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We analysed daily returns of the CRSP value weighted and equally weighted indices over 1953–
2007 in order to test for Merton's theorised relationship between risk and return. Like some
previous studies we used a GARCH stochastic volatility approach, employing not only traditional
discrete time GARCH models but also using a COGARCH — a newly developed continuous-time
GARCHmodel which allows for a rigorous analysis of unequally spaced data. When a risk–return
relationship symmetric to positive or negative returns is postulated, a significant risk premium of
the order of 7–8% p.a., consistent with previously published estimates, is obtained. When the
model includes an asymmetry effect, the estimated risk premium, still around 7% p.a., becomes
insignificant. These results are robust to the use of a value weighted or equally weighted index.
The COGARCH model properly allows for unequally spaced time series data. As a sidelight, the
model estimates that, during the period from 1953 to 2007, the weekend is equivalent, in
volatility terms, to about 0.3–0.5 regular trading days.
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1. Introduction

Finance theory rightlymaintains a deep and abiding preoccupationwith the relationship between risk and return. So important
and fundamental is this that any means of shedding light on it should be vigorously pursued. In the present paper we use a newly
developed continuous time GARCH-like model (the “COGARCH”), as well as more traditional discrete time GARCH models, on a
large data set, to advance our understanding.

At the time of writing, when fallout from the “Global Financial Crisis” is among the chief priorities of governments around the
world, we are compelled to reconsider the connection between risk and return.1 Merton (1980) argued that there should be a
positive relationship between the expected market risk premium – the return of the market less the risk-free rate of return – and
the expected volatility of themarket's returns. Put crudely, his thesis is that investors require a bribe in the form of higher potential
returns to take on extra risk. Merton's analysis is an important foundational underpinning of theoretical finance, and, in the
commercial world, a positive return to risk relationship underlies almost all of the advice investors receive from their advisors. But
does such a relationship really exist?

The major stumbling block in testing Merton's model has been estimating expected risk. Researchers face a “chicken and egg”
problem. Merton's proposition states that returns are a function of volatility, yet volatility must, in some way, be estimated using
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returns.2 Stochastic volatility models are a natural choice with which to model the fluctuations observed in returns volatility, and
among this class, conditional volatility models have proven popular. Yet a number of studies utilizing one of the many variant
conditional volatility models have found, at best, only weak empirical evidence supporting a positive relationship between the
market risk premium and volatility (see, e.g., French et al., 19873; Baillie and DeGennaro, 1990), or mixed evidence (see, for
example, Campbell and Hentschel, 19924; Glosten et al., 1993); or even a negative relationship (see, e.g., Nelson, 19915; Guo and
Whitelaw, 20066). Perhaps, as argued by Jorion and Goetzmann (1999), the signal to noise ratio is simply too weak to be detected
in studies like these.7 Ang and Liu (2007), however, demonstrate that such mixed findings are to be expected; for example, the
risk–return relation can be negative when dividend yields behave in the way modelled by Cox et al. (1985). Scruggs (1998) has
argued that the difficulty in confirming Merton's predicted positive relationship between return and risk is a function of an
omitted state variable. Investors' ex ante expectations about returns may be conditioned on ex post information sets capturing
investment opportunities and consumption preferences. Lewellen and Nagel (2006) remind us, however, that tests are “strictly
valid only if the econometrician knows the full set of state variables available to investors” (p. 296).8 Eschewing stochastic
volatility models in their analysis confirming a positive risk–return trade-off, Ghysels et al. (2005) utilize the MIDASmethodology
which uses a rolling windowmethod combining both daily and monthly data, in which the window length is implicitly chosen in
an optimal manner. It performs better than GARCH in their analyses, which they attribute to the fact that the GARCHmodel is only
fitted to (equally spaced) monthly data. Ghysels et al.'s criticism of the use of GARCH for the analysis of irregularly spaced data is
pertinent for our paper as the COGARCH approach we advocate explicitly allows for this.

After something of a hiatus in the use of conditional volatility models in this context, Lundblad (2007) revisited the problem
and, in addition to finding a positive relationship between return and risk, provided an indication of why previous studies have had
varied results. Lundblad examines Merton's propositions using estimates of variance calculated from a variety of models – GARCH
(1,1), EGARCH(1,1), QGARCH(1,1) and TARCH(1,1) – and finds evidence in support of it.9 Even in this study, however, the evidence
in favour of Merton is not strong. Using Monte Carlo simulations, Lundblad demonstrates how previous studies may have been
hampered by small sample problems. To examine Merton's proposition with tests of adequate power, a large sample is essential.
Lundblad addresses this issue by using monthly data spanning the period from the 1830s to the early 2000s. While this represents
oneway of increasing the power of tests, it is not necessarily the only course of action. The analysis assumes stationarity in the data
and this might be considered a heroic assumption given the length of the time period over which the relationship is analysed.
Lundblad's approach does have the advantage of using monthly data, as appears to be standard in tests of asset pricing models.

In the present paper we analyse an extensive dataset to estimate conditional volatility, and relate it to excess market return.
Our principle analysis focuses on the period 1953 to 2007, which satisfies the requirements of Merton (1980), who argued that a
long time span is needed to capture expected return variation, and our use of daily data is consistent with Lundblad's
recommendation for a large sample (we have 13,844 daily returns in each of two series, see Section 3).10 1953 was chosen as a
start date for our main analysis as it is the first complete year of data without trading on Saturdays. This means that we have a
second set of daily data, from 1927 to 1951, when trading occurred on Saturdays, to test the robustness of the inferences we make
on the basis of the analysis of the later period.11

The use of daily data enables us to consider the fine structure of volatility (lost when monthly data is used), but it introduces
further problems in the form of daily seasonalities (such as Friday effects) and the effect of discontinuities in the data (such as
weekends and holidays when there is no trading), which should be considered in a thoroughgoing analysis. The COGARCH model
of Klüppelberg et al. (2004) lends itself naturally to our problem. COGARCH is a continuous-time version of a GARCHmodel, which
preserves the important GARCH feature of feedback between returns and volatility, but is well adapted to handling unequally
spaced time series data. For example, COGARCH has been used to model the daily volatility of ten years of data from the Australian
stock market (Maller et al., 2008), taking into account weekend and holiday effects, and Müller et al. (2009) use it to model the
volatility of the S&P 500 using readings taken at 5 min intervals from 1998 to 2007.
2 Other research has avoided the problem of the joint endogeneity of returns and risk by using an exogenous proxy such as the Chicago Board Options
Exchange Volatility Index (the VIX) (see, for example, Ang et al., 2006; Durand et al., 2011). Durand et al. (2011) argue that a negative correlation between
market returns and unexpected changes in volatility is associated with a repricing of risk. Such an interpretation is natural if prices in securities markets are
thought of as the present value of future cash flows where the present value is calculated using a risk-adjusted discount rate. Any increase in expected risk will
increase the discount rate and, hence, reduce the price.

3 French et al., however, find a negative relationship of unexpected changes in volatility to returns which is supported by Durand et al. (2011).
4 Campbell and Hentschel argue that volatility only matters when it is relatively high.
5 Nelson finds a negative relationship in some, but not all, instances.
6 Guo and Whitelaw, however, focus on Merton (1973) and also consider the investment opportunity set. The relationship studied in the present paper, and in

Lundblad (2007), is based on that presented in Merton (1980) which represents a simplification of those in his 1973 paper.
7 We are reminded en passant of the difficulty of finding any relationship between return and risk in a recent paper: Pástor et al. (2008), in their study of the

relationship of risk and return to the cost of capital, do not report their analyses of the relationship of the market risk premium to volatility, a necessarily prelude
to their analysis, in order to “save space” as “the results are disappointing” (p. 2879).

8 Chen (1991) presents a seminal work in which state variables are linked to past, present and future economic states and stock returns. An additional problem
faced in the analysis presented in this paper, which uses daily data, is that the “usual suspects” such as industrial production and inflation for state variables are
not available at the frequency required.

