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special submiss ions

Variation in DNA Methylation Patterns is More 
Common among Maize Inbreds than among Tissues

Steven R. Eichten, Matthew W. Vaughn, Peter J. Hermanson, and Nathan M. Springer*

Abstract
Chromatin modifications, such as DNA methylation, can 
provide heritable, epigenetic regulation of gene expression in 
the absence of genetic changes. A role for DNA methylation 
in meiotically stable marking of repetitive elements and other 
sequences has been demonstrated in plants. Methylation of DNA 
is also proposed to play a role in development through providing 
a mitotic memory of gene expression states established during 
cellular differentiation. We sought to clarify the relative levels 
of DNA methylation variation among different genotypes and 
tissues in maize (Zea mays L.). We have assessed genomewide 
DNA methylation patterns in leaf, immature tassel, embryo, and 
endosperm tissues of two inbred maize lines: B73 and Mo17. 
There are hundreds of regions of differential methylation present 
between the two genotypes. In general, the same regions exhibit 
differential methylation between B73 and Mo17 in each of the 
tissues that were surveyed. In contrast, there are few examples 
of tissue-specific DNA methylation variation. Only a subset of 
regions with tissue-specific variation in DNA methylation show 
similar patterns in both genotypes of maize and even fewer are 
associated with altered gene expression levels among the tissues. 
Our data indicates a limited impact of DNA methylation on 
developmental gene regulation within maize.

Epigenetic variation can result in altered gene expres-
sion or phenotype without requiring changes in DNA 

sequence. Epigenetic information can provide gene regu-
lation during development and differentiation of cells to 
reinforce the “memory” of transcriptional states. In some 
cases, epigenetic changes can also be heritable and result 
in transgenerational memory. Epigenetic marks within 
the genome are often encoded through chromatin modi-
fications including DNA methylation and histone modi-
fications. Different types of chromatin modifications can 
have varying functional consequences and there is also 
evidence that different types of modifications may have 
varying roles in meiotic and mitotic epigenetic memory. 
Herein we are focused on the role of DNA methylation 
in providing epigenetic memory during development 
(mitotic) and among individuals of different genetic 
backgrounds (meiotic).

There is fairly strong evidence that DNA methylation 
patterns can vary among individuals of the same species. 
There are also many examples of epigenetic variation 
that generates epialleles resulting in phenotypic variation 
without sequence changes (Bender and Fink, 1995; 
Jacobsen and Meyerowitz, 1997; Cubas et al., 1999; 
Morgan et al., 1999; Chandler et al., 2000; Stokes et al., 
2002; Rakyan et al., 2003; Suter et al., 2004; Manning et 
al., 2006). Genomewide scans in Arabidopsis thaliana 
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(L.) Heynh. have found DNA methylation differences 
among ecotypes (Vaughn et al., 2007) and in spontaneous 
mutant accumulation lines (Becker et al., 2011; Schmitz 
and Ecker, 2012). There are also examples of variable DNA 
methylation levels among maize inbreds (Eichten et al., 
2011). The variation in DNA methylation patterns among 
individuals of the same species includes examples that 
are correlated with genetic changes and those that are not 
linked to DNA sequence change (Richards, 2006). The 
genetic changes that are correlated with DNA methylation 
variation often include transposon insertions or structural 
rearrangements (Richards, 2006; Girard and Freeling, 
1999; Feschotte, 2008; Weil and Martienssen, 2008).

