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SUMMARY

The fast multipole method (FMM) is a complex, multi-stage algorithm over a distributed tree data structure,
with multiple levels of parallelism and inherent data locality. X10 is a modern partitioned global address
space language with support for asynchronous activities. The parallel tasks comprising FMM may be
expressed in X10 using a scalable pattern of activities. This paper demonstrates the use of X10 to implement
FMM for simulation of electrostatic interactions between ions in a cyclotron resonance mass spectrometer.

X10’s task-parallel model is used to express parallelism using a pattern of activities mapping directly onto
the tree. X10’s work stealing runtime handles load balancing fine-grained parallel activities, avoiding the
need for explicit work sharing. The use of global references and active messages to create and synchronize
parallel activities over a distributed tree structure is also demonstrated.

In contrast to previous simulations of ion trajectories in cyclotron resonance mass spectrometers, our code
enables both simulation of realistic particle numbers and guaranteed error bounds. Single-node performance
is comparable with the fastest published FMM implementations, and critical expansion operators are faster
for high accuracy calculations. A comparison of parallel and sequential codes shows the overhead of activity
management and work stealing in this application is low. Scalability is evaluated for 8k cores on a Blue
Gene/Q system and 512 cores on a Nehalem/InfiniBand cluster. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tree codes are an important class of parallel algorithm for physical simulations, as they allow
the approximate evaluation of long-range interactions in greatly reduced time compared to naı̈ve
pairwise calculation. Amongst tree codes, the fast multipole method (FMM)[1] is of interest for
large-scale molecular dynamics simulation, due to its low computational complexity ofO(N) where
N is the number of particles. FMM gives rigorous error bounds for the calculation of potential and
forces, in contrast to particle-mesh methods, where only an error estimate may be available[2].
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2 J. MILTHORPE, A.P. RENDELL AND T. HUBER

This well-defined error behavior makes FMM a suitable choice for applications where provable
accuracy is required. Also in contrast to particle-mesh methods, FMM supports both periodic and
non-periodic systems.

The motivation for this work is the desire to simulate the interactions between charged particles
in a mass spectrometer. The remainder of this section outlines the requirements of our application,
identifies important considerations for parallel implementation of tree codes in general and FMM in
particular, and introduces the X10 programming language used for our implementation.

1.1. Application requirements

We aim to simulate the behavior of a packet of ions in a Fourier-transform ion cyclotron resonance
mass spectrometer (FTICR-MS) over an experimentally meaningful timescale. A typical packet
contains 104 − 106 ions in circular motion with cycle times on the order of microseconds. For
adequate frequency resolution, a measurement period of tens of milliseconds is required. However,
to avoid significant error in integrating the ion trajectories requires a simulation timestep of tens of
nanoseconds[3, 4]. Thus a full simulation requires around a million timesteps. The circular motion
is generated by a Penning trap, which consists of a uniform magnetic field and an approximately
quadrupolar electric trapping field. The apparatus is cubic in shape, which is highly convenient for
simulation in an octree of cubic boxes. As ions can hit the wall of the Penning trap and effectively
“disappear”, periodic boundary conditions should not be imposed if the simulation is to accurately
reproduce experiment. Moreover particles that venture outside of the domain defined by the octree
should simply be removed from the simulation. In the code developed here the ions are modeled
as point charges moving under the influence of electric and magnetic fields, interacting with each
other only through non-bonded electrostatic forces. The non-periodic nature of the experimental
environment plus the dominance of the computation time by evaluation of long-range electrostatic
interactions makes FMM the ideal method to use for this problem.

1.2. Common features of tree codes

Tree codes enable rapid computation of N-body interactions by approximating distant interactions
using aggregate expansions. Each box† in the tree holds an aggregate representation of all particles
within that box; the representation for each parent box is created by combining the representations
for all its child boxes. This suggests the use of a divide-and-conquer programming model, such as
fork-join. There is a natural locality defined by the tree division of space; boxes that are near each
other in the tree interact more strongly or frequently than more distant boxes.

When using a shared memory space, the most natural representation of the tree uses pointers
between parent and child boxes. If the memory is shared but has non-uniform access characteristics
then exploiting locality becomes critical to achieving good performance[5]. However, if the tree
is distributed across multiple memory spaces, pointers in one space are not meaningful in another
without some sort of translation. This consideration led Warren and Salmon[6] to propose the hashed
octree, in which the boxes are stored in a hash table indexed by Morton encoding. This has formed
the basis of most distributed tree codes for the last two decades. However, modern partitioned
global address space (PGAS) languages allow for the possibility of distributed pointer-based tree
structures, which we explore in §3.3.