9 Lundblad's results are robust to the model used to estimate conditional volatility. He is “agnostic” as to the best functional form of the model.
10 Andersen and Bollerslev (1998) show that the use of even higher frequency intraday data improves volatility estimation, but Lundblad's (2007) simulation
investigation suggests that little extra would be gained in our context by taking even larger samples. There would however be no computational difficulty in
extending our analyses to intra-day data. As a compromise we decided to use daily data over a reasonably long time span.
11 We use only years where we have data for all of the year. Therefore, we do not use data from 1952 as Saturday trading ended during that year.
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Tomaintain comparabilitywith Lundblad's and other published results, we also analyseweekly andmonthly data drawn from the
same sources, and, besides the basic COGARCHmodel, we consider also modifications of the main COGARCH specification as well as
some other well-known discrete time GARCHmodels. In particular, the asymmetric effect of volatility (whereby a positive return may
be related to volatility in a different way to a negative return) at the firm and market levels has been documented (see, for example,
Bekaert andWu, 200012) and, following this lead,we extend the COGARCHmodel to consider such asymmetric effects. In our analysis,
presented in Section 4 of this paper, the asymmetric COGARCH model proves to be the preferred model using either the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion (BIC), but the asymmetric COGARCH model is not supportive of
Merton's hypothesis. Merton's proposition is, however, supported by the symmetric version (positive and negative returns have the
same relationship to volatility) of the COGARCH analysis; that is, we find significant positive covariance between the market risk-
premia of both the CRSP value-weighted and equal-weighted excessmarket returns, and their volatilities, in the symmetric COGARCH
model.13

The COGARCH models are set out in Section 2, our data set is described in detail in Section 3, results are in Section 4, and we
conclude in Section 5.

2. Methodology

Merton (1980) proposed a linear relation between the conditional mean of the return of the wealth portfolio and its conditional
variance. To formulate themodelswe consider, supposeweare givenNobservations on an asset price process over a time interval [0,T],
observedatnot necessarily equally spaced times0=t0b t1b⋯b tN=T. LetRidenote the return, and rf, i the risk-free rate, at time ti, and let
σi
2 be the variance of Ri, conditional on past information F ti−1 ; thus, σ

2
i = Var Ri jF ti−1

� �
.

Our basic model for excess returns is then
12 Tab
13 Our
14 We
Conside
further
15 By w
price of
Yi = Ri−rf ;i = λ1 + λ2σ
2
i + σiεi; i = 1;…;N; ð1Þ

λ1 and λ2 are parameters to be estimated, the random variables εi are assumed to be independent withmean 0 and variance
where
1, and we will identify σiεi with the increments of a (possibly asymmetric) COGARCH process; see Section 2.1 and Appendix A for
details.14

Our Eq. (1), like Lundblad's Eq. (3), allows a general relationship between return and risk, based on a linear regression between
excess returns (we use the returns of the market proxy less the risk free rate), and the variance. These equations are more general
than Merton's Model 1 (see Merton (1980), pp. 329–330), in which he proposes that the market risk premium is a function of the
variance of returns, and that the coefficient corresponding to the variance may be interpreted as “...the reciprocal of the weighted
sum of the reciprocal of each investor's relative risk aversion and the weights are related to the distribution of wealth among
investors” (Merton, 1980, p. 329). Eq. (1) includes an intercept coefficient λ1, and, as a result of the divergence from the strict
formulation of Merton's proposition, λ2 may not be given such a strict economic interpretation as that proposed by Merton.15

When we estimate Eq. (1), we will denote it as COGARCH (U) (“U” for “unitary” time scale). A particular advantage of COGARCH,
however, is that we can switch over to a virtual time scale to account for weekday effects (for daily data), weekly effects (for
weekly data) or monthly effects (for monthly data); we discuss this further in Section 2.2 below. We will denote the resulting
model by COGARCH (V), “V” denoting “virtual time scale” (when taking weekday and month effects into account). We extend
COGARCH (U) and COGARCH (V) to account for the possibility of the presence of an asymmetric relationship of return and risk and
denote these extensions to the COGARCH models as asyCOGARCH (U) and asyCOGARCH (V) (details of how the models are
extended to account for asymmetry may be found in Appendix A).

We compare nested models using AIC and BIC. Instead of judging only from the likelihood, these criteria punish more complex
models by a penalty term. The model with the lower AIC and/or BIC is to be preferred. We emphasise that only nested models can be
compared using these criteria. For non-nested models a comparison of the AIC and BIC values can be misleading. Thus, the models
COGARCH(U)–COGARCH(V), COGARCH(V)–asyCOGARCH(V),COGARCH(U)–asyCOGARCH(U) andasyCOGARCH(U)–asyCOGARCH
(V) are nested, and hence, comparable by means of AIC and BIC. The asyCOGARCH (U)–asyCOGARCH (V) comparison enables us to
decidewhetherwe achieve a significant improvement byworking on a virtual time scale.We cannot, however, compare asyCOGARCH
(U) with COGARCH (V) using AIC or BIC.

Our goal is not only to estimate the impact of the volatility on themean of the excess return, but at the same time to investigate
the fine structure of the volatility. Whereas Lundblad (2007) used GARCH, EGARCH, QGARCH, TARCH, specifications of the
conditional variance component, we assume that the process follows a COGARCH model. The most important feature of the
COGARCHmodel is that it is formulated in continuous time. This provides great flexibility and accuracy in modelling. In particular,
COGARCH is well suited to the analysis of irregularly spaced time series data with a GARCH-like volatility structure. As we will see
later we are also able to take into account exogenous variables which may have an impact on volatility.
le 1 on page 3 of this paper provides a useful summary of findings relating asymmetric volatility and returns.
results compare well with those published in a variety of sources. We take the figures for comparison from Table 1, p. 504, of Welch, 2000.
also considered a variant of Eq. (1) which departed from Merton and Lundblad in using lagged conditional volatility as the dependent variable
ration of this model did not lead to materially different inferences from than those we make on the basis of our estimates of Eq. (1) so we do not repor
on those findings in this paper.
ay of interest, Merton's Model 2 replaces variance with standard deviation and the covariate of the standard deviation may be interpreted as the marke
risk. We do not consider this model. Merton's Model 3 simply proposes that the excess return is constant.
.
t

t
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The COGARCH model is relatively new to finance and consequently we provide some background information on it in
Section 2.1 and describe the pseudo-maximum-likelihood (PML) methodology used in its estimation in Appendix A.

2.1. The COGARCH methodology

We recall the definition of the COGARCH (1,1) process (hereafter referred to simply as a COGARCH process)16 introduced in
Klüppelberg et al. (2004). In the COGARCH, both the return and volatility dependonly on a single backgrounddriving Lévy process L=
(L(t))t≥0, satisfyingEL(1)=0 andEL2(1)=1. See Applebaum (2004), Bertoin (1996), and Sato (1999) for detailed results concerning
Lévy processes.

The COGARCH variance process ρ2=(ρ2(t))t≥0 is defined as the almost surely unique solution of the stochastic differential
equation
16 COG
the (1,1
dρ2 tð Þ = β−ηρ2 t−ð Þ
� �

dt + φρ2 t−ð Þd L; L½ � tð Þ; t N 0; ð2Þ

[L,L] is the bracket process (quadratic variation) of L (Protter, 2005, p. 66). Eq. (2) is closely related to a discrete time GARCH
where
recursion; see Eq. (2.8) of Maller et al. (2008). Parameters (β,η,φ) satisfy βN0, ηN0, φ≥0, and the initial volatility, ρ(0), is a finite
variance random variable independent of L. Eq. (2) can be solved to reveal ρ2(t) as a mean reverting process, in fact, a kind of
generalised Ornstein–Uhlenbeck process (see Eq. (2.13) of Maller et al., 2008).

Eq. (2) treats returns symmetrically in the sense that current volatility is related to past volatility via the single parameterφ≥0,
and the quadratic variation differential d[L,L](t), also non-negative, which plays the role of εi2, where εi is as in Eq. (1). To allow for
an asymmetric feedback effect of return on volatility, we split parameterφ into two parameters,φ+, which factors in a contribution
from a positive return, and φ−, which factors in a contribution from a negative return. The precise method of doing this is detailed
in Appendix A.

Our model for the log asset price process (discounted for the risk-free rate) is then the integrated COGARCH process G=(G(t))t≥0

defined in terms of L and ρ as
G tð Þ = ∫t
0 ρ s−ð ÞdL sð Þ; t≥0: ð3Þ
As shown in Klüppelberg et al. (2004), Corollary 3.1, both (ρ(t))t≥0 and the bivariate process (ρ(t),G(t))t≥0 are Markovian.
Moreover, under a certain integrability condition, and for a choice of ρ2(0) satisfyingEρ2(0)=β/(η−φ), with ηNφ, the process ρ2(t)
is strictly stationary (Klüppelberg et al., 2004, Thm. 3.2), and then (G(t))t≥0 has stationary increments.

