
Chapter 2

Graph Representation

19:05 December 8, 2012 This is the cover page for
Section 2.2: Graph Isomorphism

0

Section 2.1. Graph Isomorphism 1

Section 2.1
Graph Isomorphism

Brendan D. McKay, Australian National University

2.1.1 Isomorphisms and Automorphisms . 1
2.1.2 Complexity Theory . 4
2.1.3 Algorithms . 5
References . 7

INTRODUCTION

Isomorphism between graphs and related objects is a fundamental concept in graph
theory and its applications to other parts of mathematics. The problem also occupies
a central position in complexity theory as a proposed occupant of the region that must
exist between the polynomial-time and NP-complete problems if P6=NP. Due to its many
practical applications a considerable number of algorithms for graph isomorphism have
been proposed.

2.1.1 Isomorphisms and Automorphisms
Informally, two graphs are isomorphic if they are the same except for the names of

their vertices and edges. Formally, this relationship is defined by means of bijections
between them.

Basic Terminology

DEFINITIONS

D1: Let G1 = (V1, E1) and G2 = (V2, E2) be simple graphs. An isomorphism from
G1 to G2 is a bijection φ : V1 → V2 such that vw ∈ E1 if and only if φ(v)φ(w) ∈ E2.

D2: A second way to define an isomorphism is that there are two bijections φ : V1 → V2
and φ′ : E1 → E2, such that the incidence relation between vertices and edges is
preserved. That is, v ∈ V1 is incident to e ∈ E1 if and only if φ(v) is incident to φ(e).
This method is preferred if edges have additional attributes that should be preserved
by the mapping. However, we will use the previous definition where it applies.

D3: An isomorphism from a graph to itself is called an automorphism or symmetry.

2 Chapter 2. Graph Representation

D4: The set of automorphisms of a graph G form a group under the operation of
composition, called the automorphism group Aut(G). The automorphism group of
a simple graph is a subgroup of the symmetric group acting on the vertex set of the
graph.

EXAMPLE

E1: Figure 2.1.1 shows an isomorphism between two graphs and gives the automor-
phism group of the first graph.

a b

h
g

c

fe

d

1­b
0­a ­e4

5­d
6­ f2­c

­3 h 7­g

4 0 3

61

5

27

(1)
(0 2)(4 7)
(1 5)(3 6)
(0 2)(4 7)(1 5)(3 6)
(0 5)(1 2)(3 4)(6 7)
(0 1 2 5)(3 4 6 7)
(0 5 2 1)(3 7 6 4)
(0 1)(2 5)(3 7)(4 6)

Figure 2.1.1: An isomorphism between two graphs and the automorphism group of the
first graph.

DEFINITION

D5: Closely related to isomorphism is the concept of canonical labeling. Arbitrarily
choose one member of each isomorphism class of graphs, and call it the canonical
form of that isomorphism class. Replacing a graph by the canonical form of its isomor-
phism class is called canonical labeling or canonizing the graph. Two graphs are
isomorphic if and only if their canonical forms are identical, as shown in Figure 2.1.2.

canonize canonize

different

same

7 2 1 6

3504 4 2 6 7

0135

3 7 4 0

1562

1573

2 6 4 0

Figure 2.1.2: Isomorphism between graphs becomes equality when they are canonized.

Section 2.1. Graph Isomorphism 3

REMARKS

R1: The labeled graph which gives the lexicographically greatest adjacency matrix is
an example of an explicitly defined canonical form. In practice more complex definitions
are used to assist efficient computation.

R2: Canonical labeling has central importance to practical applications. One task is
to determine whether a graph is isomorphic to any graph in a database of graphs. This
is best achieved by storing the canonical forms of graphs in the database and comparing
them to the canonical form of the new graph. Another task is to remove isomorphs
from a large collection of graphs. This is best achieved by applying a sorting algorithm
to the canonical forms of the graphs. Both tasks are very expensive if only pair-wise
isomorphism testing is available.