Traversing the tree involves executing a given function over every box in a specified order. A
pre-order traversal operates on parent boxes first, followed by their children; a post-order traversal
operates on child boxes first. To allow portions of the tree to be treated approximately for long-range
interactions, each box holds an aggregate representation of the sub-tree rooted at that box. Aggregate
representations are carried downwards in a pre-order traversal, and upwards in a post-order traversal.

†In this section, the terms box and particle are used instead of the more general terms node and source / target point.
We use these terms for easier comparison with the discussion of FMM and molecular dynamics application in following
sections.
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1.3. Specific features of the fast multipole method (FMM)

In the 3D FMM[1], the simulation space is divided into an octree of cubic boxes. Interactions
between particles in nearby boxes are evaluated directly, whereas distant interactions are evaluated
by means of series expansions around box centers or equivalent densities.

There are many different choices of series expansion for the fast multipole method, including
spherical harmonics[7], plane wave expansions[1], equivalent charges[8] and Cartesian Taylor
expansions[9]. The different expansions and operations have different computational and memory
complexity with regard to the order of expansion (and consequent accuracy). Our code, PGAS-
FMM, uses spherical harmonics with rotation-based translation and transformation operations, as
these have the lowest asymptotic complexity[9]. The expansions and operations are as described by
White and Head-Gordon[10] with rotation matrix relations as given by Dachsel[11].

FMM is characterized by irregular, but highly localized data access patterns. The algorithm
comprises several steps:

• generation of multipole expansions from particles in each leaf box (P2M);
• a post-order traversal (upward pass) combining multipole expansions at higher levels in the

tree (M2M);
• transformation from multipole to local expansions (M2L);
• a pre-order traversal (downward pass) translating parent local expansions to child boxes (L2L);
• evaluation of far-field interactions using local expansions for leaf boxes (L2P); and
• direct evaluation of near-field interactions (P2P).

The fast multipole method allows a priori calculation of strict error bounds[7]. The tradeoff
between accuracy and computation time is controlled by parameters to the algorithm: the number
of terms p in the multipole and local expansions and the maximum depth of the tree Dmax or the
number of particles per lowest-level box q.

Load balancing is an issue in FMM for two reasons: the difference in number of interactions
between boxes on the edge of the simulation space compared with those for interior boxes, and
differences in the work lists for near- and far-field interactions[12]. The first issue does not arise
in molecular dynamics simulations with periodic boundary conditions, as with the periodic FMM
every box can be considered an ‘inside’ box (with 26 neighbors). However for our simulation it is of
real importance as periodic boundary conditions do not apply. The second issue occurs because the
main components of the near- and far-field interactions - the P2P and M2L steps - are proportional to
the number of particles within neighboring boxes and the number of boxes in well-separated boxes
respectively. As these values are not directly correlated, the balance of work for each component will
be different for each box. One approach to load balancing uses a separate domain decomposition
for the near- and far-field computations[12]. An alternative is to use a single domain decomposition
based on a combined work estimate for both components[13]. We describe such a combined work
estimate in §3.2.

1.4. X10 programming language

The X10 programming language[14] is a modern asynchronous partitioned global address space
(APGAS) language, which incorporates a number of concepts that address the concerns listed
above. The sequential core of the language is similar to and largely interoperable with Java. The
main differences with Java are the explicit representation of data locality in the form of places, and
the expression of task parallelism through asynchronous activities. Every object has a host place,
and may be accessed remotely via global references which may be passed between places. Active
messages are used to combine data transfer, distributed task creation and synchronization. Efficient
complex arithmetic is implemented through structs, which are headerless datatypes supporting
inlined user-definable operations[15].

Load balancing within a place is supported by a work stealing runtime[16]. The programmer
exposes parallelism by creating lightweight thread objects which are termed activities. The runtime
maintains a pool of worker threads, each of which processes a double-ended queue (deque) of
activities. Each worker adds and removes activities at the head of its own queue. When a worker
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4 J. MILTHORPE, A.P. RENDELL AND T. HUBER

becomes idle it attempts to steal work from the tail of another thread’s queue. The runtime uses
cooperative scheduling where an activity runs to completion unless it executes a blocking statement
or explicit yield[17].

X10 can be compiled to generate either C++ or Java code, with dependencies on runtime
libraries[17]. The generated C++ code is compiled with a platform C++ compiler to form an
executable. The Java code is compiled to bytecode and run on a JVM.

