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Abstract

We extend the Q-learning algorithm from the Markov Decision Process setting to problems
where observations are non-Markov and do not reveal the full state of the world i.e. to
POMDPs. We do this in a natural manner by adding `0 regularisation to the pathwise
squared Q-learning objective function and then optimise this over both a choice of map from
history to states and the resulting MDP parameters. The optimisation procedure involves a
stochastic search over the map class nested with classical Q-learning of the parameters. This
algorithm fits perfectly into the feature reinforcement learning framework, which chooses
maps based on a cost criteria. The cost criterion used so far for feature reinforcement
learning has been model-based and aimed at predicting future states and rewards. Instead
we directly predict the return, which is what is needed for choosing optimal actions. Our
Q-learning criteria also lends itself immediately to a function approximation setting where
features are chosen based on the history. This algorithm is somewhat similar to the recent
line of work on lasso temporal difference learning which aims at finding a small feature set
with which one can perform policy evaluation. The distinction is that we aim directly for
learning the Q-function of the optimal policy and we use `0 instead of `1 regularisation. We
perform an experimental evaluation on classical benchmark domains and find improvement
in convergence speed as well as in economy of the state representation. We also compare
against MC-AIXI on the large Pocman domain and achieve competitive performance in
average reward. We use less than half the CPU time and 36 times less memory. Overall,
our algorithm hQL provides a better combination of computational, memory and data
efficiency than existing algorithms in this setting.

1. Introduction

Reinforcement Learning (RL) agents (Sutton and Barto, 1998) learn how to act well in
an unknown environment through trial and error. In the case where the state is fully
observed at every time step and the state space is finite, there are many algorithms that are
guaranteed to eventually find the optimal policy. If the state space is small this also works
well in practice and a near optimal policy can be found in reasonable time. Using a suitable
exploration policy this time is polynomial in the relevant quantities (Strehl et al., 2009).
One of the best known examples of an efficient MDP solving algorithm is Q-learning, which
has the favorable properties of being efficient in both computation and memory as well as
being able to learn about the optimal policy while following any sufficiently explorative
policy. In this article we will extend Q-learning to a more realistic setting.
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Unfortunately, in most real-world problems the states are only partially observed and the
underlying state space may be large or even continuous. The feature reinforcement learning
framework (Hutter, 2009; Nguyen et al., 2011, 2012; Daswani et al., 2012) is an example of
history-based reinforcement learning (Mccallum, 1995) which attempts to remedy this by
choosing a map from histories to states based on a cost function. The cost function needs
to trade off between predictive ability and size of the resulting state space. An obvious idea
is a complexity-penalised likelihood of the data experienced so far, but in complex domains
with large observations spaces this may lead to an unnecessarily large state space and
prohibitively slow learning. Therefore, the cost functions suggested by Hutter (2009) are
not based on the likelihood of the observation sequence but instead of the state sequence
resulting from the application of the map under consideration. However, if the map is
injective, which is the case when one is using non-empty suffix trees, this is the same thing.

The above cost functions are inherently model-based and so unsuitable for function
approximation. Our motivation is primarily to introduce a cost function that is value-based
and model-free, hence scalable to a function approximation setting. We use the squared Q-
learning error with a regulariser as our objective function in this feature RL setting. This
value-based cost more discriminative and easily adapted to the function approximation
setting. The resulting algorithm is an extension of Q-learning to the history-based setting.
The objective function is simply complemented by an `0 regularisation term and we optimise
over not only the Q-values but also the choice of feature map. In the classical setting we
have a fixed map and this regulariser therefore has no effect and the algorithm reduces
to classical Q-learning. This objective is also similar to what is minimised by the Least
Squared Fitted Q-iteration algorithm (Ernst et al., 2005; Farahmand et al., 2008).

The problem of reinforcement learning with function approximation in Markov Decision
Processes where the full feature space is large compared to the number of samples, has
recently been intensively studied. This problem has been addressed by the introduction
of methods like regularised Least Squares Temporal Difference learning in (Ghavamzadeh
et al., 2011; Kolter and Ng, 2009; Johns et al., 2010) where an `1 regulariser promotes
sparsity. If we do not have many more samples than features, then regularisation is a
necessity. The Dantzig selector temporal difference method by Geist et al. (2012) uses an
`∞ norm instead of `2 for the error and an `1 norm for parameter complexity.