Related Isomorphism Problems

Many types of isomorphism problem can be modeled as isomorphism between simple
graphs or digraphs.

FACTS

F1: Vertex colors that must be preserved by isomorphisms can be modeled by attaching
gadgets to the vertices, a different gadget for each color. However, this is such an
important generalization that most software can handle vertex colors directly.

F2: Edge colors can be modeled using layers, once vertex colors are available. Figure
2.1.3 illustrates one approach. The edge colors are assigned numbers according to the
table in the center. The vertices of the original graph are assigned to vertical paths,
with the first layer identified by vertex color. Then the original edges with each color c
are represented by horizontal edges within those layers where the binary expansion of c
has ones.


3 1 0 0
0 0 3 0
2 0 0 2
2 0 1 0


4 3

3 421

21

Figure 2.1.3: Modeling of graphs with colored edges.

F3: Hypergraphs and other types of incidence structures like block designs and finite
geometries can be represented by bipartite graphs. One color class consists of the
vertices of the hypergraph, while the other has a vertex for each of the hyperedges of
the hypergraph. An edge of the bipartite graph represents a vertex of the hypergraph
and a hyperedge it lies in.

F4: Other types of isomorphism easily modeled by graph isomorphism include equiva-
lence of matrices defined by permutation of rows and columns, Hadamard equivalence,
and isotopy (such as for Latin squares) [McPi12b].

4 Chapter 2. Graph Representation

2.1.2 Complexity Theory
The problem of determining whether two graphs are isomorphic, called GI or ISO,

has received a great deal of interest from theorists due to its unsolved nature.

FACTS

F5: GI is not known to have a polynomial-time algorithm, nor to be NP-complete.
While obviously in NP, its presence in co-NP is also undecided. Indeed, it is considered
a prime candidate for the intermediate territory between P and NPC that must exist if
P6=NP. One reason for this is that the NP-completeness of GI would imply the collapse
of the polynomial-time hierarchy [GoMiWi91].

F6: The fastest proven running time for GI has stood for three decades at eO(
√
n logn)

[BaKaLu83].

F7: On the other hand, many special classes of graph are known to have polynomial-
time isomorphism tests. The most general such classes are those defined by a for-
bidden minor [Po88, Gr10] or by a forbidden topological minor [Gr12]. These classes
include many earlier classes, including graphs of bounded degree [Lu82], bounded genus
[FiMa80, Mi80] and bounded tree-width [Bo90]. However, very few of these polynomial
algorithms are practical.

DEFINITION

D6: A decision problem is called isomorphism-complete if it is polynomial-time
equivalent to GI.

FACTS

F8: All of the isomorphism problems noted in the previous subsection are isomorphism-
complete. Many other examples are known, including isomorphism of semigroups and
finite automata [Bo78], homeomorphism of 2-complexes [STPi94] and polytope isomor-
phism [KaSc03].

F9: Isomorphism of linear codes (vector spaces over finite fields) defined by permutation
of the coordinate positions, where the codes are presented as generator matrices, is at
least as hard as graph isomorphism but might be harder [PeRo97].

F10: Isomorphism of groups given as multiplication tables is at least as easy as GI
but might be easier [Bo78]. The best algorithm is very elementary and takes time
nO(logn) [Bo78, Mi78]).

F11: Some problems similar to GI are NP-complete. The best known is the subgraph
isomorphism problem: given two graphs, is the first isomorphic to a subgraph of the
second? Another is the presence of an automorphism without fixed points, or of such
an automorphism of order 2 [Lu81].

DEFINITION

D7: A graph invariant is a property of graphs that is equal for isomorphic graphs.
A complete graph invariant, also called a certificate, is an invariant that always
distinguishes between non-isomorphic graphs.

Section 2.1. Graph Isomorphism 5

FACTS

F12: Examples of invariants include the degree sequence and the eigenvalue set of the
adjacency matrix. However, neither of those invariants is complete. Nevertheless, even
incomplete invariants can sometimes be used as a short proof of non-isomorphism.

