
Nonlinear Dynamic Modeling for High Performance Control of a
Quadrotor

Moses Bangura, Robert Mahony
Australian National University, Canberra, Australia

Moses.Bangura@anu.edu.au, Robert.Mahony@anu.edu.au

Abstract

In this paper, we present a detailed dynamic
and aerodynamic model of a quadrotor that
can be used for path planning and control de-
sign of high performance, complex and aggres-
sive manoeuvres without the need for iterative
learning techniques. The accepted nonlinear
dynamic quadrotor model is based on a thrust
and torque model with constant thrust and
torque coefficients derived from static thrust
tests. Such a model is no longer valid when the
vehicle undertakes dynamic manoeuvres that
involve significant displacement velocities. We
address this by proposing an implicit thrust
model that incorporates the induced momen-
tum effects associated with changing airflow
through the rotor. The proposed model uses
power as input to the system. To complete the
model, we propose a hybrid dynamic model to
account for the switching between different vor-
tex ring states of the rotor.

1 Introduction

A quadrotor is an aerial vehicle with four rotor-motor
assemblies that provide lift and controllability. For the
standard design, the rotors are counter-rotating and are
made of fixed pitch blades; no cyclic pitch and swash-
plates. Their light weight (< 4kg), reliability, robust-
ness, ease of design and simple dynamics have made
them a preferred test platform for aerial robotics re-
search [Mahony et al., 2012]. A typical quadrotor is
shown in Figure 1.

The majority of papers on quadrotor modeling have
used the same model introduced in the late nineties (see
for example Pounds [Pounds et al., 2004] and Bouabdal-
lah [Bouabdallah et al., 2004]). Thrust and torque of
each rotor are modeled as static functions of the square
of rotor speed. This model is based on the static thrust
characteristics of the motor-rotor system and holds for

Figure 1: ANU Quadrotor.

near hovering flights [Martin and Salaün, 2010] as the ef-
fects of translational lift, blade flapping and changes in
the advance ratio are negligible. Hoffmann et al. [Hoff-
man et al., 2007] combined this model with the electrical
properties of the motors in the design of different PID
controllers. In Orsag [Orsag et al., 2009], the authors
proposed a purely aerodynamic approach based on Blade
Element Theory and Momentum Theory to derive the
thrust equation. A drawback of their method is that it
is inefficient to determine the aerodynamic parameters of
the blades on quadrotors. Most currently used quadrotor
models have ignored the effect of drag. Derafa et al. [De-
rafa et al., 2006] proposed a linear relationship between
the drag force and the translational velocity of the ve-
hicle. They however failed to look at the different types
of drag and their effects at high velocities. Secondary
aerodynamic effects of quadrotors are well known. One
of these effects is blade flapping. It has been extensively
studied in the literature [Mahony et al., 2012]. To ac-
count for secondary aerodynamic effects, the authors of
[Huang et al., 2009] used the current model with con-
trollers compensating for these effects in doing aggressive
stall turns at high velocities. The well known fact that
there is error in the current quadrotor dynamic model
has made iterative learning techniques the most common
way of designing controllers for aggressive manoeuvres.
This is further evident in the high performance flights
presented in Purwin [Purwin and D’Andrea, 2009], Lu-
pashin [Lupashin et al., 2010] and Mellinger [Mellinger et
al., 2012] which are based on iterative learning methods.
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In this paper, we propose a detailed dynamic and aero-
dynamic model for quadrotors that reduces modeling er-
rors during high performance aggressive manoeuvres. In
the model, we use mechanical power output from the
motors as the free input to the vehicle. Due to the
nonlinear mutual dependence of the aerodynamic and
mechanical state of the vehicle, it is difficult to model
the force/torque interaction using Newton-Euler formu-
lation. It is however straightforward to model the re-
lationship between mechanical power and aerodynamic
power. Using Momentum Theory and the electrical
properties of the motors, we derive equations outlining
the use of mechanical power in the generation of exoge-
nous forces: thrust and torque. In addition, we investi-
gate and present models for the different types of drag
forces acting on the vehicle as well as blade flapping.
This leads to an explicit nonlinear state-space model of
the quadrotor dynamics with free inputs that can easily
be used for sophisticated control design such as Model
Predictive Control (MPC). We also propose a hybrid dy-
namic model to account for the different operating states
of a quadrotor in particular states associated with verti-
cal descents.