Our primary difference from the classical function approximation setting is that we
start with a small number of features and grow them over time via a simulated annealing
procedure, rather than starting with a large set of all possible features and finding a sparse
representation. In our history-based setting, if we want to be able to assume that the
representation using all features is Markov like Ghavamzadeh et al. (2011) does, then we
need a huge feature class that can capture all information in the history and this class grows
over time. The size of the class of features forces us to use a stochastic search method over
which features should be chosen as the non-sparse ones instead of an optimisation (like a
gradient method) over the full feature vector. Such a stochastic search procedures works
at least as easily with an `0 norm which is directly the number of selected features as with
the `1 norm which can be understood as a substitute for `0.

Our experiments on small domains show equal or better performance than CTΦMDP
(Nguyen et al., 2011) both in terms of speed of convergence and economy of representation
in the function approximation case. When compared against MC-AIXI (Veness et al., 2011)
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on the large domain Pocman, the performance is comparable but with a significant memory
and speed advantage.

After introducing background and notation in Section 2, we present our history based
Q-learning algorithm in Section 3. In Section 4, we present our empirical evaluation and
we conclude in Section 5 before describing our future plans in Section 6.

1.1. Related Work

The most closely related work is the feature reinforcement learning line (Hutter, 2009;
Nguyen et al., 2011, 2012; Daswani et al., 2012). It defines agents with the same structure
as our Q-learning agent but with a model-based cost function. The maps used in practice
(such as suffix trees) are injective and therefore this cost simply becomes a penalised like-
lihood of the observations since the observation sequence can be recovered from the state
sequence. Our model-free criteria is much more discriminative since it is only concerned
with predicting expected return under an optimal policy. Furthermore, we extend the agent
to use function approximation. The resulting agent is similar in form to the lasso-TD al-
gorithms of (Ghavamzadeh et al., 2011; Kolter and Ng, 2009; Johns et al., 2010) but we
use the optimal policy TD error instead of a policy evaluation setting and we use an `0
regulariser instead of `1. Another similar work for deterministic POMDPs is by Timmer
and Riedmiller (2007) who use history lists to make an MDP state from the agent’s history.

The Internal Policy State Gradient method by Aberdeen and Jonathan (2002) also
uses a map from observations to histories (in their case finite state controllers (FSC)). In
ISPG, the FSC is used to directly parameterise the policy space and then gradient ascent
algorithms are used to find the best policy. In our case, we use the learned state space to
find the optimal value function which then gives us a policy. Compared to ISPG, we have
the advantage of not needing to fix the number of internal belief states but instead learn a
suitable size.

2. Background

Agent-Environment Framework. The notation and framework is taken from (Hut-
ter, 2004). An agent acts in an Environment Env by choosing from actions a ∈ A. It
receives observations o ∈ O and real-valued rewards r ∈ R where A,O and R are all fi-
nite. This observation-reward-action sequence happens in cycles indexed by t= 1,2,3,....
We use x1:n throughout to represent the sequence x1...xn. The space of histories is H :=
(O×R×A)∗×O×R. The history at time t is given by ht=o1r1a1...ot−1rt−1at−1otrt. The
agent is then formally a (stochastic) function Agent:H;A where Agent(ht):=at. Similarly,
the environment can be viewed as a (stochastic) function of the history, Env :H×A;O×R,
where Env(ht−1,at−1) :=otrt. A policy is then a map π :H;A.

Markov Decision Process (MDP). If Pr(otrt|ht,at)=Pr(otrt|ot−1at), the environment
is said to be a discrete MDP (Puterman, 1994). In this case, the observations form the
state space of the MDP. Formally an MDP is a tuple 〈S,A,T ,R〉 where S is the set of
states, A is the set of actions and R :S×A;R is the (possibly stochastic) reward function
which gives the (real-valued) reward gained by the agent after taking action a in state
s. T :S×A×S→ [0,1] is the state-transition function. The agent’s goal is to maximise its
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expected future discounted reward, where a geometric discount function with rate γ is used.
In an episodic setting, the discounted sum is truncated at the end of an episode. The value
of a state-action pair according to a stationary policy is given by Qπ(s,a)=Eπ{Rt|st=s,at=
a} where Rt =

∑tend
k=0γ

krt+k+1 is the return and tend indicates the end of the the episode
containing time t. In the non-episodic setting Rt =

∑∞
k=0γ

krt+k+1. We want to find the
optimal action-value function Q∗ such that Q∗(s,a) = maxπQ

π(s,a), since then the greedy
policy with respect to Q∗ is optimal.