While COGARCH allows us to model complex data, it is a relatively parsimonious model requiring estimation of only three (or
four) parameters: β, η andφ (orφ±). To help with an intuitive understanding of these parameters, we recall that, when the driving
Lévy process L is compound Poisson, the COGARCH volatility is exponentially decreasing between upward jumps occurring at
exponentially distributed times (Fasen et al., 2005). Parameter η is the rate at which the volatility decreases exponentially
between jumps, while φ relates to the magnitude of the jumps between these decreasing periods. β is related to but does not
directly measure the overall mean level of volatility; similar to the discrete time GARCH, the long-run average of volatility is
computed as β/(η−φ).

It can be shown that both the tail of the distribution of the stationary volatility and the tail of the distribution ofG(t) are Pareto-like
under weak assumptions (cf. Klüppelberg et al., 2006). Thus the COGARCH distribution tails are “heavy”, consistent with recent
extensive empirical evidence of Platen and Sidorowicz (2007). For more details on the theoretical properties of G and ρ2, we refer to
Klüppelberg et al. (2004) and Klüppelberg et al. (2006). Fasen et al. (2005) show that the COGARCH model, in general, exhibits
regularly varying (heavy) tails, volatility jumps upwards, and clusters on high levels.

The data fitting procedure is operationalised as follows. For the pure COGARCH process, we wish to estimate just the parameters
(β,η,φ). Suppose we are given observations G(ti), at times 0=t0b t1b⋯b tN=T, on the log price process, as modelled by the integrated
COGARCHdefined andparameterised in Eqs. (2) and (3), assumed to be in its stationary regime. The {ti} are assumedfixed (non-random)
time points. Set Δti:=ti−ti−1 and let Yi=G(ti)−G(ti−1), i=1,…,N, denote the returns. From Eq. (3) we can write
Yi = ∫ti
ti−1

ρ s−ð ÞdL sð Þ: ð4Þ
The Lévy Process L has stationary independent increments which are analogous to the i.i.d. innovations in a regression or
discrete time GARCH process. From Eq. (3), the infinitesimal increment dG(t) equates to ρ(t−)dL(t), while by Eq. (4), the discrete
increment Yi approximates ρ(ti−1)ΔLi, where ΔLi=L(ti)−L(ti−1). A crucial feature of the COGARCH is, as in the discrete time
GARCH, the presence of feedback between the returns, Yi≈ρ(ti−1)ΔLi, and the volatility, as a function of (ΔLi)2 (by way of the
quadratic variation term in Eq. (2)).
ARCH (1,1) has been extended to COGARCH (p,q) in Brockwell et al. (2006), and a multivariate version is formulated in Stelzer (2009). For our purposes,
) model suffices.
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The Yi have conditional expectation 0 and conditional variance
17 We
the data
The CO
GOGAR
Protopa
18 Oth
our dat
19 Oth
σ2
i : = E Y2

i jF ti−1

� �
= ρ2 ti−1ð Þ− β

η−φ

� �
e η−φð ÞΔti−1

η−φ

 !
+

βΔti
η−φ

; ð5Þ

. (2.8) of Maller et al. (2008). The residual term in Eq. (1) is constructed as σiεi, where εi approximates ΔLi via a “first jump”
see Eq
approximation to the Lévy process.

Based on this setup, we can write down a pseudo-log-likelihood function for Y1,Y2,…,YN as in Eq. (13) of Appendix A, and
maximise it to get PMLEs of (β,η,φ). The extra regression on σi

2 in Eq. (1) then represents the relation between excess return and
past volatility, as in Merton's (1980) formulation, with volatility modelled by a COGARCH process. If the time intervals are small
enough and numerous enough, we can expect the fitted discretised model to closely approximate the underlying COGARCH. Note
that one can estimate the COGARCH parameters together with the regression parameters λ1 and λ2 in one stage. Standard errors
for all estimates can be calculated using the Hessian matrix of the likelihood function at the estimated maximum. For more details
see our Appendix A.

2.2. Accounting for trading days by time transformation

That returns have day-of-the-week “seasonalities” is well established in the Finance literature (French, 1980; Gibbons and
Hess, 1981; Erickson et al., 1997). Flannery and Protopapadakis (2002) find day of the week effects in both the mean and variance
equations using GARCH (1,1) in their analysis of daily returns and their sensitivity to macroeconomic announcements using data
from 1980 to 1996. Therefore, in our analyses, which cover a long time span, it is incumbent upon us to take daily seasonalities
effects into account. To this end we introduce exogenous indicator variables. Their influence on the volatility will be captured by
switching over to a virtual time scale which we call the volatility time scale. Roughly speaking, this scale measures the volatility
pattern of certain weekdays with respect to a day with average volatility. Following a series of analyses with different indicator
variables for weekdays andmonths, we found it necessary to use onlyMONDAY and FRIDAY variables as being the significant ones
for our data.17 In the remainder of this section, for simplicity we confine our discussion to these two covariates.

Via the virtual time scale transformation, the PML method simultaneously rescales the physical time axis and estimates the
COGARCH parameters. To be precise, we replace Δti in Eqs. (10) and (11) by
Δτi : = 3hMONIMON ið Þ + ITUE ið Þ + IWED ið Þ + ITHU ið Þ + hFRIIFRI ið Þð ÞΔ; ð6Þ

hMON and hFRI are parameters to be estimated, and the constant Δ serves as a basic time unit, which we set to 1/365.25. The
where
exogenous variable IMON takes values 1 or 0, to indicate whether or not the return under consideration is based on aMonday's close
of trading price. TheMonday return is the difference between Friday's closing price andMonday's closing price (after adjusting for
dividends etc.). Therefore, hMON captures any weekend effect. We similarly adjust for IFRI.

For weekly returns, we replace Δti in Eqs. (10) and (11) by
Δτi : = hWEEK1IWEEK1 ið Þ + IWEEK2−52 ið Þð ÞΔ; ð7Þ

hWEEK1 is treated as a parameter to be estimated; the basic time unit Δ is set to 1/52.18 in this case (since the average length
where
of a year in weeks is about 52.18), and IWEEK1 and IWEEK2−52 indicate whether the weekly return under consideration was
observed over the first (complete) week of the year or not.18

For monthly returns, we replace Δti in Eqs. (10) and (11) by
Δτi : = hJANIJAN ið Þ + IFEB ið Þ + IMAR ið Þ + … + INOV ið Þ + IDEC ið Þ
� �

Δ; ð8Þ

hJAN is treated as a parameter to be estimated; the basic time unit Δ is set to 1/12 in this case, and IJAN,…, IDEC indicate the
where
month in which the return under consideration was observed.19

3. Data

Our main interest is in analysing daily returns of the CRSP (Center for Research in Security Prices) value-weighted index of the
returns of stocks listed in the US market (we denote this index as the VWI). Additionally, we analyse the CRSP equally weighted
index (whichwe refer to as the EWI). For both indices, we have 13,844 daily observations in thewhole period from January 1, 1953
do not utilize indicator variables for discontinuities in trading due to regular holidays in the analysis presented in this paper. Given the period covered by
, it is problematic to distinguish holidays from “surprise” breaks in the data (for example, the trading halt brought about by the September 11 incident)
GARCH specification is designed to allow valid inference about the relationship we seek to model in the presence of such breaks. We believe that the
CH methodology demonstrated in this paper might be useful in future analyses of holiday effects in analyses like that presented in Flannery and
padakis (2002).
er variations of the time scale, e.g. for the last week in December, the second or third week in January, turned out not to be significant at the 5% level for
a.
er variations of the time scale, e.g. for December, turned out not to be significant at the 5% level for our data.
.
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to December 31, 2007. The daily returns ri, i=1,…,n, are considered as observations on the random variables Ri in Eq. (1), over the
period January 1, 1927, to December 31, 2007.We divide this into two subperiods, the second period starting on January 1, 1953, to
accommodate a possible major structural break in the data; the weekly pattern of trading, which plays an important role in our
analyses, changed significantly when Saturday trading was abandoned in 1952.20 The data was accumulated into weekly and
monthly returns for the period 1927–2007, to provide subsidiary data sets for an additional analysis.

Although describing the samemarket, there are significant differences between the two indices, as one can see also from simple
descriptive statistics. Whereas the VWI daily returns have a mean of 0.000458 and standard deviation 0.008484, the EWI returns
have a mean of 0.000771 and a standard deviation of 0.007073. The difference between these indices seems even stronger if one
counts the days when the VWI and the EWI have different signs: out of the 13,844 observations, the VWI showed a negative return
on 1471 occasions, while the EWI return was positive. Interestingly, the opposite (VWI return positive, EWI return negative)
occurred only twice.