The paper is organised as follows: the nonlinear dy-
namic equations are presented in Section 2 with power
as input; Section 3 details the theoretical development of
the concept of having power as input to the quadrotor;
Section 4 outlines our proposed drag like forces; in Sec-
tion 5, we propose a hybrid dynamic model to account
for the different operating states of the vehicle and in
Section 6 we illustrate usage of the model in a Nonlinear
Model Predictive Control algorithm.

2 Nonlinear Equations of Motion

Consider the quadrotor shown in Figure 1. A quadro-
tor can be thought of as a rigid cross frame with four
motor-rotor assemblies equidistance from the centre of
gravity. The guidance and control system (Avionics,
batteries and payload) are mounted above or below the
intersection of the cross frames. Let {A} denote the
inertial frame and {B} the body fixed frame. Let also
(e1, e2, e3) denote unit vectors in xb, yb and zb directions.
Before presenting the equations of motion, the following
assumptions are made:

• The quadrotor is rigid and symmetrical about e3

[Bouadi et al., 2007].

• The centre of gravity is the origin of {B} as sug-
gested in Pounds [Pounds, 2007].

If the mass of the quadrotor (cross frame, batteries and
payload) is mcg and is centred at the centre of gravity,
cylindrical about e3 of radius rcg and height hcg. If h is
the height of each rotor above the origin. If also mr is
the mass of each rotor with blades of radius r and chord

length c, if also the mass of each motor is mm, radius rm
and height hm, then the mass moment of inertia I ∈ R3×3

of the quadrotor is
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Ixz = Iyz = Izx = Izy = 2mmhml + 2mrhl (1e)

The quadrotor free body diagram and the different
frames of references are shown in Figure 2.
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Figure 2: Free Body Diagram and Frames of Reference.

For notation, ζ = (x, y, z)> ∈ {A} the relative
position of {B} to the inertial frame {A} and V =
(Vx, Vy, Vz)

> ∈ {B} is the velocity of {B} with re-
spect to {A}. If the angular velocity of {B} wrt {A}
is Ω = (Ω1,Ω2,Ω3)> ∈ {B} be the pitch, roll and yaw
rates of the airframe measured in {B}, then the skew
symmetric matrix Ω× is given by

Ω× =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (2)

The kinematic equations are

ζ̇ = V, (3a)

Ṙ = RΩ×, (3b)
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We propose the use of mechanical power Pm = Pmi=1:4

as control inputs (u) to the dynamics of the system.
As will be shown in Section 3, the force F and torque
τ , applied to the airframe, can be written as func-
tions of the free input and the state of the system i.e.
F := F (V,Ω, $, Pm) and τ := τ (V,Ω, $, Pm) respec-
tively. Assuming the resultant torque generated by the
weight of the motors and rotors to be zero and apply-
ing Newton’s laws of motion, the dynamic equations of
motion are shown in Equations 4a and 4b [Bouadi et al.,
2007], [Pounds et al., 2006]

mV̇ = mge3 − BR>AF (V,Ω, $, Pm) e3 − BR>ADb, (4a)

IΩ̇ = −Ω× IΩ +Ga + τ (V,Ω, $, Pm) + τD, (4b)

where Db ∈ {B} and τD ∈ {B} are the total drag force
and torque associated with it (see Section 4 for details),
Ga is the gyroscopic torque generated by the rotors as a
result of rotation about the e3 axis and the axis rotating
at angular rates Ω of the quadrotor. The gyroscopic
moment of the rotors on the airframe is ([Hamel et al.,
2002] and [Bouadi et al., 2007])

Ga = −
4∑
i=1

(−1)i+1Ω×Ir ~$i, (5)

where

~$i =

 0
0
$i


and Ir ∈ R3×3 is the moment of inertia of the rotor.
In reality, the thrust and torque from the motors are
in the Tip Path Plane ({D}) of the rotors. Given the
fact that the flapping angle β will be compensated for
by the use of the flapping force presented in Section 4.1,
we assume {C} ≡ {B}. Hence, Fe3 ∈ {B}, τ ∈ {B}
and the rotation representing the attitude of {A} with
respect to {B}, BRA is denoted by R ∈ SO(3).