ΦMDP. Feature RL by Hutter (2009) is a framework that extracts features from the history
that are useful in predicting future consequences of actions. It finds a map φ :H→S such
that the state at any time step st=φ(ht) is approximately a sufficient statistic of the history.
It uses a global cost function that is inspired by the minimum description length principle
(Rissanen, 1978). The cost is the sum of the code lengths of state and reward sequences
given actions. This cost is used within a global stochastic search technique (for example
simulated annealing (Liu, 2008)) to find the optimal map. The standard cost is defined by

Cost(φ|hn) :=CL(s1:n|a1:n)+CL(r1:n|s1:n,a1:n)+CL(φ)

where CL(s1:n|a1:n) is the code length of the state sequence given the action sequence.
The subsequence of states reached from a given state s via action a is i.i.d as it is sampled
from an MDP. We form a frequency estimate of the model of this MDP. The code length is
then the length of the arithmetic code with respect to the model plus a penalty for coding
parameters. The coding is optimal by construction. CL(r1:n|s1:n,a1:n) follows similarly.
CL(φ) is the code length of the description of the model itself, for example for a suffix tree
it can be the length of an encoding of the tree, like in (Veness et al., 2011). However, since
this is normally a small constant, it can safely be ignored in practical implementations. The
Cost is well-motivated since it balances between coding states and coding rewards. A state
space that is too large results in poor learning and a long state coding, while a state space
that is too small can obscure structure in the reward sequence resulting in a long code for
the rewards.

In this paper, CTΦMDP (Nguyen et al., 2011) refers to using the above ΦMDP algorithm
along with simulated annealing over the space of context trees to find the best map, and
then using approximate value iteration (AVI) to find the best policy. CTΦMDP can also use
Q-learning to update the Q-values during the agent’s interaction with the environment. Q-
learning is also used in CTMRL by Nguyen et al. (2012) as a substitute for value iteration
in large environments. However, both these methods are inherently model-based. Our
contribution therefore is not being the first algorithm that can use Q-learning in this setting,
but rather being completely model-free, with a cost function that is evaluated using Q-
learning itself.

CTMRL. The Context Tree Maximising (CTM) for Reinforcement Learning (RL) algo-
rithm (Nguyen et al., 2012) uses the CTM approach to sequence prediction that analytically
finds the context-tree model by the minimum description length principle (Rissanen, 1978).
The sequence prediction setting is adapted for RL by predicting the state-reward sequence
conditioned on the actions. For large domains such as Pocman, the CTMRL approach bi-
narises the percept (observation, reward) space, and additionally adds an “unseen” context,
whose action value is initialised based on the value of the first subsequent seen state. Due
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to the high space requirements of the CTM method in such environments the algorithm
discards all the context tree maximisers (CTMs) at the start of every learning loop. New
CTMs must then be created from only the history gained in the previous loop. This results
in a significant loss in data efficiency.

MC-AIXI CTW. The Monte Carlo (MC) AIXI Context Tree Weighting (CTW) algorithm
by Veness et al. (2011) is an approximation of the theoretically optimal universal agent
AIXI (Hutter, 2004). Instead of using the universal mixture, it uses a mixture over all
suffix trees with the weights being their code lengths. It dynamically creates the contexts
so that only relevant ones are used. It uses the Krichevsky-Trofimov estimator to estimate
the probabilities of symbols occurring in each context of the tree and by using properties
of CTW (Wilems et al., 1995) it can calculate the probability of a history sequence in a
computationally efficient way. So the (action-conditional) CTW tree maintains a model of
the world, and then a Monte-Carlo Tree Search algorithm UCT by (Kocsis and Szepesvári,
2006) is used to determine which action to take next, by using the current mixture of suffix
trees as a generative model.

3. Q-learning for history-based RL

In this section, we extend the Q-learning algorithm(Watkins, 1989) to non-Markov environ-
ments.