Wewill refer to the fourdifferentdata sets, namely, daily returns1953–2007,daily returns1927–1952,weekly returns1927–2007and
monthly returns 1927–2007, by the intuitive notations [D53], [D27], [W27] and [M27] respectively. Sometimes we extend this notation,
e.g. to [D27]-VWI or [D27]-EWI, to specify exactlywhich data set is being used.We do not analyseweekly ormonthly data for the shorter
period beginning in 1953 in order to improve statistical reliability of our results (even for the longer period from 1927 to 2007 we have
4224weekly and only 972monthly observations). For the daily data, we focus on [D53] because of the structural break and use [D27] to
confirm the robustness of the inferences we make about Merton's proposition. (recall that Saturday was a trading day before 1953).

To compute excess returnswe obtained the risk-free rates provided by Ken French.21 These data arewell known from Fama and
French's seminal work in asset pricing (for example, Fama and French, 1993).
4. Results and interpretation

4.1. Results for the COGARCH based models — daily data

The pseudo-maximum likelihood estimates together with estimated standard errors for all model parameters can be found in
Table 1.

Recall that we only work with the data sets [D53] and [D27] for thesemodels. To begin our analysis, we compare the nested pairs
COGARCH (U)–COGARCH (V); COGARCH (V)–asyCOGARCH (V); COGARCH (U)–asyCOGARCH (U); asyCOGARCH (U)–asyCOGARCH
(V); usingAIC and BIC. Bothmeasures indicate that for all four data sets, [D53]-VWI, [D27]-VWI, [D53]-EWI and [D27]-EWI, themodel
fit is significantly improved, when the effects for Monday and Friday are taken into account: COGARCH (V) is preferred to COGARCH
(U). The comparison of asyCOGARCH (V) to COGARCH (V) indicates that asyCOGARCH (V) is to be preferred. Both model fit criteria,
AIC and BIC, punish models with a higher complexity. Nevertheless, although COGARCH (V) has two additional parameters and
asyCOGARCH (V) has three additional parameters, over COGARCH (U), the most complex (asymmetric) model is considered to be
significantly superior to the competing COGARCH specifications.

Examining the results for the asyCOGARCH (V) model reported in Table 1, we find that the estimate of λ2 for [D53]-VWI is
positive, as hypothesised, but it is not statistically significantly different from 0. Merton's hypothesised positive relationship of
returns to risk is therefore not significantly supported by this analysis. The estimate of λ2 for [D53]-VWI obtained using COGARCH
(V) is, by way of contrast to the estimate produced using asyCOGARCH (V) (the preferred model), both positive and statistically
significant. This highlights the importance of considering asymmetry in analysing the relationship of return to risk. Note that λ2 for
[D53-VWI] using asyCOGARCH (U) is also positive and statistically significant; Merton's hypothesis would be supported by our
data if we ignored daily seasonalities. For [D53-EWI], asyCOGARCH (V) is also the preferred model.22 Here it also produces a
statistically insignificant estimate for λ2, and, again, ignoring daily seasonalities while accounting for asymmetry when estimating
asyCOGARCH (U) results in a statistically significant, positive, estimate of λ2.

To assess the quality of the model fit, Fig. 1 shows the values of the scaled residuals, Ri−rf ;i− λ̂1− λ̂2 σ̂
2
i , for the VWI, with

estimates based on the asyCOGARCH (V) model for the period 1953–2007, and the corresponding estimated annualised
volatilities. For the EWI we obtained a very similar picture (which we omit here).

We repeated the analysis on the second dataset of daily returns between 1927 and 1951, the period when trading took place on
Saturdays (in contrast to the period from 1953 to 2007) and also report those results in Table 1. Here asyCOGARCH (V) is, again, the
optimalmodel for both theVWI and the EWI. In no instance is the estimate ofλ2 statistically significant. In contrast to the examination
of the later period, in this earlier period we do not find that ignoring day-of-the-week effects (using asyCOGARCH (U)) results in
statistically significant estimates of λ2. On balance, the weight of evidence from the analysis thus presented is not supportive of
Merton's proposition: with a realistic model allowing for an asymmetric relationship between risk and return, and a comprehensive
analysis, we are not able to detect a statistically significant positive relationship between risk and return.
20 We omit 1952 from our analyses to ensure that the two periods are clearly differentiated.
21 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html. Both daily and monthly rates are available but inspection of the data revealed that
daily rates are calculated as the monthly risk free rates divided by the precise number of trading days in that month. Our daily data is derived thereby from
French's monthly data.
22 Our findings for EWI might be affected by autocorrelation induced by thin-trading (Campbell, Lo and MacKinlay, 1997, pages 92 to 94). To consider any
possible effect of thin-trading, we analysed [D53]-EWI and [D27]-EWI by augmenting asyCOGARCH(V) with the lagged excess return of the EWI. This additional
analysis does not alter the inferences we made about Merton's hypothesis on the basis of the results reported in Table 1.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html


Table 1
COGARCH model: Estimates for the regression parameters λ1 and λ2, for the covariates MONDAY, FRIDAY and SATURDAY, and for the three (four) COGARCH
parameters β, η, φ (φ+/φ−). Data sets [D53] (13,844 observations) and [D27] (7357 observations), both for VWI and EWI. Estimated standard errors in
parentheses.

VWI: 1953–2007 (daily)

Model β η φ (φ+/φ−) hMON hFRI λ1 ⋅103 λ2 AIC BIC

asyV 0.114 (0.007) 29.49 (1.212) 10.40 (0.640)/39.35 (1.438) 0.448 (0.013) 0.972 (0.029) 0.371 (0.080) 0.542 (0.844) −97,253.6 −97,193.3
asyU 0.164 (0.009) 35.34 (1.347) 11.99 (0.672)/45.93 (1.541) 0.161 (0.069) 2.852 (0.891) −97,142.1 −97,096.9
V 0.118 (0.009) 33.75 (1.428) 30.40 (1.339) 0.447 (0.013) 0.965 (0.029) 0.374 (0.083) 3.262 (1.421) −97,053.6 −97,000.8
U 0.156 (0.007) 39.24 (1.194) 34.79 (1.062) 0.215 (0.085) 5.440 (1.430) −96,931.0 −96,893.3

VWI: 1927–.1951 (daily)

Model β η φ (φ+/φ−) hMON hSAT λ1⋅103 λ2 AIC BIC

asyV 0.240 (0.016) 48.66 (1.882) 27.45 (1.174)/67.69 (2.005) 0.586 (0.016) 0.395 (0.012) 0.641 (0.091) 0.096 (1.304) −48,045.0 −47,989.8
asyU 0.247 (0.015) 45.96 (1.858) 22.22 (1.093)/64.77 (1.914) 0.578 (0.083) 0.564 (1.427) −47,560.3 −47,518.8
V 0.268 (0.018) 47.92 (1.714) 50.63 (1.876) 0.592 (0.016) 0.396 (0.012) 0.897 (0.104) 0.149 (1.383) −47,935.3 −47,887.0
U 0.277 (0.020) 46.24 (1.592) 49.37 (1.622) 0.606 (0.083) 1.771 (1.420) −47,425.5 −47,391.0

EWI: 1953–2007 (daily)

Model β η φ (φ+/φ−) hMON hFRI λ1 ⋅103 λ2 AIC BIC

asyV 0.305 (0.012) 86.21 (3.862) 52.25 (1.473)/91.96 (3.226) 0.491 (0.014) 0.901 (0.028) 0.968 (0.064) 0.882 (0.939) −103,069.5 −103,009.2
asyU 0.406 (0.019) 101.1 (3.989) 56.70 (1.512)/110.8 (3.509) 0.826 (0.061) 2.387 (0.972) −102,874.1 −102,828.9
V 0.328 (0.023) 94.06 (4.304) 85.90 (4.421) 0.505 (0.015) 0.882 (0.027) 1.095 (0.070) 1.010 (1.573) −103,000.4 −102,947.6
U 0.428 (0.029) 109.1 (4.366) 98.27 (4.811) 0.754 (0.070) 5.316 (1.514) −102,773.1 −102,735.4

EWI: 1927–1951 (daily)