F13: An example of a complete invariant is a canonical form. However, it is not known
if there is a complete invariant computable in polynomial time. In fact, it is not even
known if there is a complete invariant checkable in polynomial time (which would place
GI in co-NP).

2.1.3 Algorithms
The development of computer programs for graph isomorphism has been such a

popular pursuit that already in 1976 it was called a “disease” [ReCo77]. Literally
hundreds of algorithms have been published (many wrong).

FACTS

F14: The earliest software appeared in the 1960s. The approach which has been the
most successful is the “individualization-refinement” paradigm introduced by Parris and
Read [PaRe69] and further developed by Corneil and Gotlieb [CoGo70] and Arlazarov
et al. [ArZuUsFa74]. This genre is now represented by the author’s nauty and other
software mentioned below.

REMARK

R3: We will focus our attention on canonical labeling, which is the method used by
the most useful modern algorithms.

DEFINITIONS

D8: A key routine is that of partition refinement, which is any process of making
a partition finer (i.e., breaking its cells into smaller cells) by detecting combinatorial
differences between the vertices. For isomorphism purposes, only properties independent
of the numbering of the vertices may be used. This implies that vertices equivalent under
the action of an automorphism fixing the input partition cannot be separated.

D9: An equitable partition is a partition of the vertices of a graph into cells such
that, for any two vertices v, w in the same cell, and any cell C, we have that v and w
are adjacent to the same number of vertices in C.

EXAMPLE

E2: Figure 2.1.4 shows a graph with an equitable partition of two cells. Each black
vertex is adjacent to no black and two white vertices, while each white vertex is adjacent
to one white and two black vertices. As this example shows, vertices in the same cell of
an equitable partition do not need to be equivalent under the automorphism group of
the graph.

6 Chapter 2. Graph Representation

Figure 2.1.4: An equitable partition with two cells.

FACTS

F15: The most well-known partition refinement method splits cells until the partition
becomes equitable. Given two cells C1, C2, the vertices in C1 are separated into subcells
according to their number of neighbors in C2. This is repeated for different pairs of cells
until no more splitting is possible. Algorithms differ according to the method used to
choose the pairs. The fastest algorithm is in [Mc80].

F16: A generalization of this type of refinement, called k-th order Weissfeiler-
Lehman refinement, uses partitions of the set of k-tuples of vertices rather than just
a partition of the vertices. For some classes of graphs, it is known that there is a fixed k
for which this refinement provides the automorphism partition of the graph, which can
be used to build a polynomial-time isomorphism algorithm. However, Cai, Füredi and
Immerman showed that no such k is sufficient for all graphs [CaFuIm92].

Search Tree

A partition refinement method is used to define a search tree that is used to find a
canonical labeling and the automorphism group.

DEFINITION

D10: Consider a graph and an initial partition (perhaps trivial). Define a search tree
whose nodes are refined partitions. The root of the tree is the refined initial partition.
Any node which is a discrete partition (one with only singleton cells) is a leaf of the
tree. Consider any node ν which is not discrete. Choose a non-singelton cell C. Then
ν has one child for each v ∈ C, obtained by splitting C into two cells {v} and C−{v},
then refining.

FACTS

F17: The leaves of the search tree are discrete partitions, and thus, lists of the vertices
in a definite order. The orders define a set of numberings of the vertices of the graph.The
maximum labeled graph, according to lexicographic or other convenient ordering, is a
canonical form. Moreover, two numberings that define the same labeled graph yield an
automorphism, and all automorphisms can be found in that way.

F18: In practice the search tree may be much too large, so various means are employed
to reduce it. One way is to employ automorphisms as they are discovered to prune
branches of the tree thus shown to be equivalent to other branches. Another way is to
employ invariants computed at the nodes of the tree to perform a type of branch-and-
bound. A third method is to use a more powerful refinement procedure.