Q-learning aims to find the fixed point of the Bellman equation Q=TQ where T is the
Bellman operator in an online fashion using the update rule

Q(s,a)←Q(s,a)+αt∆t

where ∆t is the temporal difference

∆t=rt+1+γmax
a
Q(st+1,a)−Q(st,at)

Q-learning is an off-policy algorithm that asymptotically converges to the optimal action-
value function Q∗ given sufficient exploration and a learning rate (α) that satisfies the
Robbins-Monro(Robbins and S.Monro, 1951) conditions. It is simple to implement and
works well in practice. However, Q-learning in the above form cannot be used in a history-
based RL setting, since we do not have the state space.

For each φ we define a Q-table based on the state space given by φ. We denote this
Q-table by Qφ :H×A→R and it is of the form Q(φ(h),a). We use the squared pathwise
Q-learning error to find a suitable map φ :H→S by selecting φ to minimise the following
cost,

CostQL(φ)=min
Qφ

1

2

n∑
t=1

(∆
Qφ
t )2+Reg(φ)

This is similar to the objective function in Regularised Least Squares Fitted Q-iteration
(Farahmand et al., 2008). However they have a penalty (needed due to their non-parametric
setting) based on the smoothness of the (continuous) Q-function, whereas our regulariser
is on φ which is fixed in their setting. In particular, we use the regulariser Reg(φ) =
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β
2 |S||A|log2(n) where β∈R is a regularisation constant and n is the length of the history
so far.

This cost also easily extends to the linear function approximation case where we ap-
proximate Q(φ(ht),at) by ξ(ht,at)

Tw where ξ :H×A→Rk for some k∈R.

CostQL(ξ)=min
w

1

2

n∑
t=1

(
rt+1+γmax

a
ξ(ht+1,a)Tw−ξ(ht,at)Tw

)2
+Reg(ξ)

The regulariser on ξ is analogously Reg(ξ)= β
2klog2(n).

Let 1
n

∑n
t=1∆

2
t :=δn. Let us also consider the tabular case, where φ:H→S and assume the

state space produced is an MDP. Fix a policy π. Then Pr(st=s,at=a)=Pr(st=s,at=π(st)).
Let ds,a= limn→∞

1
n

∑∞
t=1Pr(st= s,at=a). For a fixed policy, ds,a always exists and is the

expected proportion of time you spend in each state and select a particular action. We can
express CostQL in the following way, where the expectations are taken over the next state.

lim
n→∞

E[δn]= lim
n→∞

1

n

n∑
t=1

E[∆2
t ]

= lim
n→∞

1

n

n∑
t=1

∑
s,a

Pr(st=s,at=a)E[∆2
t |st=s,at=a]

=
∑
s,a

E[R(s,a,s′)+γmax
a∗

Q(s′,a∗)−Q(s,a)|s,a]2( lim
n→∞

1

n

n∑
t=1

Pr(st=s,at=a))

=
∑
s,a

ds,a

(
E[R(s,a,s′)+γmax

a∗
Q(s′,a∗)−Q(s,a)|s,a]2

+V ar(R(s,a,s′)+γmax
a∗

Q(s′,a∗)|s,a)
)
.

The expression
∑

s,ads,aE[R(s,a,s′)+γmaxa∗Q(s′,a∗)−Q(s,a)|s,a]2 is the mean squared
Bellman Error (MSBE) expressed for Q-values. In our setting we also vary the feature
map φ which in turn affects the policies that can be represented. i.e. we pick the φ that
minimises the MSBE along with the non-vanishing variance term. A smaller variance means
we have better predictive information in our state representation, and the growth of the
representation is tempered by our regulariser.

In practice for a fixed φ we use Q-learning to find the weights that satisfy the fixed point
equation which in the tabular case is (trivially) identical to minimising the Bellman error.
In the function approximation case, Q-learning in it’s most naive form is not guaranteed to
converge and the fixed point and Bellman error solutions are different. The recently pro-
posed algorithm Greedy-GQ by Maei et al. (2010) instead minimises the projected Bellman
error via approximate gradient descent. The convergence guarantees only apply to the case
where the behaviour policy is fixed, which is unfortunately not true in our setting, but the
algorithm could still be used. For this paper however, we use standard Q-learning and on
the examples we run it does not diverge.