Model β η φ (φ+/φ−) hMON hSAT λ1 ⋅103 λ2 AIC BIC

asyV 0.524 (0.030) 69.25 (2.476) 49.39 (2.280)/96.15 (3.553) 0.623 (0.017) 0.407 (0.013) 1.216 (0.158) 0.751 (1.184) −45,964.9 −45,909.7
asyU 0.574 (0.031) 68.37 (2.415) 43.51 (2.234)/96.39 (3.570) 0.808 (0.141) 2.293 (1.263) −45,465.8 −45,424.4
V 0.625 (0.037) 68.04 (2.794) 71.03 (2.975) 0.629 (0.017) 0.412 (0.013) 1.300 (0.160) 2.809 (1.295) −45,870.5 −45,822.2
U 0.700 (0.046) 69.23 (2.805) 72.78 (2.985) 0.712 (0.136) 5.111 (1.371) −45,351.5 −45,316.9
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4.1.1. Weekend effects
In the asyCOGARCH (V) models for [D53] (the 1953–2007 daily data), the ML estimates for the exogenous variable MONDAY

are 0.448 and 0.491 for the VWI and EWI data set, respectively, and are significantly positive, consistent with literature confirming
daily seasonalities (for example, French, 1980; Gibbons and Hess, 1981; Erickson et al., 1997; Flannery and Protopapadakis, 2002).
Since the log-returns computed at close of trading on Monday each week are based on the market information of 3 days, the time
between close of trading on Friday and close of trading on Monday corresponds to 3×0.448=1.344 volatility days on our virtual
time scale in the VWI data, and to 3×0.491=1.473 volatility days in the EWI data (cf. Eq. (6) in Section 2.2). Therefore, we can
conclude that neither ignoring the weekend nor counting it as two days would constitute a satisfying approximation for our
purposes. Rather, a weekend should be counted as about 0.3 to 0.5 regular trading days. The difference between the VWI and EWI
estimates for MONDAY is not significant, nor is it for the FRIDAY estimates, which are 0.972 and 0.901 for the VWI and EWI data,
respectively. Only for the equally weighted index is the coefficient significantly smaller than 1, indicating a slightly smaller
volatility on Fridays compared to other weekdays, for this index.

For [D27] (daily data from 1927 to 1951) analysed by the asyCOGARCH (V) model, the ML estimates for the exogenous variable
SATURDAY are 0.395 and 0.407 for the VWI and EWI data set, respectively, again significantly different from 0 or 1. This means that
volatility on Saturdays was, in general, much smaller than on the other trading days. The estimates for the variable MONDAY for this
periodwere 0.586 and 0.623 respectively, reflecting the period from Saturday close toMonday close, i.e. two days. Hence, Sundaywas
equivalent to about 0.2 trading days in this period, in terms of volatility.

4.1.2. Equity risk premia estimates
To compute an estimate of the long-term risk premium from the asyCOGARCH (V) models for the 1953–2007 daily data, we use

estimates σ2
i and σi for the average variance and volatility. Since (as with any weighted regression) the residuals do not exactly

average to 0, we also take their (small) bias into account.23 The estimate p̂ for the long-term risk premium is then computed as
23 This
p̂ = λ̂1 + λ̂2σ
2
i + σiεi :
effect is due to the PML estimation procedure and should not be neglected, cf. Maller and Müller (2010).



24 We obtain this figure simply by averaging the daily returns.
25 Is the higher expected return for the EWI simply a function of higher expected risk? Although the statistical insignificance of λ̂2 is contrary to what might be
expected given Merton's proposition, further consideration of the data in instructive. The average return of the EWI is 0.000771 per day, almost twice that of the
VWI, at 0.000458. The standard deviation of daily returns for the EWI, however, is less than that of the VWI (0.007073 for the EWI vs. 0.008484 for the VWI). Thi
appears to contradict expectations concerning the return to risk relationship. Merton's hypothesis, however, relates expected risk to returns, and this is where
consideration of the COGARCH parameters is potentially helpful. The long run estimate of volatility, computed using β/(η−φ), is higher for the EWI (0.0403
than for the VWI (0.0345). Therefore, when we consider investors' expectations, the higher returns for EWI are consistent with the higher expected risk borne by
investors exposed to that index.

Excess returns after subtracting estimated regression components
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Fig. 1. Top: Values of Ri−rf ;i− λ̂1− λ̂2 σ̂
2
i for the VWI, with estimates based on the period 1953–2007. Bottom: Corresponding estimated annualised volatilities
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Fitting asyCOGARCH(V) to data set D53-VWI, we get the estimate p̂=7.17% p.a. (Table 2). It is instructive to compare this value
with those reported in Table 1 of Welch (2000, page 504), who summarises estimates of the historical stock market and equity
premia from a variety of sources. Our estimate for the period 1953–2007 is close to Shiller's estimate of p̂=6.9% for the geometric
mean, and p̂=8.2% p.a. for the arithmetic mean, for the similar period 1949–1998; but our study period includes the tech boom,
and subsequent bust, that continued after Shiller's fifty year period, as well as the returns enjoyed before the global financial crisis
began towards the end of 2007. Furthermore, estimates of the equity risk premium produced for this dataset using the other
variants of COGARCH we analyse, asyCOGARCH(U), COGARCH (V) and COGARCH (U) are 7.75%, 7.78% and 7.38% respectively. All
of these estimates are within the range reported byWelch. Therefore, our inferences regarding the equity risk premium are robust
as to whether we control for daily seasonalities and asymmetry or not.

The estimated excess return for the EWI estimated using asyCOGARCH (V) is p̂=18%p.a., and for COGARCH (U) it is 16.83%. These
may appear high, but in fact the EWI had an average return of 19.39% per year over the years 1953–2007.24 This figure is, furthermore,
in keepingwith the upper end of financial economists' optimistic forecasts for the long run equity premium.Welch surveyed financial
economists' expectations and found that the optimistic projection of the equity premiumover thirty years is between11%and 13%, the
optimistic projectionover the ten-yearhorizonwasaround15%and for thefive-yearhorizonwas around20% (Welch, 2000, page515).

Although the VWI includes all the stocks listed in America, it is dominated by those having the largest market capitalization
(that is, large stocks). The EWI, in contrast, will reflect stocks with smallermarket capitalizations (including “penny stocks”) which
are believed to generate generous returns (Bhardwaj and Brooks, 1992; Brockman and Michayluk, 1997). That small firms earn a
premium is well-known in the literature and there are theoretical arguments as to why this should be the case (see Banz, 1981;
Keim, 1983; Brown et al., 1983; Reinganum and Shapiro, 1987; James and Edmister, 1983; Berk, 1995).25

Estimates of the equity risk-premium produced by all the COGARCHmodels for the VWI for the period 1927 to 1951 are similar,
ranging from 8.23% to 8.68%, in keepingwith the COGARCH estimates for the latter period and also with the estimates of the equity
risk-premium provided inWelch (2000, page 504). In contrast, the estimated equity risk premiumproduced by the four COGARCH
models for the EWI for 1927 to 1951 are higher than those produced for the latter period, ranging from 25.65% to 26.68%.
4.2. Results for GARCH, QGARCH, GJRGARCH and TGARCH based models

In practice, econometricians are facedwith abewildering array of conditional volatilitymodels, oftennon-nested. There is no easyway
of choosing an appropriate one. We have argued that, within the class of stochastic volatility models encompassed by the GARCH
s

)



GA

QG

GJ

26 Since it turned out that the TGARCH showed a significantly worse model fit than the plain GARCH model (as judged by AIC and BIC), we omit in the following
all results for the TGARCH based models and just report the results for the other three GARCH models.
27 Note that only the following pairs are nested (smaller model first): GARCH–QGARCH, GARCH–GJRGARCH, GARCH–TGARCH.

Table 2
Estimated risk premia and volatilities: Minimal estimated annualised volatilities in % (σmin), maximal estimated annualised volatilities in % (σmax), and average o
estimated annualised volatilities in % (σmean = σi ). Fifth and ninth column: Average excess return premium in % per year.