3 Using Power as a Free Input

This section introduces a model in which the power sup-
plied to each motor is used as the free inputs to the
system.

3.1 Motor Model

Brushless DC motors provide the mechanical power
source for the quadrotor. The mechanical power out-
put from each rotor is as a result of the electrical power
it consumes from the battery. The electrical power con-
sumed by a motor Pei = Vaiiai is equal to the mechan-
ical power Pmi = τzi$i minus power dissipated due to
electrical resistance.

Ignoring the fast electrical dynamics of a motor, the
rotor torque and applied voltage across a motor are mod-
elled by [Franklinet al., 2008]

Vai = Ke$i +Raiai , (6a)

τzi = Kqiai , (6b)

where $i is the rotor speed, iai is the current through
the motor, Ra its electrical resistance and Ke and Kq are
motor parameters. Using Equations 6a and 6b and the
mechanical power Pmi = τzi$i, one gets the following
equation

Pmi =
Kq$i

Ra
(Vai −Ke$i) . (7)

For a given desired power Pmi this equation can be
solved for the required voltage

Vai =

(
RaPei
Kq$i

+Ke$i

)
.

To obtain the PWMi setting for a motor, one uses the
standard relationship between average voltage and volt-
age of the battery as shown by

PWMi =

(
Vai

Vsource

)2

,

where PWMi is measured in fractions of cycle time.

3.2 Motor-Rotor System Identification

To determine the motor parameters and thrust and
torque coefficients, a series of experiments were carried
out as explained in Hoffman [Hoffman et al., 2007]. The
motor constants κ,Kq,Ke and Ra were obtained using
linear regression. In determining the thrust coefficient
CT , a second order polynomial fit was used. The torque
constant CQ can then be determined using CQ = CT /κ.
It should be noted that there is a quantisation error in
the torque measurement which is evident for thrust in-
puts of T = 2.5 and 3N . Figure 3(a) shows the varia-
tion of thrust with rotor speed $, Figure 3(b) shows the
thrust to torque variation from which CQ could be deter-
mined. Figure 3(c) shows the linear relationship between
electric current ia and torque τz and Figure 3(d) shows
the relationship between aerodynamic and mechanical
power. The constant of proportionality between aero-
dynamic and mechanical power is the Figure of Merit
(FoM). It is explained in Section 3.3. A summary of
the results is shown in Table 1 and Figure 4 shows the
experimental setup.

It should be noted that the CQ and CT determined
from our static thrust tests are those used in thrust
and torque models presented in Mahony [Mahony et al.,
2012] and Bouabdallah [Bouabdallah et al., 2004] and
are defined by

Ti = CT$
2
i ,
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and

τzi = CQ$
2
i .

In Section 3.5, it will be shown that the limiting case
(near hover condition) of the proposed model is equiva-
lent to the static model.
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Figure 3: Static Thrust Tests

Table 1: Static Thrust Experimental Values.
Name Value R2

Kq 0.0099375 0.96013
Ke 0.0013 0.9978
Ra 0.5033 0.9978
FoM 0.67483 0.97098
CT 1.536× 10−7 0.9971
κ 79.0660 0.98044

Figure 4: Static Thrust Test

3.3 Power Input

The connection between the mechanical power of the
motors and aerodynamic power, that is associated with

the aerodynamic forces (thrust and torque) generated, is
given by the Figure of Merit (FoM). The FoM is a mea-
sure of the efficiency of the rotor blades in converting
the mechanical power to aerodynamic (actual) power.
The variation of CT with advance ratio can be found
in any rotary wing reference book or can be plotted us-
ing Blade Element Theory. At low forward velocities
hence advance ratio, CT is highest and the curve is flat.
Combining this with the FoM variation with CT shown
in Leishman [Leishman, 2002] and for quadrotors with
max .$ < 3$h and V ≤ 10, one can assume a constant
FoM .

The FoM relation between aerodynamic (Pa) and me-
chanical (Pm) power is given by [Leishman, 2002]

FoM =
Pai
Pmi

. (8)

3.4 Thrust on each Motor

Before presenting the thrust model, we compute the
translational velocities of each rotor due to their dis-
tances from the centre of {B} and rotational velocity Ω
of the vehicle. The effective velocity Vi ∈ {B} of each
rotor is given by

V1 = V + Ω× [de1 − he3] ,

V2 = V + Ω× [−de2 − he3] ,

V3 = V + Ω× [−de1 − he3] ,

V4 = V + Ω× [de2 − he3] ,

where V is the velocity of {B} with respect to {A} ex-
pressed in {B}, d and h are the distances and heights of
the rotors from the centre of gravity.

