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Abstract

In this paper, we present a method for segmenting
illuminants in non-uniformly lit scenes. Here, we view
the illuminant colour at an image location as a mixture
of the segmented illuminants. Based on the dichromatic
structure of the image radiance space, we perform soft-
clustering on the set of dichromatic planes correspond-
ing to the neighbourhoods of pixel-sites in the image.
We solve the soft-clustering problem with a determinis-
tic annealing approach where the cost function is for-
mulated based on the maximum entropy principle. We
show results on real-world imagery and provide com-
parisons to an alternative method.

1. Introduction

The appearance of an object in a scene depends
greatly on the illuminant power spectrum and the scene
geometry. Hence, identifying the light sources in a
scene can greatly benefit recognition and identification
methods for machine vision applications based on pho-
tometric invariants [8, 6].

However, the recovery and identification of the il-
luminants in the scene has proven a difficult task in
uncontrolled real-world imagery. This is mainly due
to the fact that the recovery of the illuminants from a
single image is an under-constrained problem [2]. To
this end, Finlayson et al. [4] detected the illumina-
tion in the scene making use of a chromagenic camera.
Wang and Samaras [11] detected and estimated the il-
luminants in the scene making use of a recursive least
squares method. In [12], the authors detected the direc-
tion of the light sources by observing that the change
in image intensities is maximum when the illuminant
direction is perpendicular to the normal of the surface.
Ebner [3] employed the local space average color to per-
form colour constancy irrespective of the illuminants
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used in the scene. Barnard et al. [1] have addressed
the colour constancy problem making use of the infor-
mation conveyed by the reflectance and the illuminants
across non-uniformly lit scenes.

In this paper, we aim to label regions illuminated by
distinct light sources as a preprocessing step for the re-
covery of spatially-varying illumination and photomet-
ric invariants in a scene. Here, we note that, when the
scene is illuminated by multiple light sources, the illu-
minant colour at an image location can be viewed as a
mixture of these sources. With this in mind, the illu-
minant segmentation problem amounts to finding their
mixture coefficients per pixel. We exploit the dichro-
matic structure of the image radiance [9] to formulate
the problem as a soft clustering one. Our formulation
takes into account the probability of image locations be-
ing illuminated by an individual light source in a two
step fashion. The first step consists of the extraction of
a set of dichromatic planes as described in Section 2.1.
Once these planes are obtained, we cluster them into
groups, each of which intersects at a common vector
representing an individual illuminant, as presented in
Section 2.2.

2. Illuminant Segmentation

To commence, consider the image whose radiance,
illumination and reflectance at the pixel u and the colour
channel k ∈ {R,G,B} are denoted as Ik(u), Lk(u)
and Sk(u), respectively. As mentioned earlier, to seg-
ment the illuminants in a scene lit by multiple light
sources, we employ the dichromatic reflection model
in [9]. The model can be expressed in a compact form
as follows

I(u) = g(u)L(u) • S(u) + k(u)L(u), (1)

where I(u), L(u) and S(u) are the radiance, illumi-
nation and reflectance vectors whose kth entry corre-
sponds to the colour channel Ck, g(u) and k(u) are the
shading factor and the specular coefficients and • de-
notes the element-wise vector product.
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Note that the first term on the right-hand side of
Equation 1 depends on both the material reflectance
and the illuminant while the second term is only de-
pendent on the illuminant. Therefore, the radiance vec-
tors at surface locations of the same material and illu-
minated by the same illuminant belong to a dichromatic
plane [5] spanned by the illuminant vector L(u) and
the diffuse radiance vector D(u) of the material, where
D(u) , L(u) • S(u).

2.1. Extracting Dichromatic Planes
As a result, the radiance in each image can be viewed

as a set of dichromatic planes. Moreover, those corre-
sponding to the same light should form a cluster that
intersects at the illuminant vector. Note that, if the
scene illumination is piece-wise constant, i.e. each im-
age pixel is illuminated by a single illuminant, the ra-
diance at each pixel should lie exactly in one of these
planes. However, in general, a scene location can be si-
multaneously illuminated by a mixture of light sources.
Therefore, the pixel radiance does not necessarily lie on
a single dichromatic plane.