Model σmin σmax σmean Premium σmin σmax σmean Premium

VWI: 1953–2007 (daily) EWI: 1953–2007 (daily)

COGARCH (asyV) 5.47 93.99 12.27 7.17 4.88 89.58 10.03 18.00
COGARCH (asyU) 5.97 97.22 12.26 7.75 5.36 98.04 10.06 17.12
COGARCH (V) 5.38 87.50 12.28 7.78 4.83 90.72 10.06 17.13
COGARCH (U) 5.84 87.35 12.29 7.38 5.34 97.23 10.08 16.83
GARCH 5.72 89.16 12.51 7.58 5.25 96.25 11.29 16.10
QGARCH 5.70 85.11 12.21 8.37 5.24 90.04 11.18 18.38
GJRGARCH 6.12 101.54 12.49 7.36 5.48 101.98 11.29 17.44

Model σmin σmax σmean Premium σmin σmax σmean Premium

VWI: 1927–1951 (daily) EWI: 1927–1951 (daily)

COGARCH (asyV) 4.32 179.65 20.71 8.53 5.22 219.53 23.61 26.12
COGARCH (asyU) 6.85 113.40 20.66 8.23 8.02 134.75 23.65 25.65
COGARCH (V) 4.44 167.96 20.30 8.58 5.58 197.86 22.85 26.13
COGARCH (U) 7.15 107.14 20.36 8.68 8.55 128.55 23.00 26.68

Model σmin σmax σmean Premium σmin σmax σmean Premium

VWI: 1927–2007 (weekly) EWI: 1927–2007 (weekly)

COGARCH (asyV) 6.46 62.97 17.41 7.33 7.15 94.81 20.35 19.34
COGARCH (asyU) 7.26 63.43 17.43 7.27 7.11 95.06 20.35 18.98
COGARCH (V) 6.26 63.75 17.20 7.47 7.40 86.59 19.69 19.61
COGARCH (U) 7.15 64.12 17.22 7.46 7.40 86.44 19.69 19.61

Model σmin σmax σmean Premium σmin σmax σmean Premium

VWI: 1927–2007 (monthly) EWI: 1927–2007 (monthly)

COGARCH (asyV) 7.41 60.90 18.60 8.16 10.44 79.39 23.89 20.28
COGARCH (asyU) 9.10 60.51 18.66 8.11 11.67 78.31 23.93 20.56
COGARCH (V) 7.38 61.42 16.79 7.87 10.24 88.02 21.58 19.45
COGARCH (U) 9.17 60.97 16.85 7.85 11.85 87.13 21.61 19.50
GARCH 4.34 63.95 18.80 8.02 5.08 89.47 24.38 20.28
QGARCH 4.84 62.06 18.66 8.14 5.41 88.17 24.24 20.49
GJRGARCH 4.57 58.70 18.68 7.95 5.18 79.90 24.09 20.40
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paradigm, aCOGARCHspecification is appropriatedue to its explicit recognitionof an important featureof thedata—unequal spacing. But
COGARCH is just oneamonga rangeof similar competingGARCH-basedmodels and, for comparison,wealsofitted someother commonly
used discrete time GARCH models to the data. This practice ignores the unequal spacing of the observations; however, it is the kind of
approximation that had to bemade before COGARCHwas available.We briefly describe the discrete timeGARCH-basedmodelswe used.
First, the usual GARCH(1,1) model was fitted. We also used a QGARCH(1,1), a GJRGARCH(1,1) (Glosten–Jagannathan–Runkle–GARCH),
and a TGARCH(1,1) model.26

To specify the discrete time models precisely, abbreviate Yi :=Ri−rf, i and Zi=Yi−(λ1+λ2σ i
2). Then these models all follow

the equation Zi=σiεi, where the volatility process is given by one of the following equations:
RCH : σ 2
i + 1 = aG + bGσ

2
i + cGZ

2
i

ARCH : σ 2
i + 1 = aQ + bQσ

2
i + cQZ

2
i + dQZi

RGARCH : σ 2
i + 1 = aGJR+ bGJRσ

2
i + cGJRZ

2
i + eGJRZ

2
i Ii

ð9Þ
In the GJRGARCH model the variable Ii takes the values Ii=1 if Zib0 and Ii=0 if Zi≥0 and, hence, allows for asymmetry in the
distribution of the returns.

We present the estimates for the GARCH, QGARCH and GJRGARCH based models for both the VWI and EWI datasets, daily
(beginning in 1953) andmonthly data (beginning in 1927), in Table 3. As previously, we compare nestedmodels by AIC and BIC.27



Table 3
Discrete time GARCH models: Parameter estimates with standard errors for GARCH, QGARCH, and GJRGARCH models fitted to VWI and EWI indices. Data set
[D53] (13,844 observations) and [M27] (972 observations).

VWI: 1953–2007 (daily)

Model a⋅106 b c d ⋅103 e ⋅103 λ1 ⋅103 λ2 AIC BIC

GARCH 1.085 (0.063) 0.898 (0.004) 0.088 (0.004) 0.215 (0.080) 5.368 (1.672) −96,932.5 −96,894.8
QGARCH 1.825 (0.192) 0.889 (0.006) 0.082 (0.007) −0.533 (0.047) 0.164 (0.094) 3.439 (1.563) −97,136.7 −97,091.5
GJRGARCH 1.263 (0.091) 0.903 (0.004) 0.029 (0.005) 94.532 (6.582) 0.267 (0.083) 1.246 (1.376) −97,172.0 −97,126.7

VWI: 1927–2007 (monthly)

Model a⋅106 b c d ⋅103 e ⋅103 λ1 ⋅103 λ2 AIC BIC

GARCH 71.547 (21.23) 0.853 (0.021) 0.125 (0.019) 6.370 (2.004) 0.789 (0.865) −3217.7 −3193.3
QGARCH 110.836 (30.93) 0.837 (0.022) 0.124 (0.022) −3.862 (1.295) 5.814 (2.064) 0.568 (0.911) −3224.9 −3195.6
GJRGARCH 88.597 (25.60) 0.851 (0.029) 0.076 (0.020) 75.841 (36.85) 6.342 (2.102) 0.514 (0.913) −3219.5 −3190.2

EWI: 1953–2007 (daily)

Model a ⋅106 b c d ⋅103 e⋅103 λ1 ⋅103 λ2 AIC BIC

GARCH 2.840 (0.195) 0.740 (0.010) 0.206 (0.012) 0.762 (0.069) 5.130 (1.516) −102,774.5 −102,736.8
QGARCH 3.525 (0.218) 0.723 (0.009) 0.203 (0.012) −0.740 (0.056) 0.878 (0.075) 0.143 (1.790) −103,010.7 −102,965.5
GJRGARCH 2.998 (0.197) 0.742 (0.007) 0.109 (0.010) 165.703 (13.59) 0.872 (0.072) 0.132 (1.643) −102,966.8 −102,921.6

EWI: 1927–2007 (monthly)

Model a ⋅106 b c d ⋅103 e ⋅103 λ1 ⋅103 λ2 AIC BIC

GARCH 130.523 (31.41) 0.844 (0.021) 0.131 (0.021) 7.675 (2.507) 2.349 (0.670) −2764.3 −2739.9
QGARCH 160.187 (42.48) 0.836 (0.024) 0.130 (0.025) −3.335 (1.352) 7.458 (2.566) 2.152 (0.705) −2768.9 −2739.6
GJRGARCH 139.016 (37.29) 0.845 (0.027) 0.094 (0.024) 60.130 (31.40) 7.207 (2.589) 2.358 (0.703) −2765.8 −2736.5

Table 4
Auto- and cross-correlations of estimated volatilities: Upper triangle: cross-correlations at lag 0. Diagonal: autocorrelations at lag 1. Lower triangle: cross-correlation
at lag 1.

asyV asyU V U GJR Q GARCH

COGARCH (asyV) 0.9184 0.9686 0.9818 0.9511 0.9657 0.9574 0.9511
COGARCH (asyU) 0.9536 0.9805 0.9472 0.9802 0.9984 0.9893 0.9802
COGARCH (V) 0.9031 0.9371 0.9147 0.9672 0.9421 0.9492 0.9672
COGARCH (U) 0.9412 0.9657 0.9532 0.9812 0.9760 0.9834 0.9998
GJRGARCH 0.9481 0.9753 0.9237 0.9522 0.9777 0.9910 0.9760
QGARCH 0.9407 0.9670 0.9303 0.9589 0.9695 0.9776 0.9835
GARCH 0.9412 0.9656 0.9531 0.9811 0.9624 0.9693 0.9812
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For the VWI daily data, the estimates of λ̂2 are high and significantly positive when estimated using GARCH and QGARCH
(5.368 and 3.439 respectively). The GJRGARCH model, like the asyCOGARCH models, recognises the asymmetry effect, and, in
keeping with our findings from the asyCOGARCH(V) model, the estimate of λ̂2 for this model is less than one standard error away
from zero.

Just as in Section 4.1.2 we utilized estimates of σ2
i and σi of the average variance and volatility to estimate the long-term risk

premium from the COGARCH (V) models for the 1953–2007 daily data, obtaining estimates in line with published data. We also
calculated the equity risk-premium obtained after fitting GARCH, QGARCH and GJRGARCH, and reported these in Table 2. The
estimates obtained from these models, both for the VWI and EWI, are consistent with those obtained using COGARCH. The
estimated volatilities are also in keeping with those computed using COGARCH, save for the maximum volatility for VWI and EWI
estimated using GJRCARCH (101.54 and 101.98 respectively) which are considerably higher than the others reported in the table.
Therefore, as far as these estimates are concerned, there is little to distinguish between the competing models.

