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Blending algorithmsmodel land cover change by using highly resolved spatial data fromone sensor and highly
resolved temporal data from another. Because the data are not usually observed concurrently, unaccounted
spatial and temporal variances cause error in blending algorithms, yet, to date, there has been no definitive as-
sessment of algorithm performance against spatial and temporal variances. Our objectives were to: (i) evalu-
ate the accuracy of two advanced blending algorithms (STARFM and ESTARFM) and two simple benchmarking
algorithms in two landscapes with contrasting spatial and temporal variances; and (ii) synthesise the spatial
and temporal conditions under which the algorithms performed best. Landsat-like images were simulated on
27 dates in total using the nearest temporal cloud-free Landsat–MODIS pairs to the simulation date, one before
and one after. RMSD, bias, and r2 estimates between simulated and observed Landsat images were calculated,
and overall variance of Landsat and MODIS datasets were partitioned into spatial and temporal components.
Assessment was performed over the whole study site, and for specific land covers. Results addressing objec-
tive (i) were that: ESTARFM did not always produce lower errors than STARFM; STARFM and ESTARFM did
not always produce lower errors than simple benchmarking algorithms; and land cover spatial and temporal
variances were strongly associated with algorithm performance. Results addressing objective (ii) indicated
ESTARFM was superior where/when spatial variance was dominant; and STARFM was superior where/when
temporal variance was dominant. We proposed a framework for selecting blending algorithms based on
partitioning variance into the spatial and temporal components and suggested that comparing Landsat and
MODIS spatial and temporal variances was a practical method to determine if, and when, MODIS could add
value for blending.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Fundamental to all sensors are the inherent data characteristics
in the spectral, radiometric, spatial and temporal domains. The data
characteristics are defined by the extent, resolution and density in
each of the four domains (Table 1), which can be specified for each re-
motely sensed data type providing a high-level summary. Ultimately
all single-sensor monitoring systems are constrained by the domain
characteristic elements that constitute this sensor-specific data frame-
work (e.g., Ludwig et al., 2007; Phinn, 1998). To overcome this constraint,
many monitoring systems combine: (i) remotely sensed data with dy-
namic physically-based models (model–data fusion; e.g., Heinsch et al.,
2006; Renzullo et al., 2008; van Dijk & Renzullo, 2011); or (ii) two or
more remotely sensed data sources with complementary data frame-
works (data–data fusion, e.g., blending). The remainder of this paper
focuses solely on the latter.

Capturing spatial and temporal dynamics is a key issue for many re-
motely sensed basedmonitoring systems, so a number of data blending
algorithms have recently been developed that concentrate on these
two domains. Examples include: (i) Spatial and Temporal Adaptive
Reflectance FusionModel (STARFM, Gao et al., 2006); (ii) the Enhanced
version of STARFM (ESTARFM, Zhu et al., 2010); (iii) Spatial Tempo-
ral Adaptive Algorithm for mapping Reflectance Change (STAARCH,
Hilker et al., 2009a); (iv) a downscaling unmixing algorithm based on
a linearmixingmodel to produce Landsat-like images from theMedium
Resolution Imaging Spectrometer (Zurita-Milla et al., 2009); and (v) a
semi-physical approach using a BRDF spectral model to fuse MODIS
and Landsat data (Roy et al., 2008). These algorithms aim to blend
high spatial resolution imagery (e.g., Landsat TM/ETM+) with high
temporal density imagery (e.g., MODIS, AVHRR or MERIS) resulting in
imagery with high spatial resolution and high temporal density charac-
teristics to better capture spatio-temporal dynamics.