The cost we suggest here can, just as the original suggestions by Hutter (2009), be
interpreted using code lengths. One term is coding the reward sequence rt by a Gaussian
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distribution with mean Q(st,at)−maxa′Q(st+1,a
′). The regulariser codes the Q(s,a) values

and in the tabular setting is proportional to the number of parameters to learn for the
map under consideration. Therefore, it is a regularisation constant times an `0 norm. The
regularisation constant should be larger when we have more samples since the parameter
estimates are more accurate then and deserve to be coded with higher accuracy as is argued
by Hutter (2009) where the dependence, like here, is logarithmic in the length of the history.

Cost consistency. A theory similar to the one by Sunehag and Hutter (2010) for the
model-based Cost function with similar assumptions and conclusions can be developed
for hQL. If a map φ together with the taken actions generate a sequence such that the
frequency of each (s,a,s′,r) converges asymptotically (conditions for this related to ergod-
icity and the form of the maps are studied by Sunehag and Hutter (2010)) then (triv-
ially) minQ

1
n

∑n
t=1(∆

Q
t )2 converges to an expectation Γφ=minQEs,a,s′,r(r+γmax′aQ(s′,a′)−

Q(s,a))2. If the class is finite and only consists of such φ and if we use a sublinearly
growing regulariser term (here logarithmic), i.e. Reg

n → 0, then we eventually only choose
φ∗∈argminφΓφ. This means that we choose a map for which minimal Q-learning error can
be achieved. This reasoning (as in (Sunehag and Hutter, 2010)) applies to any cost function
which are sums of terms depending on (s,a,s′,r) quadruples. However, in our algorithm the
policy changes in such a way that we cannot guarantee these conditions. Also, good finite
time behaviour demands the regulariser to relate to the estimate error in the other term
in a suitable manner as in the line of work by Ghavamzadeh et al. (2011); Kolter and Ng
(2009); Johns et al. (2010) performing finite-time analysis for regularised LSTD. Analysing
this for hQL is future work that will be more meaningful than the stated asymptotic result.

Agent. Algorithm 1 defines a ΦMDP agent. The agent is given some number of initial
random actions and a starting map. It then acts according to the fixed (optimal) policy
found by Q-learning according to the current map for M iterations (an epoch). At the start
of each epoch, the agent has the opportunity to change it’s map via a simulated annealing
process. The CostQL(φ) is used as the cost in this simulated annealing procedure in Algo-
rithm 2. Algorithm 2 also requires a neighbourhood function which we define separately for
each feature class. We could use any off-policy method to find the policy in Algorithm 1,
but using Q-learning itself is self-consistent. Note that we cannot use an on-policy method
here as the map can change throughout the history, and the policy learnt depends on the
map. Therefore at a particular time, the agent’s history is one that is generated by a series
of changing policies.

Features. In our experiments we use the feature class of suffix trees in the tabular case,
and new feature class event selector in the function approximation case. Suffix trees are
a popular choice in history-based learning since they can be computationally efficient and
naturally capture short-term memory. They have been used in (Mccallum, 1995; Veness
et al., 2011; Nguyen et al., 2011) and others.

Definition 1 (Suffix Tree) (from (Daswani et al., 2012)) Let O= {o1,o2,o3,...,od} be a
d-ary alphabet. A suffix tree is a d-ary tree in which the outgoing edges from each internal
node are labelled by the elements of O. Every suffix tree has a corresponding suffix set which
is the set of strings S = {s1,s2,...,sn} generated by listing the labels on the path from each
leaf node to the root of the tree.
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No string in the suffix set is a suffix of any other string and any sufficiently long string
must have a suffix in the set. The l-th level of the tree corresponds to the l-th last observation
in the history. Thus any history of sufficient length must be mapped to one and only one
member of the suffix set, and each member is therefore called a state. A neighbour of a
suffix tree is either a split of a leaf node in the tree to form |O| more children, or a merging
of the |O| children leaf nodes to the single parent node.

An event selector is a set of features ξj . Each feature ξj consists of a position m and an
observation o. Feature ξj is on (i.e. equal to 1) if the (n−m)-th position in the history has
observation o. More formally we use Definition 2.

Definition 2 (Event selector) Let oi be the i-th observation in h1:n. An event selector
is a set ξ={ξ1,ξ2,...,ξk} where ξj :N×O×On→B is a function such that ξj(m,o,o1:n)=1 if
on−m=o and 0 otherwise.