Several groups have also proposed that DNA 
methylation also plays an important role in direct 
regulation of genes during development (Bird, 1997; 
Richards, 1997). There is fairly strong evidence to 
demonstrate developmental variation in DNA methylation 
patterns that are correlated with developmental regulation 
of gene expression in humans (Homo sapiens sapiens) 
(Lister et al., 2009; Hawkins et al., 2010; Franklin et al., 
1996; Reik, 2007; Skinner, 2011; Ohtani and Dimmeler, 
2011). In addition, several specific cell types or tissues 
related to reproduction exhibit altered DNA methylation 
levels in plants (Lauria et al., 2004; Gehring et al., 2009; 
Hsieh et al., 2009; Zemach et al., 2010). It has been 
suggested that demethylation in the central cell and 
vegetative nuclei of the male gametes (Slotkin et al., 
2009) is a mechanism to reinforce transposon silencing 
each generation (Kohler and Weinhofer-Molisch, 2010). 
Although examples exist of the importance of DNA 
methylation for proper development in animals and in 
gametes or endosperm of plants, there is limited evidence 
that DNA methylation variation contributes to regulatory 
variation among plant vegetative tissues. The phenotypes 
observed in Arabidopsis thaliana methyltransferase 1 
loss-of-function lines include a variety of developmental 
abnormalities that may suggest a role of DNA methylation 
in development (Finnegan et al., 1996; Ronemus et al., 
1996), although it wasn’t clear whether this was due 
to direct effects of altered DNA methylation patterns. 
Global DNA methylation levels may change in different 
vegetative tissues of tomato (Solanum lycopersicum L.) 
(Messeguer et al., 1991). One study suggested a difference 
in the methylation levels of photosynthesis-related genes 
during differentiating maize leaf cells (Ngernprasirtsiri et 
al., 1989). A recent study in Arabidopsis thaliana provides 
evidence that DNA methylation regulates the expression 
of WUSCHEL (Li et al., 2011).

However, there are also several pieces of evidence to 
suggest somewhat limited changes in DNA methylation 
during vegetative development. Genomewide profiling of 
DNA methylation levels in different tissues of rice (Oryza 
sativa L.) (Zemach et al., 2010) identified few examples 
of differences in DNA methylation levels among 
vegetative tissues compared to the differences observed 
between endosperm and other tissues. The analysis 
DNA methylation patterns in several different tissues 

of sorghum [Sorghum bicolor (L.) Moench] have shown 
that the majority of methylation patterns are similar 
across tissues; however, a small number of tissue-specific 
differentially methylated regions (tDMRs) were identified 
that correlate with variable gene expression within their 
respective tissues (Zhang et al., 2011).

To gain insights into the role of DNA methylation 
in providing epigenetic memory during development or 
among individuals, we profiled DNA methylation patterns 
in two inbred genotypes of maize in four distinct tissues: 
14-d leaf, endosperm, tassel, and embryo tissues. Although 
these complex tissues contain a variety of cell types, we 
are interested in broad DNA methylation variation across 
these diverse tissues. Maize provides a unique and robust 
system to study the role of epigenetic modifications due 
to the complex organization of interspersed transposons 
and genes in the maize genome and due to substantial 
genetic resources (Yu et al., 2008; McMullen et al., 
2009; Schnable et al., 2009). Genomewide profiling of 
methylation patterns between these four tissues show that 
there are numerous methylation differences between the 
two genotypes that are observed in all tissues studied. 
However, there are relatively few differences in DNA 
methylation levels among tissues. This study shows that 
few tissue-specific methylation events occur within maize 
and suggests that the impact of DNA methylation on 
proper developmental regulation is limited.

Materials and Methods
Plant Materials and DNA Isolation
Seedling leaf tissue was harvested and prepared as 
described in Eichten et al. (2011). For embryo, tassel, and 
endosperm collection, plants were grown to maturity in 
the University of Minnesota Agricultural Research sta-
tion, Falcon Heights, MN. Endosperm and embryo were 
harvested from multiple B73 and Mo17 ears 14 d after 
self-pollination. Multiple endosperms and embryos were 
pooled from each ear on each date and frozen in liquid 
N. Immature 15 to 20 cm tassel tissue was harvested 
from multiple B73 and Mo17 plants and frozen in liquid 
N. Samples of DNA were isolated using the cetyltrimeth-
ylammonium bromide method (Doyle, 1987). Five to 10 
micrograms of genomic DNA in 650 to 700 μL nuclease-
free water was sonicated for five 10-s pulses as per the 
methods of Haun and Springer (2008). Samples were 
quantified and run on 1.5% agarose gels to verify that 
DNA was fragmented to 100 to 500 bp.