Here we primarily compare the STARFM and ESTARFM algorithms
to determine if ESTARFM is always an improvement over STARFM.
We chose STARFM and ESTARFM from the previously mentioned
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blending algorithms due to: (i) their minimum input requirements
(i.e., ancillary land cover data are not required); (ii) standard image
pre-processing requirements (i.e., co-registration and atmospheric
correction); (iii) availability of software; (iv) ease of implementation;
(v) their ability to handle both homogeneous and heterogeneous land-
scapes; and (vi) their wide acceptance within the remote sensing com-
munity (see Section 4). We also compare STARFM and ESTARFM against
two relatively simple (and computationally inexpensive) benchmarking
algorithms (described in Emelyanova et al., 2012; their Appendix A).
Comparing the four algorithms, in a context of quantifying the relative
contributions of spatial and temporal variances helps identify conditions
when a particular algorithm outperforms the rest.

Blending algorithms attempt to account for spatial and temporal
changes in land cover that have not been observed concurrently in
the imagery. This means that unresolved temporal and spatial vari-
ances will cause error in blending algorithms. Yet, to date, there has
been no definitive assessment of algorithm performance against
changing spatial and temporal variance. Our paper extends previous
research by addressing this issue. Our specific objectives are to:
(i) evaluate the accuracy of STARFM and ESTARFM and the two
benchmarking algorithms in two landscapes with contrasting spatial
and temporal variances; and (ii) synthesise the spatial and temporal
conditions under which the algorithms perform best and develop a
framework of why this is so.

2. Materials and methods

2.1. Study sites and data

The Coleambally Irrigation Area study site (‘Coleambally’ herein) is
a rice based irrigation system located in southern New South Wales
(NSW, Australia; 34.0034°E, 145.0675°S) which has been extensively
used for time series remote sensing research (Van Niel & McVicar,
2003, 2004a,b; Van Niel et al., 2003, 2005). Over Coleambally 17
cloud-free Landsat–MODIS (L–M) pairs were available for the 2001–
2002 austral (i.e., southern hemisphere) summer growing season
(Table 2). Coleambally is 43 km in the north–south (N–S) direction
and 51 km in the east–west (E–W) direction; an overall area of
2193 km2 (1720 columns by 2040 lines at 25 m resolution). At
Coleambally all Landsat imagery were ETM+ acquired by Landsat-7,
and were atmospherically corrected using MODTRAN4 (Berk et al.,
1999) as outlined in Van Niel andMcVicar (2004a). Coleambally is en-
tirely in the E–W overlap of two adjacent paths in the Landsat World
Reference-2 system (i.e., Paths/Rows 92/84 and 93/84) allowing for
an ~8-day repeat cycle (Van Niel & McVicar, 2004a).

The Lower Gwydir Catchment study site ('Gwydir’ herein) is
located in northern NSW (149.2815°E, 29.0855°S), where 14 cloud-
free L–M pairs were available from April 2004 to April 2005. Gwydir
is 80 km N–S and 68 km E–W covering 5440 km2 (3200 columns by

2720 lines at 25 m resolution); all Landsat imagery were TM acquired
by Landsat-5 andwere atmospherically corrected using Li et al.'s (2010)
algorithm.

For both study sites MODIS Terra MOD09GA Collection 5 data were
used. After geometrically transforming the MODIS data, these were
oversampled to 25 m resolution using a nearest neighbour algorithm
to match the Landsat data resolution. To achieve sub-pixel accuracy
prior to being input to the blending algorithms, each L–M pair was
co-registered to within one 25 m pixel (0.05 of the MODIS 500 m
pixel) by defining the optimal offset required to maximise the correla-
tion function between the two images (using http://idlastro.gsfc.nasa.
gov/ftp/pro/image/correl_optimize.pro accessed 28 September 2011).
The resultant optimal offsets applied to the oversampled MODIS data
in order to co-register them to Landsat are provided in Emelyanova
et al. (2012; their Table 3).