2. RELATED WORK

Early simulations of ion trajectories in FTICR mass spectrometry focused on single-ion behavior,
neglecting Coulomb interactions. Recent simulations model Coulomb interactions using either
virtual particles[18] or particle-in-cell approximations[19, 20, 21]. There appears to have been little
consideration of the accuracy of electrostatic force evaluation. In contrast, our use of FMM allows
the calculation of strict bounds on the truncation error for both force and potential calculations.

exaFMM[9] is an implementation of FMM that uses Cartesian Taylor expansions and is optimized
for low accuracy (≤ 3 decimal digits) calculations. To our knowledge it is currently the fastest
published FMM implementation for low accuracy when running on a single Intel node. Single-
precision arithmetic is used, and the number of terms, p, in expansions is a compile-time constant,
which enables template meta-programming with specialization for low p. Although Cartesian Taylor
expansions have a higher asymptotic complexity (O(p6)) compared to spherical harmonics (O(p3)),
they are always faster for low p due to smaller pre factors[9]. exaFMM has been parallelized using
data-driven execution and work stealing within a single node[22].

A series of papers describing octree construction using the DENDRO package[23, 24, 13] shows
how FMM tree construction may be scaled to very large numbers of particles and processes. This
article focuses on the evaluation of potential and forces and does not treat tree construction in detail;
we direct interested readers to the above papers for a more thorough treatment.

3. IMPLEMENTATION

3.1. Finding parallelism

Typical HPC clusters provide multiple levels of parallelism, including between distributed nodes and
between cores within a single shared memory node. The most widely used approach to exploiting
this parallelism is a hybrid programming model, in which message passing (MPI) is used between
nodes, and a shared-memory programming model such as OpenMP is used within each node. In
contrast, X10 supports a unified programming model which exploits parallelism at both levels.

The fast multipole method is a complex, multi-stage algorithm which allows for parallelism
at multiple levels. The most basic parallelism is between computation of near- and far-field
interactions, which are independent other than the need to synchronize updates to forces on
particles. Within each stage of the algorithm at a given level, evaluation of each box may proceed
independently, although there are dependencies between stages and levels. For example, in the
downward pass, the local expansion of the parent box is an input to the computation of the local
expansion of each child box.

Our code uses activities of box-level granularity, and overlaps computation with communication
where possible. At a high level, the fetching of particle data for near-field computation overlaps with
all bar the final phase of computation, as follows:

1 // at each place
2 finish {
3 async fetchParticleData();
4 upwardPass();
5 multipolesToLocal();
6 }
7 downwardPass();
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In the above code, the async statement on line 3 starts an activity to fetch particle data from
neighboring places. Each place constructs a local essential tree and fetches particles from only those
boxes which are necessary to compute near-field interactions at the current place. Fetching particle
data proceeds in parallel with the upwardPass() and multipolesToLocal() phases. However
the finish block (lines 2–6) ensures that fetching is completed before the downwardPass(), which
includes near-field computation.

3.2. Load balancing

Exposing parallelism through parallel activities does not by itself ensure the efficient use of available
processing resources. Load balancing between processing elements is necessary to ensure full
utilization of resources. We consider both load balancing between distributed places, and load
balancing between processing elements within a place.

3.2.1. Load balancing between places We chose to implement a single static domain
decomposition of the FMM tree based on work estimates for each box at the lowest level.
A full work estimate for FMM would contain many terms, accounting for computation and
communication in each stage of the algorithm. However, a simple two-part estimate is possible based
on two simplifying assumptions: first, that FMM is heavily compute-bound on current architectures
(although this assumption may become false as early as 2020)[25]; and second, that only the P2P and
M2L steps contribute significantly to the total runtime. Given these assumptions, the cost estimate
for work due to a box B containing n particles is:

cost(B) = costu(B) + costv(B) (1)
costu(B) = CP2P · n · size(U(B)) · q (2)
costv(B) = CM2L · size(V (B)) (3)

where q is the average number of particles per lowest level box, CP2P is the cost of computing
a single direct interaction and CM2L is the cost of computing a single multipole-to-local
transformation. CP2P and CM2L are estimated at runtime as part of the ‘setup’ for the method
by executing a small number of P2P and M2L kernels on the target architecture. The U-list U(B)
is the list of all neighboring boxes. P2P (particle-to-particle) interactions are computed for all n
particles in box B with every particle in all boxes in the U-list. The V-list V (B) is the list of all
well-separated boxes for which the parent boxes are not also well separated. M2L (multipole-to-
local) transformations are computed for all boxes in the V-list.