Here, we can cast the problem of segmenting the il-
luminants in an image as a soft-clustering problem on
the dichromatic planes containing the illuminant vec-
tors. To this end, we extract a set of dichromatic planes
from the image, each for the local neighbourhood at
each pixel. This operation is undertaken with the as-
sumption that the local neighbourhood is made of the
same material and illuminated by the same light. This
is not an unreasonable assumption since both the ma-
terial and the illumination often vary smoothly across
the image. In practice, these dichromatic planes can be
obtained by performing Singular Value Decomposition
(SVD) on the matrix whose columns are formed by the
radiance vectors at the pixels in the neighbourhood un-
der consideration [5, 10]. The basis vectors of the plane
are, hence, given by the singular vectors corresponding
to the two largest singular values of this matrix.

2.2. Clustering of the Dichromatic Planes

With the dichromatic planes for each pixel in the im-
age at hand, we proceed to cluster them so as to segment
the scene illuminants. Let us denote this set of dichro-
matic planes as P . If a pixel is illuminated by an illu-
minant L, then L should lie on the dichromatic plane
P ∈ P corresponding to that pixel. This observation
justifies the use of the distance metric d(L,P ) between
a dichromatic plane and the illuminant for the purpose
of clustering. A zero-distance implies that the group of
pixels belonging to the plane are purely illuminated by
a single illuminant. The greater the distance, the lower

the power of the illuminant L impinging upon the pixel
under consideration.

We model the association between a dichromatic
plane P and an illuminant L using a probability mea-
sure p(L|P ). Thus, we can view the illuminant clus-
tering problem as finding a set of illuminant spectra
L = {L} and a set of association probablities D =
{p(L|P )|L ∈ L, P ∈ P} which minimise the total ex-
pected plane-illuminant distance

C =
∑
P∈P

∑
L∈L

p(L|P )d(L,P ) (2)

subject to the constraints
∑

L∈L p(L|P ) = 1 and
‖L‖ = 1.

In Equation 2, we view d(L,P ) as the orthogonal
distance between the vectorL and the plane P . Suppose
that the two known basis vectors spanning the dichro-
matic plane P are z1(P ) and z2(P ). The linear pro-
jection matrix Q(P ) onto P is computed using the re-
lation Q(P ) = A(P )(A(P )TA(P ))−1A(P )T , where
A(P ) = [z1(P ), z2(P )]. The distance d(L,P ) is there-
fore formulated as d(L,P ) = ‖L−Q(P )L‖2.

Note that the trivial solution to the cost function in
Equation 2 is a nearest-neighbour one which associates
dichromatic planes to their closest illuminant spectrum
vectors with a unit probability. To formulate the prob-
lem as a soft-clustering one, we enforce an additional
constraint on the distribution of association probabili-
ties D = {p(L|P )|L ∈ L, P ∈ P} based on the maxi-
mum entropy principle [7].

The uncertainty of the plane-illuminant association
probability is given by

H(D) = −
∑
P∈P

∑
L∈L

p(L|P ) log p(L|P ) (3)

Making use of the entropy, the cost function becomes
CEntropy = C − L where

L = TH(D) +
∑
P∈P

α(P )

(∑
P∈P

p(L|P )− 1

)
+
∑
L∈L

β(L)
(
‖L‖2 − 1

) (4)

In the equations above, α(P ), β(L) and T ≥ 0 are
Lagrange multipliers. While T weighs the level of ran-
domness of the plane-illuminant association probabil-
ities, the second term in Equation 4 enforces the to-
tal probability constraint for every dichromatic plane P
and the third term imposes the norm constraint on L.

2.2.1 Deterministic Annealing Optimisation

Here, we turn our attention to the optimisation of the
cost function presented above. To do this, we observe
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that the Lagrangian multiplier T can be viewed as the
system temperature of an annealing process. Using this
analogy, we employ a deterministic annealing approach
to minimising the cost function by varying the tempera-
ture from an initial high value to a zero value at the end
of the process. The process converges to a thermal equi-
librium whereby the system undergoes a “phase transi-
tion” as the temperature is lowered and the optimal so-
lution is “tracked” through to the cooling period. At
zero temperature, we can directly minimise the total ex-
pected plane-illuminant distance so as to obtain the final
plane-illuminant association probabilities and the illu-
minant clusters.

Note that the annealing process described above is
similar to a soft-clustering one where, at the initial high
temperature, all the dichromatic planes are assumed to
be spanned by a single illuminant. As the temperature
drops, the set of illuminants grows in size. This process
passes through several “phase transitions”, at which
new illuminants are split from the existing ones. At each
temperature T , the algorithm alternates between two in-
terleaved minimisation steps until it converges. These
steps aim at finding the optimal plane-illuminant asso-
ciation probabilities for the current set of illiminants.
The optimisation of these variables is described in the
following sections.