Previous work involving the use of translational lift
can be found in Hoffman [Hoffman et al., 2007] and
Leishman [Leishman, 2002]. Hoffman et al. [Hoffman et
al., 2007] calculated the thrust for various flight cases.
They considered separate cases of translational, axial as-
cent and descent flights. This paper combines the effect
of translational and axial flights as they are coupled dur-
ing high performance and aggressive manoeuvres.

We use Momentum Theory to model both the static
and translational lift produced by each rotor. Trans-
lational lift is extra lift generated as a result of trans-
lational motion of a rotor blade through air. As the
rotor moves through the air, the vertical induced ve-
locity of the air decreases while the horizontal compo-
nent increases creating the additional lift (hence thrust)
as illustrated in the control volume shown in Figure 5.
This is a well known effect of rotor crafts and is well ex-
plained in references such as Leishman [Leishman, 2002]

and Seddon [Seddon, 1990]. Using Momentum Theory,
[Leishman, 2002] and [Seddon, 1990], the equations for
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calculating thrust generated from the ith rotor as a re-
sult of the power imparted into the ensuing airflow are

Disc

V

vi

2vi

V

V

Figure 5: Induced Airflow Through a Rotor in Forward
Flight.

Ti = 2ρAviiUi, (10a)

Pai = 2ρAviiUi(vii − Vzi), (10b)

where vii is the induced vertical velocity through the
rotor, A = πr2 is the area of the rotor disk and the
velocity at the rotor disk Ui is

Ui =
√
V 2
xi + V 2

yi + (−Vzi + vii)
2. (11)

Note the sign of Vzi as z is positive downwards whereas
vii is positive upwards.

This additional lift which increases the effective thrust
has an associated drag known as Translational Drag and
is discussed in Section 4.3.

To compute the thrust generated by rotor i for a given
aerodynamic power Pai , one must solve Equation 10b
and 11 to compute the induced velocity vii . This is done
by using Newton’s iterative method comparing the cal-
culated to the given aerodynamic power. This induced
velocity vii is then used in Equation 10a to compute the
thrust Ti.

3.5 Resolving the Rigid-body Force and
Torque

If the thrust generated by a rotor is Ti :=
Ti (Vi,Ω, $i, Pmi), the resultant thrust force from all
four rotors is given by

F =
4∑
i=1

Ti. (12)

The moment created by each thrust force about x y-
axis is presented by

τx,y =

(
0 −d 0 d
d 0 −d 0

)
T1

T2

T3

T4

 . (13)

One should note that though the rotors are at a height
h above the origin, the moments due to the thrust Ti is
unaffected by this e3 shift. It can be shown that the
current through a motor is given by

iai =
Pmi
Kq$i

.

From the model proposed in Section 3.1, the torque
from the motors are determined based on their mechan-
ical power output. Therefore τz is given by

τz =
(
Kq −Kq Kq −Kq

)
ia1

ia2

ia3

ia4

 . (14)

Substituting for the currents, Equation 14 can be rewrit-
ten as

τz =
(
Kq
$1

−Kq$2

Kq
$3

−Kq$4

)
Pm1

Pm2

Pm3

Pm4

 . (15)

In the limiting case, at hover, Ω, V = 0, one can deduce
Ui = vii = vh, Ti = 2ρAv2

ii
= mg

4 , Pai = 2ρAv3
ii

, Db = 0,

Ga = 0, τD = 0, τzi = Ti
κ , κ = Ti

τzi
= CT

CQ
Pmi =

Pai
FoM of

each rotor

$i =
Pmi
τ

Substituting values, one recovers the static thrust model
Ti = CT$

2
i .