The study sites have contrasting spatial and temporal dynamics.
Fig. 1a–d shows that Coleambally exhibits temporal dynamics associ-
ated with crop phenology over a single growing season within the
irrigation area as evident by the vegetation index and wetness index
responses (the dashed green and blue lines, respectively in Fig. 1d).
The surrounding dryland agricultural and woodlands are less variable
through time, thus thewhole study site summary of vegetation green-
ness and wetness is less variable through time (solid green and blue
lines, respectively in Fig. 1d). Due to the relatively small field sizes in
the irrigation area, Coleambally can be considered a more spatially
heterogeneous site (Fig. 1a–c), as will be shown in detail later. The
temporal extent of the Gwydir data is approximately 1 year, including

Table 2
Dates for the cloud-free Landsat–MODIS pairs for the two study sites. For Coleambally
DSSD are the number of days since start of dataset (DSSD) from 30 September 2001,
and for Gwydir this value represents the number of DSSD from 31 March 2004.

Image # Coleambally Gwydir

DSSD Date DSSD Date

1 008 08 Oct 2001 016 16 Apr 2004
2 017 17 Oct 2001 032 02 May 2004
3 033 02 Nov 2001 096 05 Jul 2004
4 040 09 Nov 2001 128 06 Aug 2004
5 056 25 Nov 2001 144 22 Aug 2004
6 065 04 Dec 2001 208 25 Oct 2004
7 097 05 Jan 2002 240 26 Nov 2004
8 104 12 Jan 2002 256 12 Dec 2004
9 136 13 Feb 2002 272 28 Dec 2004
10 145 22 Feb 2002 288 13 Jan 2005
11 161 10 Mar 2002 304 29 Jan 2005
12 168 17 Mar 2002 320 14 Feb 2005
13 184 02 Apr 2002 336 02 Mar 2005
14 193 11 Apr 2002 368 03 Apr 2005
15 200 18 Apr 2002
16 209 27 Apr 2002
17 216 04 May 2002

Table 1
The data-framework comprised of the domain-characteristic elements; modified from (McVicar et al., 2002). EMS is an abbreviation for the electro-magnetic spectrum.

Domain Characteristic

Extent Resolution Density

Spectral Portion(s) of the EMS being sampled Bandwidth(s) Number of bands in a particular portion of the EMSa

Radiometric Dynamic range of radiances (minimum and maximum
radiance per band)

Change in radiance due to change by one
digital number

Number of bits used across the dynamic range of
radiances

Spatial Area covered by the image Pixel size acquired Completeb

Temporal Recording period over which the data are availablec Period of data acquisitiond Satellite repeat characteristicse

a For example, hyperspectral sensors (e.g., Hyperion) have higher spectral density than broadband instruments (e.g., Landsat TM/ETM+) though they sample similar EMS
extents.

b This contrasts with the low spatial density of ground-based sampling, for example, meteorological stations.
c For some remotely sensed systems (e.g., AVHRR and Landsat TM) data have been recorded near-continuously for ~30 years.
d For remotely sensed images this is a matter of seconds, which contrasts with meteorological data such as the daily rainfall totals.
e For some applications using optical (i.e., reflective and thermal) data the availability of cloud-free images is an important consideration. Whereas the satellite repeat charac-

teristics do not change, cloud cover will change the effective temporal density of a site over time.
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(a) 25 Nov 2001 (056)

(d) Coleambally

(b) 12 Jan 2002 (104) (c) Irrigated strata 

(e) 12 Dec 2004 (256) (f) 13 Jan 2005 (288) (g) Inundated area

(h) Gwydir

Fig. 1. Site characterisation for the Coleambally (a to d) andGwydir (e to h) sites. Parts (a) and (b) are Landsat bands 5, 4, 3 displayed asRGB; (c) black shaded areas constitute the irrigated
strata and the black line bounds the Coleambally Irrigation Area; (d) shows the Landsat time seriesmean response of both NDVI and depth at 1650 nm (D1650) for both thewhole site and
irrigated strata. Parts (e to h) are provided in the same order for theGwydir site;with (g) showing the inundated area shaded in black. For parts (a, b, e and f) the days since start of dataset
(DSSD) are provided in parentheses following the date. For parts (d and h) the vertical grey lines indicate dates when cloud-free data are available and single-letter month abbreviations
are provided at the top of those plots.
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a winter and a summer crop growing season (Fig. 1e–h). A large flood
occurred in mid December 2004, which caused the inundated vegeta-
tion andwetness indices to deviate from those of the whole study area
(Fig. 1h). The flooding and subsequent inundation covered large areas
(~44% see Fig. 1g) that resulted in a different spatial and temporal re-
sponse compared to that at Coleambally (Fig. 1d). Due to the flooding
event, Gwydir is considered a more temporally dynamic site, but as
shown later, this is spectrally dependent.