The cost estimate above is used to divide the lowest-level boxes between places. Boxes are sorted
using Morton ordering and portions of the Morton curve assigned to each place so that the cost of
each portion is roughly equal.

3.2.2. Load balancing within a place We divide each tree traversal into one activity for each box.
Therefore the number of activities in a traversal of a tree of Dmax levels is

8Dmax + 8Dmax−1 + ...+ 82

(The topmost level of boxes is not included in the traversal as there are no far-field evaluations at
this level.) For example, for a complete tree of 5 levels, the number of activities for a traversal is
37440.

The work required for traversal varies substantially between boxes; it is therefore necessary to
load balance activities between the worker threads within a place. This is performed by the X10
work stealing runtime; once a thread becomes idle it attempts to steal work from the queue of
another thread. Work stealing leads to good locality when applied to tree traversals, as the earliest
created (and stolen) activities are those at the higher levels of the tree. The lower level activities
created and processed by each thread will therefore tend to belong to the same subtree, which means
that they can reuse cached data pertaining to that subtree.
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6 J. MILTHORPE, A.P. RENDELL AND T. HUBER

As each activity is relatively long-lived (>100k cycles), the overhead of activity management and
load balancing is expected to be small. We present performance results confirming this expectation
in §4.2.

3.3. Distributed tree structure using global references

The tree is comprised of lowest-level boxes containing particles, represented by the class
LeafOctant, and boxes at higher levels, represented by the class ParentOctant. Both classes
inherit from Octant, defined as follows:

1 public abstract class Octant {
2 public id:OctantId;
3 public var parent:Octant;
4 public val multipoleExp:MultipoleExpansion;
5 public val localExp:LocalExpansion;
6 abstract traverse[T,U](parentRes:T,
7 preFunc:(a:T)=>T,
8 postFunc:(c:List[U])=>U
9 ):U;

10 ...
11 }

The PGAS programming model in X10 allows for the construction of distributed pointer-based
data structures. X10 provides a special type GlobalRef, which is a global reference to an object
at one place that may be passed to any other place. Rather than using GlobalRef directly for child
or parent references, we use it to implement a proxy class, GhostOctant, which sends an active
message to the host place of a remote box. If a child box is held at a different place to its parent, a
GhostOctant is created for the child and linked from the parent box.

The following code performs the traversal of a subtree for a parent octant:
12 class ParentOctant extends Octant {
13 public val children:Rail[Octant];
14 traverse[T,U](parentRes:T,
15 preFunc:(a:T)=>T,
16 postFunc:(c:List[U])=>U
17 ):U {
18 val myRes = preFunc(parentRes);
19 val childRes = new Rail[T](numChildren);
20 finish for([i] in children) {
21 async childRes[i] =
22 children[i].traverse(myRes, preFunc, postFunc);
23 }
24 val x = postFunc(childRes);
25 // store for use by ghost
26 atomic this.result = x;
27 return result;
28 }
29 traverse[T,U](postFunc:(c:List[U])=>U):U {
30 val childRes = new Rail[T](numChildren);
31 finish for([i] in children) {
32 async childRes[i] =
33 children[i].traverse(postFunc);
34 }
35 val x = postFunc(childRes);
36 return result;
37 }
38 }

On lines 15 and 16, preFunc and postFunc are arbitrary closures, that is, functions provided
together with their variable environments. In the fast multipole method they are used to translate
or transform multipole expansions. Lines 20–23 traverse each child in parallel using the result of
preFunc for the parent (a pre-order traversal). Line 24 executes postFunc for the parent, which
typically involves a reduction over the result of postFunc for all children (a post-order traversal).
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IMPLEMENTING A DISTRIBUTED FMM USING THE X10 LANGUAGE 7

Line 26 atomically sets the result field for the parent octant. The atomic statement is necessary to
allow progress for any activities that are currently waiting on the result field. Lines 29–37 are a
simpler version of traversal for the case where only a post-order traversal is required.

During tree traversal, the GhostOctant creates an active message to the child’s host place to
get the aggregate representation of the child. If a pre-order traversal is required, the active message
initiates computation at the host place as follows:

31 class GhostOctant extends Octant {
32 private var target:GlobalRef[Octant];
33 traverse[T,U](parentRes:T,
34 preFunc:(a:T)=>T,
35 postFunc:(c:List[U])=>U
36 ):U {
37 at(target.home) {
38 val t = target();
39 return t.traverse(parentRes, preFunc, postFunc);
40 }
41 }
42 ...