Array Design and Annotation
Two array platforms were used in this experiment. 
Endosperm, leaf, and embryo tissues were assayed using 
a NimbleGen 2.1M feature long oligonucleotide array 
[GEO (Gene Expression Omnibus) platform GPL13499] 
as described in Eichten et al. (2011). The analyses in 
this manuscript focus on a set of ~1.4 million probes 
from this array that are single copy in the B73 genome 
and that do not exhibit strong comparative genomic 
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hybridization variation among B73 and Mo17. Tassel tis-
sue was assayed using a NimbleGen 3x1.4M long oligo-
nucleotide array (GEO platform GPL15621) containing 
the same subset of 1.4 million probes also found on the 
2.1M platform. Partial array replication was performed 
as outlined in Supplemental Table S1.

Immunoprecipitation of Methylated DNA, 
Labeling, and Hybridization
Methods were adapted from Eichten et al. (2011). Briefly, 
methylated DNA was immunoprecipitated with an anti-
5-methylcytosine monoclonal antibody from 400 ng 
sonicated DNA using the Methylated DNA IP (immunopre-
cipitation) Kit (Zymo Research; catalog no. D5101). For each 
replication and genotype, whole genome amplification was 
conducted on 50 to 100 ng IP DNA and also 50 to 100 ng of 
sonicated DNA (input control) using the Whole Genome 
Amplification kit (Sigma Aldrich; catalog no. WGA2-
50RXN). For each amplified IP input sample, 3 μg amplified 
DNA were labeled using the NimbleGen Dual-Color Label-
ing Kit (catalog no. 05223547001) according to the manufac-
turer’s protocol for methylation arrays (Roche NimbleGen 
Methylation User Guide version 1.0 [Roche NimbleGen, 
2011]). Each IP sample was labeled with Cy5 and each input 
and control sonicated DNA sample was labeled with Cy3. 
Samples were hybridized to the array for 16 to 20 h at 42°. 
Slides were washed and scanned according to NimbleGen’s 
protocol for the GenePix4000B or Nimblegen MS200 array 
scanner. Images were aligned and quantified using Nimbl-
eScan software (Roche NimbleGen, 2010) producing raw 
data reports for each probe on the array.

Normalization and Linear Modeling
Pair files exported from NimbleScan (Roche NimbleGen, 
2010) were imported into the Bioconductor statistical 
environment (Gentleman et al., 2004). Sample-dependent 
methylated DNA immunoprecipitation (MeDIP) enrich-
ments were estimated for each probe by fitting a fixed 
linear model accounting for array, dye, and sample effects 
to the data using the limma package (Smyth, 2004). The 
following statistical contrasts were then fit: B73 seedling IP 
sample vs. B73 seedling genomic DNA control (input), B73 
embryo IP vs. input, B73 endosperm IP vs. input, B73 tas-
sel IP vs. input, Mo17 seedling IP vs. input, Mo17 embryo 
IP input, Mo17 endosperm IP vs. input, and Mo17 tassel IP 
vs. input. Four between-genotype statistical contrasts were 
also fit: Mo17 seedling vs. B73 seedling, Mo17 embryo vs. 
B73 embryo, Mo17 endosperm vs. B73 endosperm, and 
Mo17 tassel vs. B73 tassel. Finally, between-tissue statisti-
cal contrasts were developed for each genotype individu-
ally: embryo vs. leaf, embryo vs. tassel, endosperm vs. 
embryo, endosperm vs. leaf, endosperm vs. tassel, and leaf 
vs. tassel. Moderated t-statistics and the log-odds score for 
differential MeDIP enrichment was computed by empiri-
cal Bayes shrinkage of the standard errors with the false 
discovery rate controlled to 0.05. Results were formatted 
for the Integrative Genomics Viewer (IGV) (Robinson 
et al., 2011) for downstream analysis. Microarray results 

were deposited with the National Center for Biotechnol-
ogy Information GEO under accessions as described in 
Supplemental Table S1. Data tracks formatted for the IGV 
are available from http://genomics.tacc.utexas.edu/data/
tissue_methylation_variation/.