2.2. Blending algorithms tested

Four blending models were evaluated: (i) LIM (linear interpola-
tion model; Emelyanova et al., 2012); (ii) GEIFM (global empirical
image fusion model; Emelyanova et al., 2012); (iii) STARFM (Gao
et al., 2006); and (iv) ESTARFM (Zhu et al., 2010). A generic mathe-
matical description of blending is provided in Emelyanova et al.
(2012; their Section 2), with the four algorithms being explicitly
defined in Emelyanova et al. (2012; their Appendix A). All four models
use cloud-free fine resolution (i.e., Landsat) imagery before and after
the date of simulation. GEIFM, STARFM and ESTARFM also use two ob-
served cloud-free coarse resolution (i.e., MODIS) images on the same
dates as the Landsat images (i.e., two L–M pairs), and one additional
observed MODIS image on the date of simulation. While STARFM
and GEIFM (not ESTARFM) are able to produce simulations based
on a single L–M pair and one additional MODIS image on the date of
simulation, we have not used them in this mode here to ensure that
GEIFM, STARFM and ESTARFM all use the same input data. The basic
assumptions with respect to temporal and spatial variability and
possible limitations of the four algorithms follow.

All four algorithms assume some linear trend of surface reflec-
tance change through time. ESTARFM and LIM assume a single rate
of change over the entire time period between the two input Landsat
acquisitions (Emelyanova et al., 2012; Zhu et al., 2010). STARFM
and GEIFM assume two separate periods of linear change, being:
(i) from the first Landsat acquisition date to the simulation date;
and (ii) from the simulation date to the second Landsat acquisition
date (Emelyanova et al., 2012; Gao et al., 2006). STARFM and GEIFM,
therefore, can model a non-linear change over the entire period
between the two input Landsat acquisitions and thus should model
non-linear temporal variance better than ESTARFM and LIM. LIM
should model non-linear temporal variability the worst as it simply
linearly interpolates Landsat data between two dates without re-
course to MODIS data.

LIM is calculated on a per-pixel basis, with no contextual
neighbourhood assessment. This provides LIM with the best ability
to model local linear spatial variability, but the worst ability to
model non-linear temporal variability. ESTARFM and STARFM use
neighbourhoods around each pixel to define locally influenced linear
relationships between Landsat and MODIS, which results in non-linear
spatial functions between Landsat and MODIS at the entire image
scale. ESTARFM has been designed to model spatial variability better
than STARFM by using a more sophisticated identification of pixel sim-
ilarity within neighbourhoods (Zhu et al., 2010). GEIFM derives reflec-
tance from a single global linear model (i.e., for the whole image
extent), and thus should model spatial variability the worst of all four
algorithms. In summary, LIM could model spatial variability the best
of all four algorithms if there was either very low temporal variance,
or if the rate of change was near-constant, but would be expected to
model non-linear temporal variability the worst of all four algorithms.
STARFM and GEIFM would be expected to model non-linear temporal
variability better than ESTARFM, but ESTARFM should model spatial
variability better. It is clear that the spatial and temporal variances of
a site should directly relate to algorithm performance. However, since
spatial and temporal variances are dynamic and likely differ by spectral
band, spatial resolution, and surface characteristics, it is expected that
no single algorithm will be best under all conditions.