4 Drag Like Effects

Drag is that force that opposes the motion of an object
in air subject to an applied force. Classical drag models
([Leishman, 2002], [Bramwell et al., 2001] and [Seddon,
1990]) developed for full scale rotary wing aircrafts are
based on steady-state forward flight conditions and are
primarily developed with the goal of computing the ef-
ficiency of flight regimes rather than modeling system
dynamics. A major shortcoming of the classical mod-
els is that at hover, they predict a significant residual
drag. The approach taken in the sequel is targeted to-
wards providing a simple lumped parameter nonlinear
model for quadrotor dynamics. In particular, we will
treat blade flapping as a drag-like force (that opposes
the motion of the vehicle), rather than the classical treat-
ment for rotor craft where it is incorporated into cyclic
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rotor pitch models as an offset. In addition, we consider
induced drag associated with rigidity of the rotor, some-
thing that is far more significant for small quad rotors
than for full scale rotor crafts. Finally, classical trans-
lational drag and parasitic drag effects are modeled in
a way that is valid over the full vehicle flight envelope -
not just for steady-state forward flight.

4.1 Blade Flapping

Blade flapping is a phenomenon that occurs when rotor
blades undergo translational motion. During the mo-
tion, the advancing blade experiences a higher tip veloc-
ity creating an increase in lift while the retreating blade
experiences a reduction in tip velocity and therefore a
reduction in lift as shown in Figure 2. The differential
lift applies a torque to the heavily damped spinning ro-
tor disk that leads to a gyroscopic response that tilts the
rotor disk back, reducing the advancing angle of attack
and increasing the retreating angle of attack, until the
rotor reaches aerodynamic equilibrium and the aerody-
namic forces on the rotor are balanced. The resulting
rotor tip path flaps up relative to the rotor mast as the
blade is advancing and flaps down as the blade is retreat-
ing. The angle through which the rotor tip path plane
(TPP) is deflected is the flapping angle, β.

The tip path plane of the rotor can be modeled as
a flapping angle β(ψ) written as a function of azimuth
angle ψ [Leishman, 2002]

β(ψ) = β0 + βc cos(ψ) + βs sin(ψ). (16)

Detailed models of the constants βc and βs, that also
include dependence on angular velocities of the airframe,
are provided by Pounds [Pounds, 2007]

βc =
−µA1c

1− 1
2µ

2
+

− 16
γ (

Ω1
$ )

(1− er )2 + (Ω2

$ )

1− µ2

2

+

12
γ
e
r

(1− er )3

[
− 16
γ (

Ω2
$ )

(1− er )2 − Ω1

$

]
1− µ4

4
(17)

and

βs =
−µA1s

1 + 1
2µ

2
+

− 16
γ (

Ω2
$ )

(1− er )2 + (Ω1

$ )

1− µ2

2

+

12
γ
e
r

(1− er )3

[
− 16
γ (

Ω1
$ )

(1− er )2 − Ω2

$

]
1− µ2

4

,

(18)
where A1c and A1s are constants depending on blade ge-
ometry (Equation 4.45 and Equation 4.47 in [Leishman,
2002]),

µ =
|Vp|
$r

is the advance ratio, the ratio of horizontal veloc-
ity of the vehicle to the rotor tip velocity and Vp =(
Vx Vy 0

)> ∈ {B} is the velocity in the x − y plane.
The Lock Number which is between 2 and 20 is given by

γ =
ρacr4

Ib

where Ib is the rotational moment of inertia of the blade
about the vertical flapping hinge e, c is chord length, a
is the lift gradient of the aerofoil which can be assumed
to be 2π [Anderson, 2007].

With µ very small so that µ2 ≈ 0 and splitting Equa-
tion 17 and 18 into components due to linear and angular
velocities, one obtains

βc =
−|Vp|
$r

A1c −
1

$
B2Ω1 +

1

$
B1Ω2, (19)

and

βs =
−|Vp|
$r

A1s +
1

$
B1Ω1 −

1

$
B2Ω2. (20)

If we let

Aflap =
1

r

−A1c A1s 0
−A1s −A1c 0

0 0 0

 (21)

and

Bflap =

−B2 B1 0
B1 −B2 0
0 0 0

 , (22)

be lumped parameter matrices that must be identified
from flight tests, then Equation 19 and 20 can be rewrit-
ten in a lumped parameter form to obtain the flapping
force on a rotor i as [Mahony et al., 2012]

∆i = Ti

(
Aflap

Vpi
$i

+Bflap
Ω

$i

)
. (23)