Analysis of Variable Methylation
To identify segments showing differential methylation for 
all contrasts, the DNAcopy algorithm (Venkatraman and 
Olshen, 2007) was used on 1,088,517 Mo17 unique probes 
in the B73 vs. Mo17 relative methylation linear model 
results for all four tissues. Resulting segments were defined 
as differentially methylated regions (DMRs) if the seg-
ment mean of methylation values showed at least a twofold 
change (less than -1 or greater than 1 on the log2 scale). 
These defined segments were used to assess methylation 
states in other contrasts. Values were scaled for all eight 
samples as [x – average(y,z)/maximum(y,z,) – average(y,z)] 
in which x is the unscaled sample value and y and z are the 
unscaled values that initially used in the discovery of the 
DMR. To validate similar methylation states within other 
contrasts, the segment mean of methylation values must 
show a 25% change in relative methylation state.

RNA Sequencing Analysis
An RNA sequencing (RNA-seq) analysis of all tissues 
described above was performed. Ribonucleic acid (RNA) 
isolated from three biological replicates of each sample 
was prepared for sequencing at the University of Minne-
sota BioMedical Genomics Center in accordance with the 
TruSeq library creation protocol (Illumina, 2012b). Sam-
ples were sequenced on the HiSeq 2000 (Illumina) devel-
oping 6 to 17 million reads per replicate. Raw reads were 
filtered to eliminate poor quality reads using CASAVA 
(Illumina, 2012a.). Transcript abundance was calcu-
lated by mapping reads to the maize reference genome 
(B73_RefGen_v2 [Maize Genome Sequencing Project, 
2011]) using TopHat (Trapnell et al., 2009). A high degree 
of correlation between replicates was observed (r > 0.98). 
Reads per kilobase exon per million reads (RPKM) val-
ues were developed using “BAM to Counts” across the 
exon space of the maize genome reference working gene 
set (ZmB73_5a) within the iPlant Discovery Environ-
ment (www.iplantcollaborative.org).

Quantitative Real Time Polymerase  
Chain Reaction
Quantitative real time polymerase chain reaction (qPCR) 
validation of DMRs was adapted from Eichten et al. 
(2011). Briefly, primers were designed to amplify regions 
of 18 tDMR candidates (Supplemental Table S2). Sample 
DNA was digested with the methyl-sensitive restriction 
enzyme MspJI (New England Biolabs) along with glycerol 
mock digests. The difference between digest threshold 
cycle [C(t)] and mock C(t) was calculated for each sample 
tested. As our selected enzymes target methylated cyto-
sines, higher methylation leads to increased digestion 
and subsequently longer C(t) times.
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Results
The methylation state of 14-d seedling leaf, tassel, 14 d 
after pollination (DAP) embryo, and 14 DAP endosperm 
DNA from B73 and Mo17 inbred lines was assessed by 
MeDIP followed by hybridization to a microarray plat-
form (see Methods). The array platform includes long 
oligonucleotide probes placed ~200 bp apart on low-
copy sequences. The analysis of the signal ratio between 
immunoprecipitated DNA and a nonenriched control 
allows for the assessment of methylation enrichment 
across the maize genome (B73_RefGen_v2). To prevent 
aberrant signal from multicopy sequences as well as 
sequences absent from the Mo17 genome, all data was 
filtered to probes with only one unique copy in the B73 
RefGen_v2 assembly and probes known to hybridize 
with similar efficiency in both B73 and Mo17 inbred lines 
(Eichten et al., 2011). The resulting 1,088,820 single-copy 
probes were used for a linear model based analysis that 
allowed for the isolation of genotype and DNA methyla-
tion effects. A linear model was developed to estimate 
average probe ratios for 12 tissue comparisons and four 
genotype comparisons (Table 1).

One approach to assessing the variation in DNA 
methylation among tissues and genotypes is to perform 
hierarchical clustering. Clustering of hypothetical single 
nucleotide polymorphism (SNP) data (Fig. 1A) or actual 
transcriptome (Fig. 1B) data across the four complex 
tissues illustrates the expectation for a genetic variation 
(such as SNPs) or primarily among tissues (as expected 
for transcriptomes). The clustering of DNA methylation 
data (Fig. 1C) reveals more substantial effects from 
genotype rather than tissue. Although most variation 
occurs between genotypes, there are some examples 
where tissue-specific methylation signals appear. The 
hierarchical clustering reveals that DNA methylation 
changes during development are limited relative to the 
differences between genotypes. We proceeded to assess 

common differences among genotypes throughout 
development and subsequently to search for the rare 
examples of tissue-specific methylation variation within 
the sampled tissues.