2.3. Applying the blending algorithms

For both study sites the four blending algorithms were applied by
simulating a Landsat-like image on some date using the two L–M
pair dates that were the nearest temporal neighbours to the simula-
tion date, one before and one after. On the simulation date, a cloud-
free Landsat image was also acquired and this was only used for
validation (i.e., it was not used as input for simulation). All possible
combinations of simulations were processed at both sites for all four
algorithms. For example using dates from the Coleambally series
(Table 2) for the LIM algorithm, Landsat # 1 (08 October 2001) and
Landsat # 3 (02 November 2001) were used to simulate Landsat # 2
(17 October 2001), then Landsat #2 (17 October 2001) and Landsat
# 4 (09 November 2001) were used to simulate Landsat # 3 (02
November 2001), and so on for the entire series. The general process
was the same for GEIFM, STARFM, and ESTARFM, except that L–M
pairs were used on nearest temporal neighbour dates rather than
Landsat alone, and the MODIS image on each simulation date was
also input to the blending algorithms. This design meant that images
were simulated using all four algorithms for the 15 central dates
at Coleambally and for the 12 central dates at Gwydir (27 dates in
total), and allowed for subsequent comparison between observed
Landsat data and simulated Landsat-like output over the time series.

2.4. Defining land cover strata

At each site, subset areas exhibiting high spectral contrast (when
compared to the entire study site) were defined to elucidate the
influence of land cover dynamics on algorithm performance. The
high spectral contrast subsets were primarily due to the addition
of water and subsequent vegetation response at both sites. For
Coleambally this was a selection of irrigated fields of various summer
crops (116,898 pixels at 25 m resolution), including rice (flood
irrigated), maize, sorghum and soybean (all furrow irrigated) fields
identified in Van Niel and McVicar (2004a); see Fig. 1c. For Gwydir,
the inundated area of a large flood event (3,856,288 pixels at 25 m
resolution)was defined from the 12 December 2004 and 28 December
2004 Landsat imagery where the environmental moisture index
(specifically the ‘Depth at 1650 nm’; see Van Niel et al., 2003)
exceeded 0.0 on either date (Fig. 1g).

2.5. Partitioning spatial and temporal variances

The overall variance of the Landsat and MODIS spatio-temporal
datasets at each study site was partitioned into spatial and temporal
variances using the approach of Sun et al. (2010; their Eq.(10)).
Partitioning of variance was performed at each site at both Landsat
and MODIS resolutions in two ways: (i) over the entire Landsat
(MODIS) spatio-temporal data cube; and (ii) using all possible three
sequential-date Landsat (MODIS) spatio-temporal data cubes that
correspond to the application of the blending algorithms described
above (i.e., the Landsat (MODIS) image of the simulation date and
its two nearest temporal neighbours, one before and one after). The
same partitioning of variance can be applied to any spatio-temporal
dataset to assess blending algorithm performance, thus allowing
future research to put their results into the context of our study.

2.6. Evaluating the blending algorithms

Accuracy estimation was performed by calculating the spatially-
averaged (i.e., time series) root mean square difference (RMSD),
bias (i.e., simulated minus observed), and r2. Temporally-averaged
RMSDs were calculated across the entire period for each pixel and
band at both sites. The percentage area of the lowest RMSD for each al-
gorithm was calculated, herein named ‘percentage best algorithm’. All
assessments were performed over both the whole site areas, and the
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subset areas. Due to TM/ETM+ data dimensionality (Crist & Cicone,
1984), for select analyses we used Landsat bands 3, 4 and 5 only to as-
sess the results. That is, we selected one band from the three highly cor-
related visual bands (i.e., B3 fromB1 to B3), the near infra-red band (i.e.,
B4), and one band from the two highly correlated SWIR bands (i.e., B5
from B5 and B7). The associated MODIS bands are herein labelled M1,
M2, and M6.