To further explore the volatility estimates produced by the different GARCH and COGARCH models, we conducted further
analyses of cross-correlations and autocorrelations and report the results in Table 4. We only report the results for the VWI in the
period 1953–2007 using daily data (as other datasets result in the same inferences being drawn). The diagonal in Table 4 reports
the autocorrelations between the estimated values of σi for lag 1 for all COGARCH and GARCH models. In the upper triangle of
Table 4 we find the cross-correlations at lag 0 for all pairs of models. The cross-correlations for lag 1 are reported in the lower
triangle of Table 4. All of the autocorrelations and cross-correlations appear high: there is no number below 0.9. The conclusions
we reached on the basis of our consideration of Table 2 are unchanged: we still find that there is little that allows us to distinguish
between competing models.

We also illustrate the estimated (annualised) volatilities from the various GARCH and COGARCHmodels for the years 1973 and
1974 (again using the daily returns of the VWI) in Fig. 2.While these figures seem to confirm the conclusion that it is the difficult to
s



28 Merton notes, however, that “...a reasonably accurate estimate of the variance rate can be obtained using daily data while the estimates for expected return
taken directly from the sample will be subject to so much error as to be almost useless...in practice, the choice of an ever-shorter observation interval introduces
another type of error which will ‘swamp’ the benefit of a shorter time interval long before the continuous time limit is reached” (Merton, 1980, page 357)
Merton continues by giving the example of estimating variance using discontinuous microstructure data (which would have been unavailable to him). This, o
course, is the scenario which motivates the use of COGARCH. The applicability of COGARCH to data obtained at 5 min intervals is demonstrated in Müller et al
(2009).
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Fig. 2. Estimated annualised volatilities for the VWI, based on daily data in the period 1953–2007, for years 1973 and 1974. Left: COGARCHmodels. Right: Classica
GARCH models.

316 G. Müller et al. / Journal of Empirical Finance 18 (2011) 306–320
l

choose between models, the plots in Fig. 2 may begin to help us understand why the AIC and BIC select the COGARCH (asyV)
model. The similarities between the pairs COGARCH (U)–GARCH and COGARCH (asyU)–GJR–GARCH are clear. Additionally, the
three discrete-time GARCH models on the right-hand side of Fig. 2 also are very similar. Differences become apparent when we
examine the COGARCH models. Volatility estimates vary noticeably more for the asyV and V models than the asyU and U models.
This effect is due to the virtual time scale. Both the asyV and Vmodels account for the weekend; they produce volatility spikes each
Monday representing the accumulated market information from Friday close to Monday close (the other models smooth over
these effects). Comparing the plots for COGARCH (asyU) and COGARCH (U) one can see slight differences, which improve, as we
know from the AIC and BIC, the model fit significantly.

4.3. COGARCH (V) models for 1927–2007, weekly and monthly data

Our use of daily data was motivated, as we have discussed, by Lundblad (2007), who demonstrates that studies of this problem
may have been hampered by small samples. But asset pricing tests are typically undertaken using monthly data (see, for example,
Fama and French, 1993) and Merton's seminal analysis also utilized monthly observations (Merton, 1980),28 so we also fitted the
COGARCH to some lower frequency data. Given the similarities observed in the analyses of the daily data, we expect little
difference between COGARCH and GARCH, QGARCH and GJRGARCH weekly and monthly analyses, also.

The COGARCH analyses of VWI and EWI for weekly and monthly data from 1927 to 2007 are in Table 5.
The estimates of the January premium, for both the VWI and EWI weekly and monthly data, are positive and statistically

significant. These results are consistent with the well-known January risk-premium (Banz, 1981; Keim, 1983).
For the VWI, the analyses of the weekly andmonthly data find no instance where λ̂2 is statistically significant. The estimates of

λ̂2 are, in all cases, less than two standard deviations from the mean. Therefore, these analyses do not support Merton's proposal,
as expected given Lundblad's (2007) findings.

For the EWI, the picture is very different. In all the analyses of the weekly and monthly data, λ̂2 is statistically significant.
Despite the lower power of the tests, because of the smaller sample size used, we find a positive risk–return relationship.

Extrapolating these estimates to annualised equity risk-premia in Table 2 results in estimates consistent with observed values
in Welch (2000, page 504). We obtain similar results when we repeat the analyses of VWI for monthly data using discrete time
.
f
.



Table 5
COGARCHmodel: Estimates for the regression parameters λ1 and λ2, for the covariates JANUARY andWEEK1, and for the three (four) COGARCH parameters β, η, φ
(φ+/φ−). Data sets [W27] (4224 observations) and [M27] (972 observations), both for VWI and EWI. Estimated standard errors are in parentheses.

VWI: 1927–2007 (weekly)

Model β η φ (φ+/φ−) hWEEK1 λ1 ⋅103 λ2 AIC BIC

asyV 0.022 (0.003) 5.329 (0.501) 2.650 (0.377)/6.437 (0.420) 0.708 (0.122) 1.634 (0.419) 0.345 (0.643) −21,098.9 −21,054.4
asyU 0.023 (0.003) 5.521 (0.503) 2.757 (0.381)/6.669 (0.434) 1.672 (0.427) 0.329 (0.635) −21,097.4 −21,059.3
V 0.019 (0.003) 5.050 (0.502) 4.461 (0.491) 0.699 (0.120) 1.604 (0.404) 1.086 (0.948) −21,061.7 −21,023.6
U 0.020 (0.003) 5.214 (0.505) 4.610 (0.517) 1.606 (0.404) 1.113 (0.946) −21,059.9 −21,028.1

VWI: 1927–2007 (monthly)

Model β η φ (φ+/φ−) hJAN λ1 ⋅103 λ2 AIC BIC

asyV 0.012 (0.003) 1.831 (0.223) 1.282 (0.194)/1.822 (0.206) 0.571 (0.100) 5.183 (2.097) 1.066 (0.864) −3221.5 −3187.3
asyU 0.010 (0.003) 1.755 (0.265) 1.239 (0.189)/1.792 (0.201) 5.715 (2.115) 0.895 (0.851) −3214.5 −3185.2
V 0.011 (0.003) 1.830 (0.220) 1.560 (0.229) 0.562 (0.096) 4.667 (2.061) 1.390 (0.902) −3223.8 −3194.5
U 0.010 (0.003) 1.749 (0.268) 1.506 (0.257) 5.452 (2.088) 1.060 (0.919) −3216.2 −3191.8

EWI: 1927–2007 (weekly)

Model β η φ (φ+/φ−) hWEEK1 λ1 ⋅103 λ2 AIC BIC

asyV 0.032 (0.004) 8.258 (0.542) 6.568 (0.389)/10.10 (0.437) 1.157 (0.272) 2.593 (0.402) 2.201 (0.578) −20,596.9 −20,552.4
asyU 0.032 (0.004) 8.311 (0.538) 6.602 (0.391)/10.20 (0.442) 2.735 (0.408) 1.979 (0.562) −20,598.4 −20,560.3
V 0.032 (0.004) 7.565 (0.460) 7.081 (0.456) 1.088 (0.239) 2.439 (0.388) 3.263 (0.737) −20,572.2 −20,534.1
U 0.031 (0.004) 7.501 (0.474) 7.017 (0.447) 2.443 (0.389) 3.250 (0.738) −20,574.0 −20,542.3

EWI: 1927–2007 (monthly)

Model β η φ (φ+/φ−) hJAN λ1 ⋅103 λ2 AIC BIC

asyV 0.019 (0.005) 1.884 (0.316) 1.248 (0.242)/1.940 (0.263) 0.635 (0.130) 6.981 (2.721) 2.477 (0.684) −2763.3 −2729.1
asyU 0.019 (0.005) 1.883 (0.319) 1.220 (0.238)/1.978 (0.274) 6.061 (2.687) 2.646 (0.673) −2759.4 −2730.2
V 0.022 (0.005) 2.011 (0.283) 1.671 (0.270) 0.583 (0.119) 6.730 (2.691) 2.660 (0.721) −2761.7 −2732.4
U 0.020 (0.006) 1.919 (0.341) 1.592 (0.310) 5.866 (2.652) 2.787 (0.706) −2756.6 −2732.2
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GARCH competitors (GARCH, QGARCH and GJRGARCH): in no case do we find a significant value of λ̂2 and the results scale up to
reasonable values of the equity risk premium.