Section 2.1. Graph Isomorphism 7

Software

The first program that could process structurally highly-regular graphs and graphs with
hundreds of vertices was that of the author, which became known as nauty [Mc78, Mc80]
and dominated the field from the 1970s until recent years. Now there are several strong
competitors.

EXAMPLES

E3: nauty, by this author, can find automorphisms groups and canonical forms, of
graphs and digraphs. It comes in two forms, with either dense or sparse data struc-
tures [McPi12b, McPi13].

E4: Saucy, by Darga, Liffiton, Sakallah and Markov, computes automorphism groups
and is especially efficient for large sparse graphs having many automorphisms that move
few vertices [DaLiSaMa04, DaSaMa04].

E5: Bliss, by Juntilla and Kaski, can also perform canonical labeling and has very
dependable performance for highly regular graphs [JuKa07, JuKa11].

E6: Traces, by Piperno, introduced an entirely new way of scanning the search tree,
using a combination of breadth-first and depth-first search [Pi08, McPi13]. At the time
of writing, Traces is the most efficient program for processing many classes of very
difficult graphs, as well as being highly competitive for easy graphs [McPi13]. Since
January 2013, Traces has been distributed with nauty [McPi12].

E7: Other worthy programs are conauto by López-Presa, Fernándes Anta and Núñes
Chiroque [LPFe09, JPFe11], VSEP by Stoichev, and VF by Cordella, Foggia, Sansone and
Vento.

E8: Packages which contain high-quality graph isomorphism facilities (usually via
nauty) include Magma, GRAPE, LINK, Sage-combinat, and Macaulay2.

REMARKS

R4: An experimental comparison of nauty, Traces, saucy, Bliss and conauto can
be found in [McPi13].

R5: All the named programs have exponential running time in the worst case. However,
the worst-case graphs are rather difficult to find and most users will see only scaling
according to a polynomial of low degree. The state of the art is that the easiest graphs
can be handled if they fit into main memory (tens of millions of vertices). The most
difficult graphs cause difficulty in the hundreds or thousands of vertices.

References

[ArZuUsFa74] V. L. Arlazarov, I. I. Zuev, A. V. Uskov, and I. A. Faradzev, An algorithm
for the reduction of finite non-oriented graphs to canonical form. Zh. vȳchisl. Mat.
mat. Fiz. 14 (1974) 737–743.

8 Chapter 2. Graph Representation

[BaKaLu83] L. Babai, W. M. Kantor, and E. M. Luks, Computational complexity and
the classification of finite simple groups. In: Proceedings of the 24th Annual Sym-
posium on the Foundations of Computer Science (1983) 162–171.

[Bo90] H. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms 11 (1990) 631–643.

[Bo78] K. S. Booth, Isomorphism testing for graphs, semigroups, and finite automata
are polynomially equivalent problems. SIAM J. Comput. 7 (1978) 273–279.

[CaFuIm92] Jin-yi Cai ,Martin F́’urer, and Neil Immerman, An optimal lower bound on
the number of variables for graph identifications. Combinatorica 12 (1992) 389–410.

[CoGo70] D. G. Corneil and C. C. Gotlieb, An efficient algorithm for graph isomorphism.
JACM 17 (1970) 51–64.

[DaLiSaMa04] P. T. Darga, M. H. Liffiton, K. A. Sakallah and I. L. Markov, Exploit-
ing structure in symmetry detection for CNF. In: Proceedings of the 41st Design
Automation Conference (2004), 530–534.

[DaSaMa04] P. T. Darga, K. A. Sakallah, and I. L. Markov,. Faster Symmetry Discovery
using Sparsity of Symmetries. In: Proceedings of the 45th Design Automation
Conference (2004), 149–154.

[FiMa80] I. S. Filotti and J. N. Mayer, A polynomial-time algorithm for determining the
isomorphism of graphs of fixed genus. In: Proceedings of the 12th ACM Symposium
on Theory of Computing (1980), 236–243.

[GoMiWi91] O. Goldreich, S. Micali and A. Wigderson, Proofs that yield nothing but
their validity, or all languages in np have zero-knowledge proof systems. JACM 38
(1991) 690–728.