3. Results

Fig. 2 shows the spatial and temporal variance partitioning for
the three key bands for both the Landsat (Fig. 2a–d) and MODIS
(Fig. 2e–h) sequential-date spatio-temporal data cubes. The primary
changes in spatial and temporal variances at both sites at Landsat res-
olution occurred in B4 and B5 due to the spectral response associated
with water and subsequent plant growth. For the whole Coleambally
site, the spatial variance of B5 was the dominant variance throughout
the entire time period (Fig. 2a). This is because there was a high
spectral contrast between the irrigated fields and the fallow fields,
dryland pastures and woodlands (Fig. 1a–b). This spatial variability
between irrigated and non-irrigated areas dominated the temporal
variability, and since the main difference between the irrigated and
non-irrigated regions was the presence or absence of water, B5 was
most affected. The secondary source of variability at Landsat spatial
resolution was the change in the vegetation response between the
irrigated and non-irrigated portions of the site, and therefore, the spa-
tial variance of B4 was the second highest variance overall (Fig. 2a),
since B4 is most sensitive to greening vegetation. The spatial variance
of B3 was the third highest overall influence (Fig. 2a), demonstrating
that the complementary temporal variance for all three bands was
of minor influence when the whole Coleambally site was considered
using Landsat.

The influence of land cover was particularly evident when the
whole study site Landsat variances (Fig. 2a) were compared to
those of the irrigated subset (Fig. 2b). Rice fields were flood irrigated
in October–November, which resulted in a high spatial variance in B5
during those 2 months (Fig. 2b). The large change in spectral reflec-
tance between bare soil fields and flooded fields occurred to only
some of the fields within the irrigated strata (since not all the fields
were rice), which resulted in high spatial variability rather than
high temporal variability. During the transition when open water or
bare soil became replaced by green vegetation, the spatial variance
of B5 decreased, and the temporal variance of B4 increased (see
November–December, Fig. 2b). The reason why temporal variance
was higher than spatial variance in B4 during this transition was
because all fields comprising the irrigation strata were becoming
greener (becoming less variant) during this time. This resulted in
lower spatial variability and higher temporal variability. At Landsat
resolution the increased importance of temporal variability is a key
difference when comparing the irrigated strata to the whole site.
When green crops were established as the dominant spectral signal
(late December through mid-February, Fig. 2b), the spatial and
temporal variances of B4 were approximately equal. Finally, from
mid-February through April, the spatial variance of B4was the highest
variance, governed by the varying rates of crop senescence between
the four crops (Fig. 2b).

The Landsat variances between the whole Gwydir (Fig. 2c) and the
inundated subset (Fig. 2d) were not as different as was seen for the
corresponding summaries at Coleambally. This was because almost
half of Gwydir was inundated (Fig. 1g), which resulted in the whole
site's variances being a slightly muted version of the inundated area
variances. The partitioning of variance in the whole Gwydir and its
inundated subset (Fig. 2c–d) showed high spatial variance for B4
from July–September (DSSD 96–144) due to the spatial variability
of the winter crops. The flood caused many areas to become wetter
(and thus less spatially variant) in a short period, thus the temporal

variance of B5 was very high during the December flood (DSSD
240–272, Fig. 2c–d). Due to increased water availability, the spatial
variance of B4 became high, lagging the flood as the water signal
receded being replaced by the spectral dominance of growing vegeta-
tion. At Coleambally, the highly managed flooding and planting
occurred over homogeneous, fertilised, and flattened soil, whereas
at Gwydir the natural flood covered heterogeneous pastures and ri-
parian vegetation with variable elevations, nutrient levels, and prior
vegetation amounts and types. Subsequently, the transition from
water dominance to greening vegetation resulted in an increase in
spatial variance of B4 at Gwydir, as plant growth responded variably
across space due to a wide range in conditions (January–February,
Fig. 2c–d). At Coleambally the whole site was dominated by spatial
variance (Fig. 2a). However, this was not the case at Gwydir, where
a single domain's variance was not as dominant through time, but
rather alternated between high spatial and high temporal variances.
This difference is important for interpretation of blending algorithm
performance, and for subsequent development of the framework for
algorithm selection.