2.2.2 Estimating the Illuminant Association Prob-
ability

At a constant temperature , we fix the set of illuminants
and estimate the plane-illuminant association probabili-
ties that minimise the cost function CEntropy. The min-
imisation is effected by setting the partial derivative of
CEntropy with respect to p(L|P ) to zero, which yields

p(L|P ) = exp

(
−d(L,P )

T
+
α(P )

T
− 1

)
∀L,P (5)

Since
∑

L∈L p(L|P ) = 1, the optimal association
probability distribution for a fixed set of illuminants L
is given by the Gibbs distribution

p(L|P ) =
exp

(
−d(L,P )

T

)
∑

L′∈L exp
(
−d(L′ ,P )

T

) (6)

2.2.3 Estimating the Illuminants

We now fix the plane-illuminant association probabil-
ities and seek the optimal set of illuminants for the
dichromatic planes extracted from the image. We com-
mence by rewriting the distance metric d(L,P ) as
d(L,P ) = ‖L − Q(P )L‖2 = ‖(J − Q(P ))L‖2 =

LTR(P )TR(P )L, where J is the identity matrix and
the matrix R(P ) = J − Q(P ) is known. Since
R(P )TR(P ) = R(P ), we can simply write d(L,P ) =
LTR(P )L. Using this compact form, we can derive that
∂d(L,P )

∂L = 2R(P )L. Substituting this relation into the
derivative of CEntropy with respect to the illuminant L,
we have

∂CEntropy

∂L
= 2

(∑
P∈P

p(L|P )R(P )L− β(L)L

)

As a result, the optimal set of illuminants is found by
setting ∂CEntropy

∂L to zero. This yields∑
P∈P

p(L|P )R(P )L = β(L)L (7)

From Equation 7, it is straightforward to de-
duce that L is an eigenvector of the matrix M =∑

P∈P p(L|P )R(P ).

3. Experiments
In this section, we illustrate the utility of our method

for illuminant segmentation as compared to the ground
truth and those yielded by Ebner’s method [3]. Al-
though the method in [3] mainly performs white balanc-
ing on images lit by spatially varying illumination, we
can utilise the ratio of the original image to the white-
balanced one as an indication of the spatial illumina-
tion variation. Here we adopted the variant of Ebner’s
method which operates in the original RGB space.

We performed our experiments on the data set of
multi-illuminant images acquired by Bleier et al. [2].
For our experiments, we use the correctly exposed im-
ages of three scenes captured under two Reuter lamps
with or without colour filters. The lamp positioned on
the left side of the scene was mounted with one filter of
a set of three LEE 201, 202 and 281 filters. Likewise,
the one on the right side was mounted with one of three
LEE 204, 205 and 285 filters. To acquire the ground
truth illuminant for these images, the same scenes were
spray-painted in gray and re-captured under the same
illumination condition.

In Figure 1, we present the illuminant segmentation
results. The two left-hand columns show the input im-
ages and the colour-coded ground truth illuminant re-
gions with their foreground mask. In the right-hand
columns, we show the illuminant segments in the corre-
sponding regions detected by our algorithm and Ebner’s
method [3], where we have distinguished the segments
from each other using high-contrast colours.

We observe that our method delivers segments in
close accordance with the ground truth. Furthermore,
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Figure 1. From left-to-right: Input images, the ground-truth illuminant maps, the illuminants segmented by our algorithm
and those recovered using Ebner’s method [3].

Ebner’s method is more likely to misinterpret material
segments as illuminant regions. Examples of this phe-
nomenon is the green chalk regions under the left-hand
side illuminant in the first scene and the printed flower
regions in the second scene. This phenomenon is due
to the nature of the alternative method. This is because
it performs colour correction locally and thus its out-
put is affected by the material reflectance. On the other
hand, our method considers dichromatic planes across
the whole image, which alleviates this problem.

4. Conclusions

We have presented a method for the segmentation
of illuminants in scenes illuminated by multiple lights.
The method hinges on the soft-clustering of the dichro-
matic planes recovered for every pixel in the image.
We have formulated the soft-clustering problem with
a constraint based on the maximum entropy princi-
ple. Subsequently, we have minimised the cost function
with a deterministic annealing approach. Finally, we
have performed experiments on real-world imagery and
compared our results to those yielded by an alternative
method.
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