4.2 Induced Drag

If the blades are semirigid or fully rigid, they do not
flap freely to obtain the aerodynamic balance of forces.
This causes an effect on the airframe termed induced
drag. For a rotor that is mechanically stiff, blade flap-
ping is unable to fully compensate for the thrust im-
balance on the rotor and the advancing blade generates
more lift than the retreating blade. For any aerofoil that
generates lift (in our case the rotor blade as it rotates
around the rotor mast), there is an associated instanta-
neous induced drag due to the backward inclination of
aerodynamic force with respect to the aerofoil motion.
The instantaneous induced drag is proportional to the
instantaneous lift generated by the aerofoil. In normal
hover conditions for a rotor, the instantaneous induced
drag is constant through all azimuth angles of the rotor
and is directly responsible for the aerodynamic torque
τz. However, when there is a thrust imbalance, then the
sector of the rotor traveling with high thrust (for the
advancing rotor) will generate more induced drag than
the sector where the rotor generates less thrust (for the
retreating blade). The net result will be that the rotor
experiences a net instantaneous induced drag that di-
rectly opposes the direction of apparent wind as seen by
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the rotor and that is proportional to the velocity of the
apparent wind.

DI = KIVp, Vp = (Vx, Vy, 0)
>
.

This effect is often negligible for full scale rotor crafts
since the mechanical flexibility of the blade is insignifi-
cant compared to the aerodynamic forces. However, it
may be quite significant for small quadrotor vehicles with
relatively rigid blades.

The consequence of blade flapping and induced drag
taken together ensures that there is always a noticeable
horizontal drag experienced by a quadrotor even when
manoeuvering at relatively slow speeds.

4.3 Translational Drag

This is otherwise known as momentum drag described
in Pflimlim [Pflimlin et al., 2010]. It is drag caused by
the induced velocity of the airflow as it goes through the
rotor. Recall Figure 5 and note that the induced lift was
associated with the redirection (in a downwards direc-
tion) of the airflow through the rotor. This process is
similar to the way in which a traditional aerofoil redi-
rects air downwards in level flight. In the same way that
aerofoils generate induced drag, a rotor in forward flight
also generates induced drag in proportion to the induced
lift generated. If Vp = (Vx, Vy, 0)> ∈ {B} is the velocity
of the rotor on the x-y plane expressed in the body-fixed
frame, the models we propose are given by

DT = KT1VP ,

for low speed and

DT = KT2
(−Vz + vi)

4Vp,

for high velocities (where Vp > w, w is a constant veloc-
ity depending on the rotor) and are independent of rotor
speed [Pflimlin et al., 2010].

The models for both low and high velocities can be
verified using the lift induced drag component (dDT =
φdL ) from Blade Element Theory (BET) [Leishman,
2002].

4.4 Profile Drag

This is the drag caused by the transverse velocity of the
rotor blades as they move through the air. It is zero at
hover since the opposing forces generated on either side
of the rotor hub are equal in magnitude. It is usually
unaffected by the angle of attack of the blades’ aerofoil
and only slightly increases with airspeed.

It can be easily shown using Blade Element Theory
(BET) that the profile drag is given by

Dp = ρc
((
cd0 + cdαθ0

)
Ωr2 − (−Vz + vi)r

)
Vp. (24)

Moving vertically upwards, does not change the sym-
metry of the blades. This is seen in the equation as
increasing the rate of climb (−Vz) requires increasing $
which will cause a reduction in vi hence the overall effect
is negligible. Increasing the planar velocity decreases vi,
increases the variation of flow variation across the rotor
and therefore increases Dp. Using a lumped parameter
Kp, we propose a linear variation of profile drag depen-
dence on the forward speed.

Dp = KpVp (25)

4.5 Parasitic Drag

This is the drag incurred as a result of the nonlifting sur-
faces of the quadrotor. It includes drag arising from the
airframe, motors and the guidance and control system at
the centre of the airframe. It is quite significant at high
speeds for full sized rotor craft and becomes the predom-
inant resistant force. For the flight envelope of quadrotor
vehicles flying at moderate speeds up to 10m/s, parasitic
drag may often be ignored.

It is modeled by [Seddon, 1990]

Dpar = Kpar|V |V, (26)

where V = (Vx, Vy, Vz)
>, Kpar = 1

2ρSCDpar . Usually,
CDpar <<< CD of the rotor blades.