When the variances where assessed using MODIS data, they were
generally much lower at Coleambally (Fig. 2e–f), than the corre-
sponding Landsat variances (Fig. 2a–b). This demonstrated that a
good deal of the dynamics occurred at a finer spatial resolution
than that of the MODIS data (because homogeneous patch sizes at
Coleambally were small). There was no such decrease in the magni-
tude of MODIS variances at Gwydir (Fig. 2g–h) when compared to
the corresponding Landsat variances (Fig. 2c–d), which indicated
that much of the spatial and temporal dynamics were observable at
the MODIS spatial resolution due to the larger size of homogeneous
patches at Gwydir. At Coleambally, the relative dominance and gen-
eral patterns were the same between Landsat and MODIS variances;
just much reduced for the MODIS variances (Fig. 2a–b and e–f). At
Gwydir, while the magnitude remained about the same, when com-
paring MODIS to Landsat, the relative dominance of spatial variance
increased for all three key bands (Fig. 2c–d and g–h), most likely
due to the higher proportion of ‘mixels’ at MODIS resolution. The im-
portant implication is that at Coleambally, because much of the spa-
tial and temporal variances are not observable at MODIS resolution,
it is unlikely that blending with MODIS data could make much
improvement. Alternately, the patch size and land cover dynamics
of Gwydir allowed for a meaningful summarisation of dynamics at
both Landsat and MODIS resolutions, and therefore, there is a good
possibility of improving simulations by inclusion of MODIS data.
Of particular importance, are the times and spectral bands where
Landsat and MODIS displayed similar variances (e.g., B4 and M2 spa-
tial variance between DSSD 96–144 and B5 and M6 temporal
variance between DSSD 240 and 272, Fig. 2d, h). These are the situa-
tions under which blending Landsat and MODIS should provide
maximum benefit and when spatial and temporal variances should
explain algorithm performance the best, as shown below.

Fig. 3a–b represents observed Landsat data and simulated Landsat-
like images using the four blending algorithms for a key date at
Coleambally and Gwydir, respectively. Insight can be gained by
visual inspection of these selected dates. On DSSD 104, the spatial
variances of B5 and M6 dominated all others at both Landsat and
MODIS spatial resolutions at Coleambally (Fig. 2a, e). At Landsat spa-
tial resolution, the spatial variances of B3 and B4 were also higher
than their corresponding temporal variances (Fig. 2a). The simulated
images were all able to capture the large spatial variance between
the central irrigation area and the surrounding dryland agriculture
on this day (Fig. 3a). When summarised from Landsat data, the
whole of Gwydir on DSSD 256 had a higher temporal than spatial
variance in B5, a slightly higher spatial than temporal variance in
B4 and nearly equal proportions of spatial and temporal variances
in B3 (Fig. 2c). From MODIS data, DSSD 256 had approximately
equal (and high) values of spatial variance in M1, spatial variance
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in M2, and spatial and temporal variances in M6 (Fig. 2g). This more
complexmixture of domain variances at Gwydir caused the simulated
images to havemore variation across algorithms (Fig. 3b). As expected
(Section 2.2), LIM and GEIFM simulations were not very similar to
observed Landsat due to their overly simplified assumption of either
time or space (Fig. 3b). ESTARFM and STARFM were more similar to
observation (Fig. 3b). As mentioned earlier, ESTARFM estimates spa-
tial variance better, but assumes a linear change over the entire period
between the two input Landsat acquisitions. When run in two L–M
pair mode (as we have done), STARFM assumes two linear changes
in surface reflectance over this same period, thus should model
non-linear temporal variance better. This is generally confirmed by
Fig. 3b where STARFM simulations were visually most similar to the
observed Landsat data. For DSSD 256, temporal variance of B5 was
the dominant variance from the Landsat data (Fig. 2c) and was ap-
proximately equivalent to its spatial variance for MODIS (see M6,
Fig. 2g). ESTARFM simulations matched slightly less well although
the spatial representation of the output seemsmore visually appealing
(Fig. 3b).