5. Conclusion

The relationship of the market risk-premium to risk is central to our understanding of Finance (Merton, 1980). Stochastic
volatility models are a natural choice with which to model risk, yet, when this has been done, results have been disappointing. In a
wide variety of studies, the literature has found, in varying degrees of certitude, evidence of positive, negative and no relationship
of return to risk. Lundblad (2007) has argued that the disappointing results are the result of the low statistical power of small
samples. Seeking to overcome the difficulties of sample size, he uses approximately two centuries of monthly data and finds
evidence supporting a positive relationship between the market risk premium and risk.

In keeping with these endeavours, this paper has also sought to analyse Merton's proposition that returns are related to volatility,
using a stochastic volatility model. We have concentrated on the application of the continuous time COGARCH model of Klüppelberg
et al. (2004). While we are aware that it is just one of many competing models of stochastic volatility, we argue that it is highly
appropriate to our analysis,whichhas focussedondaily data. COGARCH, aswehave emphasised, provides anappropriatemethodology
as it facilitates rigorous examination of features of the data such as daily seasonalities and the effect of discontinuities (such as
weekends). Our use of daily data goes some way to addressing Lundblad's (2007) concern that a large dataset is required to validly
assess Merton's proposition.

Our analysis has, on balance, not provided support for Merton's proposition. In order to align with previous studies using discrete
timeGARCHmodels,we extended theCOGARCH formulation to consider asymmetric responses of returns to risk, and these extensions
proved to give the optimalmodel, among the COGARCH class, for our data. The asymmetric COGARCHmodels failed to find support for
Merton's proposed positive relationship of return to risk (both for the value-weighted and equal-weighted indices we study). On the
other hand, the nested COGARCHmodel not taking asymmetry into account provides significant support for Merton's proposition, as
does a model ignoring weekend effects in the data. These results emphasise the importance of considering asymmetry and non-equal
spacing in data when modelling the risk–return relationship using stochastic volatility methodologies. They also remind us of the
sensitivity of the examination of the risk–return tradeoff to the specification of the models used to examine the relationship.

We draw two major conclusions from our analysis. Firstly, we have demonstrated the flexibility of COGARCH in dealing with
unequally spaced data; in particular, we have demonstrated how COGARCH may be adapted to account for asymmetry. Due to its
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flexibility, COGARCH is a very useful tool for financial econometricians. Secondly, and perhaps most importantly, we have added
substantially to the discussion of Merton's proposition that there should be a positive relationship of return to risk. While we do
indeed estimate a positive relationship in all our analyses, our most favored model does not provide statistically significant
evidence of such. Consequently our paper has to be considered as adding to but not resolving the mixed, and often weak, evidence
previously found for (and, sometimes, against) the proposition. Once again, we are thrown back on time-honored explanations: is
the signal to noise ratio too weak to be observed, even in an extensive analysis such as ours? Does it in fact exist? It is sad to reflect
that a belief in a positive risk–return trade-off still appears to be as much a matter of faith as a well-established and scientifically
supported proposition.
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Appendix A. Estimation via the PML method

Both the pure COGARCH model and extensions (such as our inclusion of extra regression variables) can be estimated by the
pseudo-maximum-likelihood (PML) method set out in Maller et al. (2008). This produces estimates for the three COGARCH
parameters, the regression parameters and any parameters measuring effects of exogenous variables, where included, as well as
standard errors for all parameters. Since the extension of the PML estimationmethod for the COGARCH to our regression analysis is
straightforward, we describe this method only for the pure COGARCH model. The following description is extracted from Maller
et al. (2008), which see for further details.

The method is based on an approximation of the COGARCH model by a sequence of discrete-time GARCH models. To describe
the convergence of the discrete to the continuous time GARCH, we have to introduce an extra index, n. Thus, starting with a finite
interval [0,T], TN0, take deterministic sequences (Nn)n≥1 with limn→∞Nn=∞ and 0= t0(n)b t1(n)b⋯b tNn

(n)=T, and, for each
n=1,2,…, divide [0,T] into Nn subintervals of length Δti(n) := ti(n)− ti−1(n), for i=1,2,…,Nn. Define, for each n=1,2,…, a
discrete time process (Gi,n)i=1,…,Nn

satisfying
where
Gi;n = Gi−1;n + ρi−1;n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δti nð Þ

p
εi;n; i = 1;2;…;Nn; ð10Þ

G0,n=G(0)=0, the variance ρi,n2 follows the recursion

ρ2i;n = βΔti nð Þ + 1 + φΔti nð Þε2i;n
� �

e−ηΔti nð Þρ2i−1;n; i = 1;2;…;Nn; ð11Þ

e innovations (εi,n)i=1,…,Nn
, n=1,2,…, are constructed from the Lévy process L using a “first jump” approximation
and th

developed by Szimayer and Maller (2007). The discrete time processes G⋅,n and ρ⋅,n2 are embedded into continuous time versions
Gn and ρn2 defined by
Gn tð Þ : = Gi;n and ρ2n tð Þ : = ρ2i;n; when t ∈ ti−1 nð Þ; ti nð ÞÞ;0≤t≤T ;½ ð12Þ

n(0)=0.
with G
Assuming maxi=1,…,Nn

Δti(n)→0 as n→∞, a main result of Maller et al. (2008) is that the discretised, piecewise constant
processes (Gn,ρn2)n≥1 defined by Eq. (12) converge as n→∞ in distribution in the Skorohod topology on D[0,T] (the space of càdlàg
real-valued stochastic processes on [0,T]) to the continuous time processes (G,ρ2) defined by Eqs. (2) and (3). Practically, this
means that for a very large data set such as we have, the fitted discrete time process will very closely approximate the underlying
continuous time COGARCH model, with a corresponding close approximation of the parameters.

Because (ρ2(t))t≥0 is Markovian, the return Yi defined in Eq. (4) is conditionally independent of Yi−1,Yi−2,…, given the natural
filtration of the Lévy process L, To apply the PML method, we assume at first that the Yi are conditionally distributed as N(0,σ i

2),
then use recursive conditioning involving a GARCH-type recursion for the variance process to write a pseudo-log-likelihood
function for Y1,Y2,…,YN as
LN = LN β;φ;ηð Þ = −1
2
∑
N

i=1

Y2
i

σ2
i

 !
−1

2
∑
N

i=1
log σ2

i

� �
−N

2
log 2πð Þ; ð13Þ



Eq.
we can
station

and

if Zib0

and
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(3.3) of Maller et al. (2008). We must substitute in Eq. (13) a calculable quantity for σi
2, hence we need such for ρ2(ti−1) in
c.f.Eq.

Eq. (5). For this, we discretise the continuous time volatility process just as was done in Maller et al. (2008). Thus we let
ρ2i = βΔti + e−ηΔtiρ2i−1 + φe−ηΔti Y2
i : ð14Þ

(14) is a GARCH-type recursion, so, after substituting ρi−1
2 for ρ2(ti−1) in Eq. (5), and the resulting modified σ i

2 in Eq. (13),
think of Eq. (13) as the pseudo-log-likelihood function for fitting a GARCHmodel to the unequally spaced series. Taking the
ary value β/(η−φ) as starting value for ρ2(0), we can maximise LN to get PMLEs of (β,η,φ) and estimates of their standard
ions.
deviat

Eq. (14) specifies the recursion when returns are treated symmetrically in the sense that positive and negative returns
feedback equally into volatility. To specify the asymmetric COGARCH, we modify the recursion as follows. Recall that Yi=Ri−rf, i,
and define Zi :=Yi−(λ1+λ2σi

2). Then proceed as follows: if Zi≥0, use the recursion equations
ρ2i = βΔti + e−ηΔtiρ2i−1 + φþe−ηΔti Z2
i ð15Þ

σ2
i + 1 = ρ2i −

β
η−φþ

� �
e η−φþð ÞΔti + 1−1

η−φþ

 !
+

βΔti + 1

η−φþ ; ð16Þ

, use the recursion equations

ρ2i = βΔti + e−ηΔtiρ2i−1 + φ−e−ηΔti Z2
i ð17Þ

σ2
i + 1 = ρ2i −

β
η−φ−

� �
e η−φ−ð ÞΔti + 1−1

η−φ−

 !
+

βΔti + 1

η−φ− : ð18Þ
For those models using the virtual time scale, replace Δti by Δτi. Note the similarity to the GJR–GARCH model which we
considered in Section 4.2. The term φ+e−ηΔti corresponds, approximately, to cGJR, and φ−e−ηΔti corresponds to cGJR+eGJR.
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