Lines 37–40 generate an active message to the home place of the target octant to compute and
return the aggregate representation of the octant.

If only post-order traversal is required, then the various subtrees at each place can be evaluated
in parallel, without waiting for evaluation of parent octants held at other places. In this case, a
GhostOctant can simply return the value of the host octant that has previously been computed at
the host place, as follows:

43 ...
44 traverse[U](postFunc:(c:List[U])=>U):U {
45 at(target.home) {
46 val t = target();
47 when(t.result != null);
48 return t.result;
49 }
50 }
51 }

The statement when(...); on line 47 is a conditional atomic statement, i.e. it blocks the current
activity until the condition is true, during which time other activities can perform useful work. The
thread may proceed once the condition has been set to true by an atomic block in another activity
initiated separately at the host place.

3.4. Global collective operations

Certain communication patterns in our current implementation of FMM use global tree-structured
collective operations. For example, the load-balancing algorithm requires a count of particles held
in each box. The local counts at each place are combined using a global all-reduce operation over all
places. During far-field evaluation, a global barrier is used to ensure that all multipole expansions
have been transferred before commencing the multipole-to-local (M2L) transformations. Barrier,
all-reduce and other collective operations are provided by the x10.util.Team API, and are
hardware accelerated where possible[17]. Exploratory benchmarks of these collective operations
suggested that they are not a limiting factor for the small to moderate numbers of places considered
here. For very large place counts this is likely, however, to become a bottleneck. At that point one
alternative approach would be to communicate the multipole and particle data using active messages
with only local synchronization between neighbors[26].
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4. EVALUATION

There are many published implementations of FMM, which differ in both algorithm and technology
(programming language, libraries) used to implement them. In evaluating the performance of
our PGAS-FMM, we compare it to a state-of-the-art implementation, and determine whether
performance differences are due to algorithm or technology. Specifically we consider i) the overall
performance of the code when running on a single core and the efficiency of each major component
of the algorithm; ii) the overhead of X10 activity management; iii) scaling with number of threads
on a shared-memory system of each component; iv) multi-place scaling on two typical HPC
architectures with different CPU and network characteristics; and v) performance of FMM within a
complete FTICR simulation.

Evaluation was performed on three classes of parallel machines:

• a typical desktop machine, containing a Sandy Bridge quad-core Core i7-2600 with 8GB
DDR3-1333 memory;

• a loosely coupled cluster machine: the Vayu Oracle/Sun Constellation cluster installed at the
NCI National Facility at the Australian National University. Each node of Vayu is a Sun X6275
blade, containing two quad-core 2.93GHz Intel Nehalem CPUs, 24GB DDR3-1333 memory
and on-board QDR InfiniBand; and

• a tightly integrated system with a custom interconnect: the Watson 2Q Blue Gene/Q system
at IBM Watson Research Center. Each Blue Gene/Q compute node contains 16 PowerPC
A2 1.6GHz compute cores (with an additional core for operating system services) and 16GB
DDR-3 memory[27].

For all reported results, the Native (C++ backend) version of X10 2.3 was used. One multithreaded
X10 place was created per socket, with X10 NTHREADS (the number of worker threads) equal to
the number of cores. Thus X10 NTHREADS=4 was used for the quad-core CPUs of Vayu, and
X10 NTHREADS=16 was used for the 16-core CPUs of Watson 2Q. On Vayu, Open MPI version
1.4.3 was used with the options -bind-to-socket -cpus-per-proc 4 to run one process
per quad-core CPU.

4.1. Single-threaded performance

We first compare the single-threaded performance of our code against exaFMM[28], which is an
FMM implementation optimized for low accuracy calculations.

Figure 1 compares the performance of PGAS-FMM with that of exaFMM on a single Sandy
Bridge core (Core i7-2600). We used both codes to calculate forces and potential to low accuracy
(RMS force error ≈ 1× 10−2) for a range of particle numbers between 10,000 and 1,000,000. All
simulations used uniform lattice distributions over [−1, 1]3 with total charge

∑
qi = 1 and equal

particle charges of 1
n . For low accuracy, our code is between 9 and 25 times slower than exaFMM

across this range. This difference is similar to that observed by Yokota[9] when the performance of
exaFMM was compared with four other major open-source FMM or tree code implementations for
a similar benchmark.