Numerous Examples of Conserved Methylation 
Differences Found between Inbred Lines
There is widespread interest in understanding how DNA 
methylation patterns vary among individuals of the same 
species. We assessed whether different developmental 
stages would exhibit similar differences between two 
maize inbreds, B73 and Mo17. Differentially methylated 
regions between the two genotype DMRs (gDMRs) were 
identified in each tissue by using DNAcopy (Venkatraman 
and Olshen, 2007) to identify multiple adjacent probes 
with significant variation between the genotypes (Fig. 2A). 
Over 500 gDMRs with at least a twofold methylation dif-
ference were found between B73 and Mo17 in each of the 
four tissues that were assessed. There are similar propor-
tions of gDMRs with higher methylation each of the two 
genotypes; 49% have higher methylation in B73 compared 
to Mo17 (Fig. 2A). While the number of gDMRs between 
B73 and Mo17 in each tissue was different we found that 
many of the regions had very similar differential meth-
ylation in all tissues profiled (Fig. 2B). The variation in 
actual number of gDMRs identified in each tissue is due to 
gDMRs that are near the statistical cutoffs in some tissues 
but pass all filters in other tissues. These results indicate 
that there are hundreds of gDMRs showing similar meth-
ylation variation between B73 and Mo17 in leaf, embryo, 
tassel, and endosperm tissue (Fig. 2B).

Few Tissue-Specific DNA Methylation Variants
It has been postulated that DNA methylation may play 
a role in proper regulation of development (Bird, 1997; 
Richards, 1997). To examine the impact of DNA meth-
ylation on development, an analysis of tissue-specific 

Table 1. De novo discovery of differentially methylated regions (DMRs).

Contrast type Contrast
First member of contrast high 

methylation
First member of contrast low 

methylation Total
Total DMRs  

in contrast type

Genotype Endosperm Mo17 vs. B73 159 344 503 2384
Embryo Mo17 vs. B73 315 262 577

Leaf Mo17 vs. B73 378 358 736
Tassel Mo17 vs. B73 362 206 568

Tissue B73 embryo vs. leaf 16 0 16 600
B73 embryo vs. tassel 27 51 78

B73 endosperm vs. embryo 86 59 145
B73 endosperm vs. leaf 42 27 69

B73 endosperm vs. tassel 33 63 96
B73 leaf vs. tassel 13 28 41

Mo17 embryo vs. leaf 17 4 21
Mo17 embryo vs. tassel 2 1 3

Mo17 endosperm vs. embryo 5 40 45
Mo17 endosperm vs. leaf 44 35 79

Mo17 endosperm vs. tassel 2 0 2
Mo17 leaf vs. tassel 3 2 5
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DNA methylation was performed in four developmen-
tally unique tissues. Six tissue contrasts were developed 
between the four tissues (seedling, embryo, tassel, and 
endosperm) for both B73 and Mo17 tissues. Using the 
same criteria used to discover gDMRs, substantially fewer 
tDMRs were discovered in tissue contrasts compared to 
genotype contrasts (Fig. 2C,D; Table 1). There were four 
times fewer tDMRs than gDMRs. Genotype DMRs often 
exhibit larger differences in methylation levels (median 
segment difference = 1.575) than tissue DMRs (median = 
1.310) (Supplemental Fig. S1). A large portion of the DMRs 
(70% in B73 and 81% in Mo17) were identified in contrasts 
of endosperm with the other tissues.

Although there are significantly fewer tDMRs 
present between maize tissues, it is possible that 
some tDMRs play important roles in developmental 
regulation. Several filtering criteria were used to identify 
tissue-specific DMRs with potential functional roles 
in plant development. First, any tDMR that impacts 
development would be expected to show similar patterns 
in both genotypes if it plays a major role in proper 
development. Second, tDMRs involved in developmental 
gene regulation should be located near a gene that shows 
developmental variation for expression levels that is 
correlated with DNA methylation state.