4.6 Drag Summary

The different drag models for variation of airspeed are
shown in Figure 6. In summary, the drag model for a
rotor i on a quadrotor is given by

Di = DIi +DTi +Dpi + ∆i.

Hence for low velocity manoeuvres one has,

Di = KIVpi +KTVpi +KpVpi +Aflap
Vpi
$i

+Bflap
Ω

$i
,

= DKVpi +Aflap
Vpi
$i

+Bflap
Ω

$i
, (27)

where DK = KI +KT +Kp. For high velocity manoeu-
vres where Vp > w, then

Di = KIVpi +KT2(−Vzi + vii)
4Vpi +KpVpi+

Aflap
Vpi
$i

+Bflap
Ω

$i

and hence

Di =

(
KI +Kp +KT2(−Vzi + vii)

4 +Aflap
1

$i

)
Vpi

+Bflap
Ω

$i
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The total drag force acting on the vehicle is given by

Db =
4∑
i=1

Di +Kpar|V |V ∈ {B}. (28)

V in m/s

D
ra

g

Plot of the different Drag Forces

w

Induced
Flapping
Parasitic
Profile
Translational

Figure 6: Relative Drag Variation with V.

Torque is created on the airframe by each of the drag
forces (except for parasitic drag) due to their displace-
ment offsets from the centre of gravity of the quadrotor.
Hence the torque generated by the drag forces on each
rotor is given by

τD1
= D1 × [de1 − he3],

τD2
= D2 × [−de2 − he3],

τD3
= D3 × [−de1 − he3],

τD4 = D4 × [de2 − he3].

The total additional torque on the quadrotor as a result
of drag forces on individual rotors is given by

τD =
4∑
i=1

τDi . (30)

5 Other Aerodynamic Effects

For flying quadrotors, two additional aerodynamic ef-
fects have been observed, ground effect and vortex ring
states. Conditions under which these effects occur are
presented in the subsections that follow. Prior to this
section, the models presented are for what we refer to as
the “normal operation” state.

5.1 Ground Effect

This has been observed for constant powered flights that
are close to the ground. From Momentum Theory, the
induced velocity vi is a function of the length of the
control volume. The presence of the ground causes a

velocity of zero. This is transferred to the rotor disc
through pressure changes in the wake resulting in lower
induced velocity. This implies that the power required
to hover close to the ground is lower than that far above
it [Seddon, 1990].

The ratio of the thrust within and out of the ground
cushion for a constant power flight is given by

Tg
T∞

=
1

1−
(

r
4|z|

)2
{

1

1+
(
|V |
vi

)2

} (31)

where |z| is the height above the ground, r is the radius of
the rotor, Tg and T∞ are the thrust within and out of the
ground cushion [Cheeseman and Bennet, 1957]. It can
be seen from Equation 31, that if r

|z| > 0.1, the ground

effect diminishes. This indicates that ground effect be-
comes more significant with the size of the rotors. For
quadrotors it is reasonable that the whole of the rotor
area, and not just individual rotors, should be consid-
ered, although no experimental data on this is available.

5.2 Vertical Descent

During vertical descent flights, the climb velocity be-
comes negative while the induced velocity vi remains
positive. At higher descent rates, stronger tip vor-
tices are accumulated close to the rotor plane causing
sharp vibrations and uncommanded pitch and roll of
the quadrotor. As the descent rate increases to mul-
tiples of the the induced velocity, the flight behaviour
changes from “normal operating” state to Vortex Ring
State (VRS), Turbulent Wake State (TWS) and even-
tually Windmill Brake State (WBS). It should be noted
that flights within VRS and TWS cannot be modelled
using Momentum Theory due to energy dissipation in
the unsteady flow.

VRS is the first of these states. It occurs when the
rate of descent is equal to half the induced velocity at
hover (vh). To recover from this state, more power needs
to be supplied to the motors. This will reduce the rate
of descent and blow away the vortex.

TWS occurs when the rate of descent equals that of
the induced velocity. With this equality, there is no net
flow of air through the rotor disc. Momentum theory
predicts the nonexistence of thrust and therefore cannot
be used. The vibrations are less in this state compared to
those of VRS. To exit this state, additional power from
the motors is required. This ensures that the vortex is
blown away and the descent rate is decreased.