Table I. Component timings in seconds of PGAS-FMM on Core i7-2600 (1 thread)
for varying numbers of particles and accuracies (low: p = 3, ε = 10−2, high p = 6, ε = 10−4).

n = 105 n = 106

component low high low high
tree construction 0.038 0.038 0.34 0.35

near 0.714 0.718 9.37 9.28
upward 0.118 0.150 1.15 1.44

far M2L 0.286 0.775 2.75 7.31
downward 0.052 0.097 0.52 0.96
total 1.21 1.78 14.13 19.35
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Figure 1. Comparison between PGAS-FMM and exaFMM on Core i7-2600 (1 thread):
scaling with number of particles, low accuracy (p = 3, ε = 10−2).

We now focus on the execution time of PGAS-FMM, and consider the major components of
the algorithm separately. Table I shows the breakdown of computation time between the major
components: tree construction, far-field evaluation (upward, multipole-to-local transformations and
downward pass) and near-field evaluation. Tree construction accounts for approximately 4-10% of
the total time, with a roughly even split between near- and far-field evaluation. This is somewhat
slower than what might be expected for a single thread, in part because the code assumes that
the particles are distributed between places and require load balancing and redistribution before
evaluation can occur. For low accuracy the near-field computation time is dominant representing
58% of the total for the “small” 105 particles simulation and 66% for the “large” 106 particles
simulation. However, as the accuracy is increased the near and far field computation times become
roughly equal.

As X10 is a new language with less well-understood performance characteristics than traditional
languages such as C++ or Fortran, it is reasonable to ask how good the absolute performance
of PGAS-FMM is, and what fraction of the observed performance difference between PGAS-
FMM and exaFMM is due to algorithmic differences compared to inefficiencies in the language
implementation. These issues are considered in detail in the following subsection for the near- and
far-field components separately.

4.1.1. Near-field calculation The U-list (near field) interactions for each box are computed in a
loop over neighboring boxes. All atom data for neighboring boxes have previously been retrieved
and stored in Morton order, i.e. in a dense memory layout. This promotes better locality and cache
re-use. For each box, the maximum number of boxes in the U-list is 27. There is a substantial overlap
between U-lists for different boxes that are nearby in Morton order. Hence there is good temporal
locality in the use of particle data in the U-list calculation. Given an average number of ions q = 50
per lowest level box, the working set size is approximately 43kB, which easily fits within the L2
cache on all the systems we used.

The calculation of a single near-field interaction (energy and forces) between two particles
requires 9 adds, 9 multiplies, 1 division and 1 square root, for a total of 20 floating point operations.
Using PAPI, we measured between 20 and 23 FP instructions per near-field interaction, and between
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40 and 46 cycles per interaction for 60000 particles with Dmax = 4, ws = 1. We measured identical
execution time and FP instructions for an equivalent sequential C++ near-field kernel code, therefore
the X10 language implementation does not add any overhead for this kernel.

The most expensive part of this calculation is the inverse square root. This requires a divide
operation and a square root with a typical latency of around 40 cycles[29]. exaFMM and other codes
use an approximate inverse square root operation to reduce this cost. For example, exaFMM uses
single-precision Intel AVX and SSE reciprocal square root operations with a latency of 6 cycles.
Using the Kernel Independent Fast Multipole Method and an approximate square root function,
Chandramowlishwaran et al.[5] give a figure of 19 instructions for potential evaluation only, which
takes roughly 17 cycles to execute. The generic GROMACS[30] non-bonded kernel for Coulomb
interactions (nb kernel100.c) contains 27 FLOPS per interaction, and also uses an approximate
inverse square root.

4.1.2. Far-field calculation The major algorithmic consideration in the far-field calculation is the
type of expansions and transformation operators used. By far the largest contribution to calculation
time is the multipole-to-local (M2L) transformation, which converts a multipole expansion for a
well separated box to a local expansion for a target box. Yokota[9, fig. 1] compared the performance
of M2L operator using Cartesian Taylor expansions and transformations with a rotation-based M2L
operator over spherical harmonic expansions. The average time for a single M2L transformation
was measured for a complete FMM calculation for n = 106 particles. We replicated this experiment
using the spherical harmonic expansions and operators implemented in PGAS-FMM, and report the
results in figure 2. Whereas Yokota found a crossover point at p ≈ 12 (ε ≈ 10−7), we find that the
crossover occurs much earlier at p = 7 (ε ≈ 10−5).
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Figure 2. Time for M2L transformation on Core i7-2600 (8 threads)
for different orders of expansion p (n = 106).