The neighbour of an event selector is either the addition or removal of a feature to the set.
Note that we can similarly define an event selector for observation-action pairs, but we use
the definition above for this paper.

The bit selector is a modification of the event selector. Instead of picking out whether
the (n−m)-th position in the history has observation o we check whether the c-th bit of
on−m is 0 or 1. This approximator is particularly useful in dealing with environments where
the individual bit structure has relevance (such as Pocman). This binarisation is similar to
those performed by MC-AIXI (Veness et al., 2011) and CTΦMDP (Hutter, 2009).

Definition 3 (Bit selector) Let bin(oi) be the binarisation of the i-th observation in
h1:n. Let bin(oi)

c represent the c-th bit of this binary number. A bit selector is a set
ξ = {ξ1,ξ2,...,ξk} where ξj :N×N×B×On→B is a function such that ξj(m,c,b,o1:n) = 1 if
bin(on−m)c=b and 0 otherwise.

4. Experiments

In this section we describe the experimental setup and the domains used to evaluate the new
cost. On the smaller domains we test three algorithms : history Q-learning (hQL) using
suffix trees, the function approximation of hQL using event selector features (FAhQL) and
the original ΦMDP using suffix trees. ΦMDP has proven to be competitive (Nguyen et al.,
2011, 2012) against MC-AIXI (Veness et al., 2011), and better than both Active LZ (Farias
et al., 2007) and U-tree (Mccallum, 1996).

Every experiment was run 30 times. The agent was given an initial history produced by
taking random actions. Each run of an experiment was conducted over 100 epochs. Each
epoch contains 100 iterations of the agent performing actions according to its current policy,
based on the current map. Additionally the agent uses ε-exploration until a certain number
of epochs is completed. After the completion of an epoch, the agent is given a chance to
change current map via the simulated annealing procedure. The annealing procedure uses
an exponential cooling function. Plots show every 5th point with 2 standard error on either
side. The exact constants used for all the experiments can be found in Table 2. When using
Q-learning (both within the cost and without) we use several runs through the data such
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Algorithm 1: A high-level view of the generic ΦMDP algorithm.

Input : Environment Env()
Initialise φ
Initialise history with observations and rewards from t= init history random actions
Initialise M to be the number of timesteps per epoch
while true do

φ=SimulAnneal(φ,h1:t)
for t = 1 to n do

st=φ(ht)
end
π=Qlearn(s1:t,r1:t,a1:t−1)
for i=1,2,3,...M do

at←π(st)
ot+1,rt+1←Env(ht,at)
ht+1←htatot+1rt+1

t← t+1

end

end

that it converges. We found that for the small domains we test on ε-exploration was enough
to ensure convergence to optimality.

We mildly tune the parameters by running the algorithm for a small number of itera-
tions on each environment. The FAhQL and hQL constants are very similar. The choice
of regularisation constant appears to have some dependence on the stochasticity of the
environment.
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Figure 1: Comparison between hQL, FAhQL
and ΦMDP on Cheese Maze
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Figure 2: Comparison between hQL, FAhQL
and ΦMDP on Tiger

Tiger. The Tiger domain is familiar in the partially observable reinforcement learning
literature (Veness et al., 2011). There are two doors and behind one door is a tiger, while
the other hides a pot of gold. The agent must decide which door to open. The agent has an
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Algorithm 2: Simulated Annealing Search

SimulAnneal()
Input :

getNeighbour() : A neighbour function providing the next map
schedule() : The cooling scheme
initialMap : The starting map in the search
Cost() : A cost function
h : The history sequence so far

currentMap = bestMap := initialMap
currentCost = bestCost := Cost(h,initialMap)
for t ← 1 to N do

candidateMap ← currentMap.getNeighbour()
candidateCost ← Cost(h, candidateMap)
δ ← currentCost - candidateCost
T ← schedule(t)
p ←uniform(0,1)

if δ> 0 or p <eδ/T then
currentMap ← candidateMap
currentCost ← candidateCost
if currentCost < bestCost then

bestMap ← currentMap
bestCost ← currentCost

end

end

end

Algorithm 3: Cost function

Cost()
Input:

φ : The current map.
hn : The history sequence so far of size n.

for t = 1 to n do
st=φ(ht)

end
w=Qlearn(s1:n,r1:n,a1:n−1) (can go through the history multiple times.)
Calculate currentCost = CostQL(w,φ1:n,r1:n,a1:n−1).
Return currentCost
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Figure 3: Best chosen suffix tree for tiger

Position Observation

1 L
1 R
1 O
2 L
2 R

Figure 4: Best chosen event selector for tiger
.