[Gr10] M. Grohe, Fixed-point definability and polynomial time on graphs with excluded
minors. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science (2010), 179–188.

[Gr12] M. Grohe, Structural and Logical Approaches to the Graph Isomorphism Prob-
lem, In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (2012), 188.

[JuKa07] T. Junttila and P. Kaski, Engineering an efficient canonical labeling tool for
large and sparse graphs. In: Proceedings of the 9th Workshop on Algorithm En-
gineering and Experiments and the 4th Workshop on Analytic Algorithms and
Combinatorics (2007), 135–149.

[JuKa11] T. Junttila and P. Kaski, Conflict Propagation and Component Recursion for
Canonical Labeling. In: Proceedings of the 1st International ICST Conference on
Theory and Practice of Algorithms (2011), 151–162.

[KaSc03] V. Kaibel and A. Schwartz, On the complexity of polytope isomorphism prob-
lems. Graphs and Combinatorics 19 (2003) 215–230.

[LPFe09] J. L. López-Presa and A. Fernández Anta, Fast algorithm for graph isomor-
phism testing. In: Proceedings of the 8th International Symposium on Experimen-
tal Algorithms (2009), 221–232.

Section 2.1. Graph Isomorphism 9

[JPFe11] J. L. López-Presa, A. Fernández Anta and L. Núñez Chiroque, Conauto-2.0:
Fast isomorphism testing and automorphism group computation. Preprint 2011.
Available at http://arxiv.org/abs/1108.1060.

[Lu81] A. Lubiw, Some NP-complete problems related to graph isomorphism. SIAM J.
Comput. 10 (1981) 11–21.

[Lu82] E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comp. System Sci. 25 (1982) 42–65.

[Mc78] B. D. McKay, Computing automorphisms and canonical labelings of graphs. In:
Combinatorial Mathematics, Lecture Notes in Mathematics, 686. Springer-Verlag,
Berlin (1978), 223–232.

[Mc80] B. D. McKay, Practical graph isomorphism. Congr. Numer. 30 (1980) 45–87.

[McPi12] B. D. McKay and A. Piperno, nauty Traces, Software distribution web page.
http://cs.anu.edu.au/∼bdm/nauty/ and http://pallini.di.uniroma1.it/.

[McPi12b] B. D. McKay and A. Piperno, nauty and Traces User’s Guide (Version 2.5).
available at [McPi12].

[McPi13] B. D. McKay and A. Piperno, Practical graph isomorphism II, to appear.

[Mi78] G. L. Miller, On the nlogn isomorphism technique. In: Proceedings of the 10th
ACM Symposium on Theory of Computing (1978) 51–58.

[Mi80] G. L. Miller, Isomorphism testing for graphs of bounded genus. In: Proceedings
of the 12th ACM Symposium on Theory of Computing (1980), 225–235.

[PaRe69] R. Parris and R. C. Read, A coding procedure for graphs. Scientific Report.
UWI/CC 10. Univ. of West Indies Computer Centre, 1969.

[PeRo97] E. Petrank and R. M. Roth, Is code equivalence easy to decide? IEEE Trans.
Inform. Th. 43 (1997) 1602–1604.

[Pi08] A. Piperno, Search space contraction in canonical labeling of graphs. Preprint
2008–2011. Available at http://arxiv.org/abs/0804.4881.

[Po88] I. N. Ponomarenko, The isomorphism problem for classes of graphs that are
invariant with respect to contraction (Russian). Zap. Nauchn. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI) 174 (1988) no. Teor. Slozhn. Vychisl. 3, 147–
177.

[ReCo77] R. C. Read and D. G. Corneil, The graph isomorphism disease. J. Graph The-
ory 1 (1977) 339–363.

[STPi94] J. Shawe-Taylor and T. Pisanski, Homeomorphism of 2-complexes is graph
isomorphism complete. SIAM J. Comput. 23 (1994) 120–132.