The M2L operations on the Cartesian Taylor expansions used in exaFMM scale as O(p6),
whereas the rotation-based operators in PGAS-FMM scale as O(p3) but with a larger prefactor.
It is therefore expected that PGAS-FMM would exhibit relatively better performance for higher-
accuracy calculations with greater p. Figure 3 shows computation time for the same systems used
in figure 1, this time with a slightly higher accuracy (RMS force error ≈ 1× 10−3). The exaFMM
C++ code is now only 1.5-4.1 times faster than our X10 code (p = 6). The difference in scaling
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suggests that algorithmic differences between the two codes are likely to be more important for
far-field evaluation than differences due to the use of X10 vs. C++.
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Figure 3. Comparison between PGAS-FMM and exaFMM on Core i7-2600 (1 thread):
scaling with number of particles, higher accuracy (p = 6).

Having compared the overall performance of our code to that of a highly-optimized FMM
implementation, we now consider its floating-point performance with respect to theoretical peak
FLOPs on our desktop system. Darve et al.[31] report between 15% and 50% of peak FLOP/s
achieved for a BLAS formulation of the M2L kernel with p = 32 running on a dual quad-core Intel
Xeon E5345. Our M2L operations average 3782 cycles and 3938 FP instructions with p = 6 (force
error ≤ 10−3) on an Intel Core i7-2600. This is a FP intensity of 1.04 FLOPs/cycle, which is 26%
of peak FLOP/s. Our code achieves between 14% and 22% of peak FLOP/s for the entire FMM
excluding the near-field calculation. This might be improved through appropriate use of SSE and/or
AVX instructions.

4.2. Overhead of activity management

For efficient parallel execution it is necessary to divide FMM computation evenly between
processing elements. Our code divides the work into a large number of activities to take advantage
of dynamic load-balancing by X10’s work stealing runtime. To assess the overhead of activity
management we removed all async statements from the upward, M2L and downward components
of the code, effectively converting it into a sequential program. We ran both sequential and parallel
versions of our code on a single thread to compare component timings. Table II shows the difference
in time between sequential and parallel versions of each component, and the proportional slowdown
due to activity management overhead. The slowdown is less than 4% for each component suggesting
that the overhead of activity management is relatively low.

4.3. Multithreaded scaling

Figure 4(a) shows multithreaded scaling on a single quad-core Sandy Bridge node of the different
components of FMM computation time for the largest system used in §4.1 (106 particles) with p =
6 (RMS force error ≈ 1× 10−3).

Figure 4(b) presents the same data in terms of multithreaded efficiency, showing the total thread
time (elapsed time × number of threads). A component that exhibits perfect linear scaling shows
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12 J. MILTHORPE, A.P. RENDELL AND T. HUBER

Table II. Slowdown due to X10 activity management overhead for PGAS-FMM on Core i7-2600 (1 thread)
for low accuracy calculation (n = 106, p = 3).

time (s)
component sequential parallel slowdown

upward 1.12 1.16 1.03
M2L 2.65 2.67 1.009

downward 9.79 9.81 1.002

constant total thread time, while an increase in total thread time represents a loss of parallel
efficiency.
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Figure 4. Multithreaded component scaling and efficiency of PGAS-FMM
on Core i7-2600 (1-8 threads, n = 106, p = 6).

On a single thread, the largest components are the ‘downward pass’, which includes direct
calculations, and the multipole-to-local transformations for the V-list. These components show
reduction in computation time from 1 to 4 threads, with a slight increase in total thread time
reflecting imperfect load balancing due to differences in task size. There is a further reduction in
computation time for 8 threads as hyper-threading is used to schedule eight threads on four physical
cores. The latter does however increase the total thread time as threads compete for resources.
Further experiments (not shown) found no additional performance improvement above 8 threads.

4.4. Distributed scaling

Figure 5 shows strong scaling for FMM force calculation on a uniform lattice distribution of
1,000,000 particles on Vayu. The maximum tree depth for this problem size is 5 (32,768 boxes
at the lowest level), and p = 6 terms were used in expansions for a force error of approximately
10−3. Total computation time is shown along with the time for each of the major components for
1 to 256 places. The lowest total time (0.24s) is observed on 128 places (512 cores), compared to
7.6s on a single place (4 cores). Parallel efficiency reduces gradually due to less than linear scaling
of the upward pass, which includes the time to send multipole expansions to neighboring places.
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Figure 5. Strong scaling of FMM force calculation on Vayu (4 cores per place, n = 106, p = 6).