The observations L,R and O refer to Left, Right and Open (Door) respectively. The suffix
tree on the left shows that the agent remembers two observations in the past of listening in
order to make it’s decision about which door to open. With a linear function approximator
however, this can be represented more compactly as seen in the table on the right.

action Listen available to it that says with 0.85 probability which door the tiger is behind.
Choosing to Listen has a penalty of -1. The episode ends when the agent chooses a door. If
it chooses the door with the pot of gold it receives a reward of 10, or else it is eaten by the
tiger for a penalty of -100. We also generate the optimal policy for tiger which is to wait
until the last two listens agree and plot that on the graph. The graph showing the optimal
policy is not constant due to the fact that each epoch does not necessarily end at the end
of an episode, hence some rewards can be carried to the next epoch.

From Figure 2 we see a very similar performance from the three algorithms. It should
be noted that the suffix tree based algorithms hQL and ΦMDP found features of size 21(7
states, 3 actions) to be optimal, the function approximator generally uses between 15 and
18 features (although sometimes goes up to 24). The features used by the linear function
approximator for optimal performance in the Tiger problem are shown in Figure 4, with
the suffix tree (having 21 features) is shown in Figure 3.

2

1

0

3 4

1

0

3 5

1

0

Figure 5: Cheese maze

Cheese Maze. The cheese maze domain (Veness
et al., 2011) examines the issue of state aliasing. The
agent starts in any of the available positions in the
maze. The observation it receives is given by the num-
ber on the square (see Figure 5). The agent’s task is
to find the cheese. Each valid move it makes costs -1,
hitting a wall is penalised -10, and eating the cheese
is rewarded 10. Once the agent eats the cheese the
episode restarts.

On this domain there are clearer differences be-
tween the algorithms. hQL converges the fastest, while ΦMDP converges only in the last
few epochs. We observe that hQL at best uses 64 features (16 states, 4 actions) while
FAhQL generally converges to using 36 features.

In the above experiments we see some sudden drops in the reward (for e.g. hQL at epoch
20 in Figure 2). These dips are generally formed by the algorithm changing its map. A new
map implies new states and the algorithm does not necessarily know how to act optimally
in these new states given the data it currently has.
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Table 1: Computational comparison on Pocman

Agent Cores Memory(GB) Time(hours) Iterations

MC-AIXI 96 bits 8 32 60 1·105

MC-AIXI 48 bits 8 14.5 49.5 3.5·105

FAhQL 1 0.4 17.5 3.5·105

Figure 6: Pocman Domain
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Figure 7: MC-AIXI vs hQL on Pocman

Pocman. The Partially Observable Pacman domain was introduced in (Veness et al.,
2011). The agent starts in the center of a standard Pacman map (17x17), see Figure 6.
At every timestep it receives a bit sequence containing the following bits. 4 bits to code
whether there is a wall in an adjacent square, 4 bits to code whether there is food in an
adjacent square, 4 bits to check if there is a ghost in any direction, 3 bits to “smell” food
within 2, 3 and 4 squares and 1 bit that is active when the agent has swallowed a power up
pill. It receives a -1 reward every time it makes a valid move. If it attempts to move into a
wall it receives -10. Eating a food pellet gains 10 and eating all the food on the map gains
100. Eating a ghost resets the ghost to the center of the map. Being eaten by a ghost ends
the episode and it receives a reward of -50. All rewards are cumulative, which means that if
it moved and ate a pellet it receives a reward of 9 for that timestep. We treat the Pocman
domain as a non-episodic discounted task.

For this domain, we change the experimental setup. We now test FahQL with a bit
selector feature space. It is only feasible to do one run so the graphs show rolling average
over the previous 1000 epochs (or 100000 iterations). We no longer run through the Q-
learning multiple times, and while initial estimates might be inaccurate we use enough data
that this is not a problem, and we change the map every 200 iterations rather than 100.
After 100000 iterations we delete 10000 timesteps of data from the start of the history, so
that our history is now always 100000 timesteps long (i.e. we consume a constant amount
of memory). This helps both speed and memory efficiency, and the number of timesteps
is enough to ensure convergence. We compared against MC-AIXI which is still the best
performing algorithm on the domain. In order to make this comparison fair we use the
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Table 2: Constants used for each experiment for hQL and FAhQL.