We assessed whether tDMRs that were identified in 
a contrast of two tissues in one genotype had a conserved 
pattern in the same tissues of the other genotype (Fig. 
2E). Only 115 (19%) of all 600 tDMRs showed similar 
DNA methylation patterns in both B73 and Mo17 (Fig. 
3A; Supplemental Table S3) suggesting that the majority 
of tissue-specific DMRs appear to be inbred specific and 
are most likely not involved in important developmental 
regulation. The 115 examples of tissue-specific DMRs 
that are conserved in B73 and Mo17 include 12 examples 
of regions that were identified in multiple tissue contrasts 
resulting in a set of 103 unique tDMRs (Supplemental 
Table S3). The DNA methylation state in all four tissues 
was assessed for each of the 103 conserved tDMRs using 
hierarchical clustering (Fig. 2F). For both genotypes, the 
endosperm was most distinct relative to the other tissues. 
Nearly 70% of the 103 conserved tDMRs were identified 
in a contrast of endosperm with one of the vegetative 
tissues. There are smaller distinct clusters of genes for 
which leaf and tassel tissues show similar methylation 
levels compared to endosperm and embryo. Overall, 
there are many examples of tissue DMRs that appear to 
show a unique DNA methylation level in a single tissue 
while showing a uniform pattern in the remaining 
tissues (Fig. 2F; Supplemental Fig. S2).

Expression Variation of Genes near Tissue-
Specific Differentially Methylated Regions
The 103 DMRs among maize tissues that were consistent 
in both B73 and Mo17 were further characterized to assess 
whether they were associated with tissue-specific expres-
sion of nearby genes. Transcription levels of maize genes 
were assessed using RNA-seq in the same tissues that were 

used for DNA methylation profiling (6–17 million reads 
per sample). There are 57 genes that were located within 
5 kb of the tDMRs and are expressed in at least one of the 
tissues (RPKM > 0.1; Supplemental Table S4). The expres-
sion levels for 34 of these 57 genes near the tissue-specific 
DMRs exhibit a twofold or greater change in expres-
sion when comparing the two tissues used to discover 
the nearby tDMR. These 34 genes include 14 examples 
in which DNA methylation was negatively correlated 
with transcript abundance, as expected, and another 20 
examples in which the transcript abundance and DNA 
methylation were positively correlated. Methyl-dependent 
restriction enzyme digests followed by qPCR were used to 
provide a validation for tissue-specific variation in DNA 

Figure 1. Hierarchical clustering of (A) single nucleotide 
polymorphism (SNP), (B) RNA sequencing (RNA-seq), and 
(C) DNA methylation levels in four tissues of B73 and Mo17. 
The clustering in (A) is an artificial plot that is based on the 
assumption that different tissues of the same plants will contain 
the same genotype. The clustering in (B) is based on two to 
three biological replicates of RNA-seq data for each of the eight 
tissue–genotype combinations. In (C), the DNA methylation 
profiles from MeDIP-chip profiling of the three biological 
replicates of each of the eight tissue–genotype combinations 
are used for hierarchical clustering (Ward’s using Euclidean 
distance). Only probes with a significant difference in at 
least one of the tissue or genotype contrasts were used for 
clustering. The heatmap indicates high (red) or low (green) DNA 
methylation levels. B, B73; emb, embryo; endo, endosperm; M, 
Mo17; tass, tassel.
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methylation levels for 18 tDMRs (Fig. 3D; Supplemental 
Table S5). Eleven of 18 tDMRs tested selected from the 34 
candidates were validated between the tissues used in the 
discovery of the tDMR.

A comparison of DNA methylation and transcript 
abundance in all tissues and genotypes identified six 
genes with a significant (p < 0.05) negative correlation 
between DNA methylation and expression state 
and four of the genes had an unexpected positive 
correlation between DNA methylation and expression 
(Fig. 3; Supplemental Table S4). For example, tDMR55 
exhibits lower DNA methylation levels in tassel and 
is more highly expressed in this tissue (Fig. 3C). An 
example, tDMR51, displays higher DNA methylation 
levels that are correlated with higher expression. It is 
worth noting that many genes show variable tissue-
specific expression patterns and we might expect some 
number of false positives when assessing expression 
patterns for any 103 random genes simply due to the 
frequency of tissue-specific variation. Several of the 10 
correlated genes are similar (e < 0.01) to Arabidopsis 

thaliana genes (Supplemental Table S6). The genes with 
a negative correlation between DNA methylation and 
expression include a MYB-domain gene similar to 
ARR18. There also was a putative histone acetylase with 
a positive correlation between DNA methylation and 
gene expression.