WBS occurs when the rate of descent is greater than
twice the induced velocity at hover (2vh). This causes
the flow to be upwards throughout the entirety of the
rotor creating a transfer of power to the air unlike the
previous two states. The thrust generated by a rotor
under this state is given by Ti = −2ρA(−Vzi + vii)vii .
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The induced velocity relates to vh through vii(−Vzi +
vii) = −v2

h
[Seddon, 1990].

To account for the different flight states of the vehicle,
we propose a hybrid dynamic model shown in Table 2.

Table 2: Hybrid Dynamic States.
State Condition Model

Normal r
|z| > 0.1, −Vz < 1

2vh MT

VRS 1
2vh ≤ −Vz < vh

TWS vh ≤ −Vz < 2vh
WBS −Vz ≥ 2vh MT

Ground Effect r
|z| ≤ 0.1

Tg
T∞

6 Model in Control Applications

To test the potential of the model presented in the pa-
per, it is used in a Nonlinear Model Predictive Control
(NMPC) algorithm for position control of a quadrotor.
The approach taken is based on work presented in Grune
et al. [Grune and Pannek, 2011] and the hybrid tech-
nique in Bemporard [Bemporad and Morari, 1999] to
account for the various switching states of the vehicle.

1. Get a measurement of the state (x = (ζ, V,Ω, R)
> ∈

X) x(n) for the current time t = n.

2. Use the measurement as initial value x0 + x(n) to
solve the optimal control problem

V ∗(xn) = min
u∗(.)∈U

JN (x0, u(.)) +
N−1∑
k=0

l (xu(k, x0), u(k))

subject to:

xu(0, x0) = x0

ẋ = f(x, u)

umin ≤ u ≤ umax
xmin ≤ x ≤ xmax

and obtain the optimal control sequence u∗(.) ∈
UN (x0)

3. The NMPC-feedback value µN (x(n)) + u∗(1) ∈ U
is added to past control moves

4. Use u = µN (x(n)) along with x(n) in the dynamic
and kinematic equations presented in Section 2 i.e.
ẋ = f (x, u) and an appropriate integration tech-
nique to obtain the closed-loop response of the sys-
tem (x(n+1)). Restart with xn = xn+1 [Grune and
Pannek, 2011].

where N is the optimisation horizon, the running cost
l (xu(k, x0), u(k)) = (x−xd)>P (x−xd)+(u−uh)>Q(u−

uh) and P,Q � 0, the states x = (ζ, V,Ω, R)
> ∈ X, xd =

(V0, ζd,Ω0, R0)
> ∈ X, subscript 0 implies element values

are zero and control u = (Pm1 , Pm2 , Pm3 , Pm4)
> ∈ U and

power required to hover, uh = (Pmh , Pmh , Pmh , Pmh)
>

.
The results of the NMPC for a commanded position

of ζd = (5, 5,−10) from ζ = (0, 0,−5) are shown in Fig-
ure 7(a) to 7(d). They are for a Mikrokopter quadrotor
used by the ANU with values of N = 10, P = I12×12,
Q = 10−3I4, Pmmax = 90W as max. Pe = 120.
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Figure 7: NMPC Position Control

The simulation shown demonstrates that the NMPC
algorithm can effectively deal with the proposed model
and yields a controller that leads to stable and near op-
timal response of the simulated vehicle. Since the model
includes secondary aerodynamic effects that are incor-
porated into the NMPC horizon the overall performance
of the closed-loop system is expected to be superior to
control based on the currently accepted model, at least
in aggressive flight scenarios where these effects become
significant. The response of the closed-loop system can
be further improved by tuning the weighting parameters
P and R in the NMPC design.

7 Conclusion

In this paper, we presented a detailed nonlinear dynamic
model for high performance control of a quadrotor. The
model uses mechanical power output from the rotors as
inputs to the dynamics enabling the interaction of the
mechanical and aerodynamic characteristics of the ro-
tors to be accounted for. A detailed investigation and
models of the drag forces acting on the vehicle was pre-
sented. To account for the different vortex ring states
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of the vehicle, we proposed a hybrid dynamic system for
switching between states. With this model, high perfor-
mance control in particular MPC method as shown of a
quadrotor can be carried out without the need for an it-
erative learning scheme or controllers to compensate for
model errors.
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