Strong scaling experiments were also conducted on the Watson 2Q Blue Gene/Q system. Blue
Gene/Q represents a different system balance to the Vayu Nehalem/IB cluster, with a greater relative
performance of the communication subsystem compared to floating point computation[27]. It also
has substantially greater levels of parallelism; a single BG/Q compute node may execute up to 64
hardware threads (on 16 4-way SMP cores). The results are shown in figure 6.
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Figure 6. Strong scaling of FMM force calculation on Watson 2Q (16 cores per place, n = 106, p = 6).

Per core, Watson 2Q is significantly slower with a single place (16 cores) taking 15.3s to run the
benchmark, which is about twice as long as a single place on Vayu (4 cores). The computation overall
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14 J. MILTHORPE, A.P. RENDELL AND T. HUBER

scales better on Watson 2Q than it does on Vayu, which reflects the relatively higher performance
of communications over the torus network, which makes communication-intensive components
like the upward pass relatively cheaper on BG/Q. Also, key collective operations used in tree
construction and the upward pass (see §3.4) are hardware accelerated. Total time reduces from 19.5s
on 1 place (16 cores) to 0.28s on 512 places (8192 cores).

Figure 7(a) is a heatmap of the MPI pairwise communications with 64 processes on Vayu for
a single FMM force calculation, profiled using IPM. Darker areas on the map indicate larger
volumes of communications between processes. The heatmap demonstrates that the communication
pattern is relatively localized, with large amounts of data exchanged between neighboring processes
and very little between more distant processes. A noticeable feature of the communication
topology is the two strong off-diagonal lines. These represent global tree-structured collective
communications (broadcast and all-reduce), which are used in tree construction.‡ Figure 7(b) shows
the communication topology for tree construction alone. Comparing the two figures, it is apparent
that the communication pattern of FMM evaluation excluding tree construction is fractal-structured
and mostly on-diagonal (between neighboring processes).

(a) Complete FMM force calculation (b) Tree construction only

Figure 7. MPI communication map between 64 processes for FMM force calculation on Vayu.

4.5. Application: FTICR mass spectrometer

Finally, we present performance results for the simulation of ion cloud behavior in a FTICR mass
spectrometer (see §1.1).

Figure 8 shows the ion cloud evolution in the first 2.5ms for a simulation of 10,000 ions. The
Penning trap is a 5mm cube with a 4.7T magnetic field and a 1V trapping field. Initially there is
a single ion cylindrical ion cloud composed of two species of similar mass/charge ratio: glutamine
(m/q = 147.07698) and lysine (m/q = 147.11336). The simulation consists of timesteps of length
25ns, using FMM evaluation of electrostatic interactions with p = 8. After 2.5ms, the clouds have
separated and are beginning to form a comet shape. This has been observed previously in other
simulations[19] and attributed to the ion-ion interactions.

We ran simulations with varying numbers of particles and timesteps for ion clouds of amino acids
of similar mass/charge ratios. Table III shows the computation time per timestep, FMM evaluation
and tree construction times for varying number of particles and maximum tree depth.

‡The MPI collective functions MPI_Bcast and MPI_Allreduce exhibit similar communication patterns.
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Figure 8. FTICR-MS ion cloud evolution in the first 2.5ms of simulation:
packet of 5K lysine and 5K glutamine.

Table III. Amino acids in ANU mass spectrometer.
Timings for one place (4 cores) to 128 places (512 cores) on Vayu, (p = 6).

time per cycle (s)
FMM

N places total evaluate construct tree
105 1 3.05 2.94 0.085
105 16 2.40 1.11 0.93
105 32 2.23 0.74 1.24
105 64 2.72 0.53 1.98
105 128 4.08 0.44 3.48

5. CONCLUDING REMARKS

Our implementation of the fast multipole method demonstrates the use of the X10 programming
language and the asynchronous partitioned global address space model to express an efficient pattern
of parallel tasks in a complex, multi-phase application. The work stealing runtime provides dynamic
load balancing between worker threads within a place and was shown to have a low overhead due
to activity management.

On the multi-socket nodes of the Vayu cluster, we performed experiments using one X10 place
per socket. We speculate that on typical architectures, it will be most efficient to run one X10 place
per uniform memory area as we have done.

Our results demonstrate that the fast multipole method using spherical harmonics with rotations
is faster than using Cartesian Taylor expansions for target RMS force error ≤ 10−3. This suggests
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16 J. MILTHORPE, A.P. RENDELL AND T. HUBER

that a general purpose FMM may implement multiple different expansion types, and switch between
them depending on which is fastest for the target accuracy.

The application code described in this paper is available at http://cs.anu.edu.au/
˜Josh.Milthorpe/anuchem.html and is free software under the Eclipse Public License.
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