Experiment α β ε amaxs astartT acoolRate

hQL Tiger 0.01 1.5 0.1 10 4,000 5·10−2

hQL Cheese 0.01 0.02 0.1 10 5,000 5·10−2

FAhQL Tiger 0.01 1 0.1 20 7,000 5·10−2

FAhQL Cheese 0.01 0.02 0 10 5,000 5·10−2

FAhQL Pocman 0.001 2 decay 20 4,000 5·10−7

Common to all experiments was γ=0.99, init-history the number of initial random actions
performed by the agent at 200 and stop-explore=50 is the epoch beyond which the agent
no longer uses ε-exploration (N/A for Pocman). α is the learning rate, astartT refers to
the starting temperature T in the cooling schedule,acoolRate to the decay of the exponential
cooling schedule and amaxs refers to the number of timesteps allowed in the annealing
procedure.

same setup as in Veness et al. (2011) with an exploration rate starting at 0.9999 that
geometrically decreases at a rate of 0.99999 per timestep. CTΦMDP cannot deal with such
large observation spaces due to the large explosion in number of trees it must consider. The
context-tree maximising algorithm upon which CTMRL is based is a variant of CTW and
consumes a large amount of memory. CTMRL also needs many ad-hoc manipulations to
run on Pocman. These included sacrificing data efficiency to avoid memory problems by
discarding the CTMs in each learning loop, making the algorithm space and relatively time
efficient but needing 100 million iterations.

Unfortunately we could not run MC-AIXI with the exact parameter settings as in Veness
et al. (2011) due to time and memory constraints (see Table 1). The furthest that the 96
bit, 4 look ahead algorithm went was to a 100000 iterations before running out of memory.
We instead ran MC-AIXI using 48-bit (which is 2 percepts in the past) and 2 look-ahead.
On the PACMAN domain this shorter memory and horizon can even be an advantage, given
that in order to get a good behaviour one only needs to avoid walls, ghosts and eat food
in adjacent squares which only needs one or two observations in the past, and additional
observations complicate the problem.

FAhQL used 400MB of memory and finished 350000 iterations in about 17 hours. It
was allowed to look up to 4 observations in the past (96 bits in MC-AIXI terms). It shows
comparable performance to MC-AIXI (48-bits) with over 36 times the memory efficiency and
about 3 times the speed despite being single-threaded. It also has a much more significant
speed-up over the 96-bit MC-AIXI but this is harder to quantify given our data. We should
note that we can regulate the speed by controlling the epoch length.

5. Conclusion

We extended the Q-learning algorithm from MDPs to a general reinforcement learning
setting. The resulting algorithm can be understood as a feature reinforcement learning al-
gorithm, but with a more discriminative model-free cost function. The original CTΦMDP
algorithm (Nguyen et al., 2011) is incapable of dealing with large observation spaces effec-
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tively whilst the CTMRL agent needed many ad-hoc modifications to work on the large
Pocman domain and due to that suffered bad data efficiency. This has been a motivation
for this work on finding an algorithm that works naturally with function approximation and
which is as discriminative as possible. Our algorithm lends itself naturally to a function
approximation setting. Our empirical evaluation shows some improvement in convergence
speed on classical POMDP benchmark domains with function approximation resulting in
more economical feature vector sizes. We demonstrated our performance on a large do-
main Pocman where we performed competitively against MC-AIXI while using 20 times
less memory. Our algorithm hQL provides computational efficiency at least on par with
CTMRL (given the same number of map re-estimation points) while retaining the data
efficiency of MC-AIXI and superior memory efficiency to both.

6. Future Work

There are several optimisations that can improve the computational efficiency of the algo-
rithm that we will investigate. We note that hQL also naturally works with both continuous
environments as well as continuous features. The ability to deal with continuous history-
based problems in a linear architecture also allows us to attempt to learn the belief states
of a POMDP without learning the underlying MDP structure. Furthermore, we are also
interested in performing a finite time analysis.
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