complex values of kx located in the upper
half�plane. In this case, the closer the compensation
conditions to the excitation threshold of waveguide
modes, the greater the transmission coefficient for
these modes. A finite number of waveguide modes cor�
responding to the poles τp(kx) of the transmission coef�
ficient is located within a finite interval of kx values.
For the specified parameters of a set of numbers, the
transmission coefficient approaches zero for kxd > 2.2,
which determines the minimal resolution of images.
Under conditions adopted here, kxd < 9.6k0, and
therefore the value δx ~ λ/9.6 characterizes the resolu�

tion limit, which is independent of the number of lay�
ers.

Calculations show that the fulfillment of compen�
sation condition (11) for oblique incidence only for
one value k0 provides compensation of absorption by
amplification in almost the entire first transparency
band, and this includes the region of waveguide modes
as well.

4.3. Compensation and Instabilities

The numerical calculations of the absorption com�
pensation by amplification presented above were
obtained by neglecting the possibility of development
of instabilities caused by the presence of amplifying
layers in the medium. As pointed out above, instabili�
ties of two types should be analyzed: absolute instabil�
ities (lasing at longitudinal laser modes, a discrete set
of complex frequencies, kx = 0) and convective insta�
bilities (continuous spectrum of real frequencies, a
discrete set of waveguide modes with complex kx for a
fixed frequency). The determination of waveguide
modes is simplified because the modulus of the imag�
inary part of the permittivity is small and, hence, per�
turbation theory over absorption and amplification
can be used (see Section 3). The search for laser modes
in the general case requires a full consideration of dis�
persion, i.e., the dependence of the permittivity not
only on the real part but also on the imaginary part of
the radiation frequency. Note that, as the complex
radiation frequency approaches complex frequencies
corresponding to the poles of the permittivity of the
medium, a complex resonance can be observed [17].
However, the radiation frequency is real on the lasing
threshold of interest to us itself. In addition, as men�
tioned above, the refractive index of media changes
weakly within the gain band. These circumstances
allow us to search for laser modes assuming that the
spectral characteristics of the medium are specified.

Under the conditions considered here, the amplifi�
cation required to compensate for absorption is always
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Fig. 6. Dependences of the moduli of the transmission coefficient on the transverse component of the wave vector for a fixed fre�
quency. The region of evanescent waves is located to the right of the vertical dashed straight line. For a system of transparent layers
(a, curve 1), poles at selected values of kx correspond to waveguide modes. Curve 2 corresponds to uncompensated absorption,
κ1 = 0.1, κ2 = 0. Curve 1 (b) corresponds to compensated absorption, κ1 = 0.1, κ2 ≈ –0.0174, p = 100.
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lower than the threshold waveguide amplification
(s�polarization of perturbations), although the latter
approaches it in the limit p  ∞. The amplification
required for compensation is even smaller than the
threshold for p�polarized waveguide modes (see
Fig. 7). The lasing threshold is noticeably higher for a
small number of layers, but it decreases with increasing
p and tends asymptotically to a constant value. To
obtain the ideal compensation (many periods), this
constant level should be higher than the amplification
required for compensation.

Figure 7 shows the frequency dependences of
amplification required for the ideal compensation and
of instability thresholds. The amplification threshold
for s�polarized waveguide modes is shown in Fig. 7a in
simplified form as the envelope over the thresholds of
the most unstable modes, which are shown in more
detail in Fig. 7b. We can see that p�polarized
waveguide modes have a higher threshold and are
therefore not as important in the problem of absorp�
tion compensation by amplification. For low frequen�
cies (k0d  0), compensation and amplification
thresholds for the s�polarized waveguide mode
approach each other, although the compensation
regime remains stable. More appropriately, in the limit
of small phase incursions (the quasi�static approxima�
tion) for s�polarization, the amplification threshold
for s�polarized waveguide modes is determined by the

condition  = 0, and a small difference from

the compensation threshold is related only to the pres�
ence of an additional layer symmetrizing the set of lay�
ers. Figure 7 also shows that at higher frequencies

djImε̃jj∑

(near the edge of the first band), the lasing threshold
approaches the compensation threshold in the case of
a large number of periods in the system (p  ∞), but
the compensation regime still remains stable. Thus,
the compensation regime can be achieved in a com�
paratively broad spectral range covering almost the
entire transmission band. To ensure stability of the
compensation regime, it is preferable to select the fre�
quency near the forbidden band where the separation
from the instability threshold is maximal. To transmit
images with superresolution, it is more convenient to
compensate absorption for small values of k0d (for
example, with the help of thin layers) because in this
case the highest transmission coefficient for evanes�
cent waves can be achieved due to the closeness of the
amplification threshold for waveguide modes to the
compensation condition (see Fig. 6).

5. CONCLUSIONS

To ensure propagation of radiation in a system of
alternating absorbing and amplifying layers, it is nec�
essary to suppress instabilities: the absolute instability
related to lasing and the convective instability appear�
ing in the waveguide amplification of radiation. The
propagation and instability regimes are closely interre�
lated; in particular, the waveguide propagation
regimes are responsible for the deep modulation of the
transmission coefficient for evanescent waves. Gener�
ally speaking, the band transmission structure (alter�
nating allowed and forbidden bands) is broken when
absorption or amplification is introduced, the trans�
mission of the system tending to zero with an increas�

Fig. 7. Frequency dependences κg of the gain in even layers, which is required for the ideal compensation of the specified absorp�
tion in odd layers κ1 ≈ 0.1 (solid heavy curve), waveguide amplification thresholds (a, dashed curve, s�polarization, p = 10, depen�
dence on p is weak) and lasing (a, dotted curve connecting dark circles at which the number p of periods is indicated). The for�
bidden band, in which the compensation of absorption by amplification is impossible, is shaded. Amplification required for com�
pensation (C) and waveguide amplification thresholds (S, for s�polarized waveguide modes and P for p�polarized modes) are
compared in Fig. 7b.
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ing number of layers even in systems with amplifica�
tion. However, the band structure is reconstructed and
the transmission coefficient of the system in allowed
bands does not tend to zero with an increasing number
of layers if the frequency dependence of the gain in
active layers is selected to compensate absorption by
amplification. Such compensation in forbidden bands
is impossible. Conditions are determined under which
the compensation is achieved in the absence of lasing
and waveguide amplification. To provide transparency
in the first allowed band, it is sufficient to obtain com�
pensation near the high�frequency boundary of this
band. The large transmission coefficients for evanes�
cent bands required to obtain superresolution can be
achieved in the limit of low frequencies or thin layers
(k0d � 1) at which the amplification threshold for
waveguide modes approaches amplification required
to compensate for losses.
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