Discussion
Epigenetic memory likely occurs during both mitosis 
and meiosis. Our experiment allows us to examine the 
level of variation for DNA methylation, a chromatin 
modification often associated with epigenetic memory. 
We find more evidence for variation in DNA methylation 
patterns among genotypes than among developmental 
stages (Fig. 1). This suggests that DNA methylation may 
play a more substantial role in differentiating individuals 
of a species than in memory of developmental expression 
differences. Although a large number of gene expression 
changes occur as tissues develop within a plant, there is 
limited evidence for localized DNA methylation varia-
tion to play a role in this developmental process.

Figure 2. Discovery of differentially methylated regions (DMRs) among genotypes or tissues. (A) Genotype DMRs (gDMRs) were 
identified by contrasting each tissue of B73 and Mo17. The number above each bar indicates the total number of gDMRs and the 
shading of the bar indicates the proportion that are more highly methylated in each direction (the dark portion of the bar indicates 
the portion that are more highly methylated in Mo17). (B) Comparison of DNA methylation variation between genotypes in all four 
tissues. The gDMRs discovered in each of the four tissues (tissue used for discovery indicated above each plot) were used to perform 
hierarchical clustering (Ward’s using Euclidean distance) of the DNA methylation levels of the same regions in all four genotypes. These 
plots provide evidence that regions of variable DNA methylation discovered in any one tissue exhibit reproducible genotype variation 
in the other three tissues. (C) The tissue DMRs (tDMRs) were separately identified in B73, Mo17 (D), and those conserved between the 
two genotypes (E). The numbers by each contrast indicate the total number and the shading of bars indicates the portion with higher 
methylation in each tissue. (F) Hierarchical clustering (Ward’s using Euclidean distance; colored thresholds -2 and 2) of normalized 
tissue values for 103 nonredundant, genotype-conserved, tissue-specific DMRs.
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Genotype-Specific Differentially Methylated 
Regions are Highly Conserved across Tissues

There is a growing effort to characterize DNA methyla-
tion differences among different individuals of the same 
species. Researchers are often confronted with decisions 
about the experimental design and are concerned that 

developmental variation among two individuals may 
complicate the comparisons. Our data suggest that DNA 
methylation patterns are strikingly similar regardless of 
tissue assessed (Supplemental Fig. S3). In general, if we 
observe differences in DNA methylation among B73 and 
Mo17 in one tissue we saw similar variation in all other 
tissues for 84% of the genotype DMRs. In a previous 

Figure 3. Relationship between tissue-specific DNA methylation and transcript abundance. (A) Flowchart describing sequential filtering 
of tissue-specific differentially methylated regions (tDMRs). (B) The level of DNA methylation (5mc is 5-methyl-cytosine) (red) from 
MeDIP-chip profiling and transcript abundance (blue) from RNA sequencing (RNA-seq) are shown for three tDMRs located near genes. 
(C) The correlation between DNA methylation and transcript abundance in the four tissues of both genotypes is shown for four tDMRs. 
(D) Example quantitative real time polymerase chain reaction (qPCR) validations of tDMRs. Array-based methylation values (blue) are 
the difference between the first and second tissues used in the tDMR discovery. Quantitative real time polymerase chain reaction values 
(red) are calculated as the difference between the first tissue (C(t)Digest – C(t)Mock) and the second (C(t)Digest – C(t)Mock).
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report we had identified 690 gDMRs among leaf tissue of 
B73 and Mo17. The combined analysis of all four tissues 
revealed a total of ~850 nonredundant gDMRs that meet 
all statistical criteria in at least one tissue and show con-
served patterns of genotypic variation in all other tissues. 
Our data suggest that very similar DMRs would be found 
in any particular tissue but that the analysis of multiple 
tissues may allow for the most robust and complete set of 
genotype-specific DMRs. However, if necessary, it is pos-
sible to compare DNA methylation profiles of two indi-
viduals that vary in developmental morphology (such 
as wild and domesticated individuals) and still identify 
differences in DNA methylation due to genotype differ-
ences. Although the exact function of gDMRs among 
maize genotypes is still to be determined, the hundreds 
of regional differences in DNA methylation between B73 
and Mo17 may provide a source of regulation explaining 
a portion of the differences between these two lines.

Few Tissue-Specific Differentially Methylated 
Regions Indicate Limited Role of DNA 
Methylation and Tissue Development
There has been evidence both for (Finnegan et al., 1996; 
Ronemus et al., 1996) and against (Zemach et al., 2010; 
Zhang et al., 2011) a broad role of DNA methylation in 
regulating gene expression during development in plants. 
In order for a methylation variant to play an important, 
predictable role in development, it would be expected 
that multiple different genotypes of maize would show 
similar tissue-specific DMRs. We found a limited num-
ber of tDMRs among the vegetative tissues and only a 
small number of these exhibit tDMRs in both genotypes. 
It would be expected that functionally relevant tDMRs 
would contribute to regulation of nearby genes. We found 
only 10 genes among the 57 located near tDMRs for which 
expression was correlated to the tDMRs methylation state 
(Fig. 3; Supplemental Table S4). These include six examples 
of negative correlation between DNA methylation and 
expression and four examples of positive correlation. We 
would expect that DNA methylation would show a nega-
tive correlation to gene expression as often methylation is 
associated with nearby gene silencing. The observed posi-
tive correlation of four tDMRs was surprising. It is pos-
sible that DNA methylation can be positively associated 
with gene expression. Studies of imprinted genes in Ara-
bidopsis thaliana have identified examples where demeth-
ylation of certain imprinted genes is required for the gene 
to be silenced (Hsieh et al., 2009). From this, there may be 
certain genes within the genome that are not transcrip-
tionally silenced unless demethylated. Alternatively, the 
existence of similar numbers of genes with positive and 
negative correlations with DNA methylation levels could 
suggest a lack of causation. Many genes exhibit tissue spe-
cific variation and we might expect some examples of cor-
related patterns in any set of 103 genes chosen by chance.

This study has provided evidence that DNA 
methylation does not show significant variation between 
tissues. Similar analyses of methylation across tissues 

within plant systems show minimal tissue-specific 
methylation variation indicating a minimal influence of 
DNA methylation perturbation on development (Zhang et 
al., 2011). However, it is possible that tissue-specific DNA 
methylation variations are present that are beyond the 
scope of this study. By using an array-based technology 
to assess DNA methylation, we are unable to identify 
methylation variants smaller than 200 bp. Because of this, 
any tDMR smaller than our fragment size limits may go 
undetected in this study. It is also possible that tDMRs 
may go undetected given the strict filtering criteria used 
in this study. For example, requiring a twofold difference 
in DNA methylation levels would exclude the discovery of 
many of the allele-specific DNA methylation differences 
observed in endosperm. Beyond this, tissues selected in 
this study contain a variety of cell types that may display 
altered DNA methylation patterns but could be masked 
due to sampling multiple cell types at once within each 
tissue. Many development studies have shown that an 
increased resolution of tissue development allowed 
for a much greater capacity to identify tissue-specific 
differences is gene expression (Li et al., 2010). The same 
may indeed hold true for epigenetic studies.

Conclusions
Much debate has centered on the role of epigenetic regu-
lation in tissue specification (Richards, 1997). Given the 
complexities of cellular and gene regulation required to 
correctly develop into a terminal tissue, it is possible that 
reversible epigenetic regulation of genes could provide a 
mechanism for gene expression variation during cellular 
differentiation. To investigate this possibility, we per-
formed genomewide DNA methylation assessment across 
four distinct tissues of maize in two separate inbred lines. 
Although many conserved methylation variants could be 
identified across genotypes (gDMRs), very few tDMRs 
were identified. Tissue-specific DMRs initially identified 
exhibit poor agreement across genotypes as well as limited 
association with nearby gene expression variation. From 
these results, we conclude that there are very few, if any, 
tissue-specific methylation variants that provide develop-
mental regulation of gene expression in maize.
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