Many previous studies demonstrated accuracy assessment from
scatter plots of observed versus simulated Landsat data (Section 4).
Our study resulted in 1296 possible scatter plots: 720 for Coleambally
(i.e., six bands by 15 dates by four algorithms by two summarisation
areas) and 576 for Gwydir (i.e., six bands by 12 dates by four algo-
rithms by two summarisation areas). A representation of such a
large dataset required summarisation of scatter plot information.
The 360 scatter plots for the whole Coleambally are summarised in
Fig. 4. Each of the 12 scatter plot summarisations, herein called
‘blocks’, in Fig. 4a–l contains 90 cells (six bands by 15 dates). Each
cell represents an error or accuracy metric (i.e., spatially-averaged
bias, r2, or RMSD) generated from a single scatter plot. For example,
the bias, r2, and RMSD value associated with the bold outlined cells
highlighted in each of the three ESTARFM blocks (Fig. 4g–i) were
calculated from the scatter plot shown in Fig. 4m. Subsequently,
each row in any of the 12 blocks (Fig. 4a–l) is a time-series of the
specified error or accuracy metric for a given algorithm. For example,
the outlined rows associated with the four algorithm's r2 image
(Fig. 4b, e, h, and k) are shown in Fig. 4n. Finally, each column in
any of the 12 blocks represents an inter-band comparison of the spec-
ified error or accuracy metric for a given date for a given algorithm.
For example, Fig. 4o shows the spatially-averaged RMSDs associated

with the outlined columns of the four algorithm's RMSD blocks
(Fig. 4c, f, i, l) for DSSD 104.

Summary of all 360 scatter plots in this manner allowed for a
synoptic assessment of the algorithm performance over time, across
bands, and between algorithms. When considering whole Coleambally
spatially-averaged bias, LIM (Fig. 4j) was shown to have a larger error,
evident by the presence of more cells having either large negative bias
(i.e., red) or large positive bias (i.e., blue), than the other algorithms
(Fig. 4a, d, g). The r2 summaries revealed that all four algorithms had
‘hot spots’ of relatively low r2 in the early and late parts of the time
series for the three visible bands, evident by the lighter coloured areas
centred around DSSD 040 and 184 for B1–B3 (Fig. 4b, e, h, k). GEIFM
and ESTARFM had a much lower RMSD when averaged over the
whole of Coleambally, and according to that error metric, ESTARFM
would be considered most preferred, evident by the lowest errors
(i.e., lightest colours) over the whole block, particularly for B4, B5, and
B7 (Fig. 4i compared to Fig. 4c, f, and l).

Within the irrigated strata at Coleambally, the biases of GEIFM
and STARFM increased substantially when compared to those of
the whole study site (compare Fig. 5 to Fig. 4). The bias of ESTARFM
was slightly larger for the irrigated strata when compared to the
whole site (Fig. 5g compared to Fig. 4g). More red tones in the
ESTARFM irrigated bias summary revealed that ESTARFM tended
to underestimate reflectance in the irrigated area (Fig. 5g), whereas
more blue tones revealed, that over the whole study site reflectance
was more often overestimated by ESTARFM (Fig. 4g). The r2 blocks
showed lower correlations and the RMSDs were higher for all
four algorithms within the irrigated strata (Fig. 5 compared to
Fig. 4). The most obvious change was seen for the RMSD summaries
for ESTARFM, where over the whole study site RMSDs were much
lower (Fig. 4i) than for the irrigated strata (Fig. 5i). This verifies that
ESTARFM is more sensitive to spatial variability, as spatial variance
was dominant over the whole site across all times (Fig. 2a) whereas
spatial variance was not as dominant within the irrigated strata
(Fig. 2b).

The accuracy assessment at the whole Gwydir (Fig. 6) and that
of the inundated subset (Fig. 7) revealed similar patterns. A group
of low r2 values was evident through the central part of the time
series between DSSD 208–272 (Figs. 6b, e, h, k and 7b, e, h, k) when
both spatial and temporal variances were comparatively high (Fig. 2c,
d, g, h). It is also important to note, that during the flood (DSSD 256)

Observed data LIM ESTARFM STARFM GEIFM(a)

(b)

Fig. 3. Observed Landsat data and simulated Landsat-like images with the blending algorithm indicated above. Part (a), the top row, is Coleambally for 12 January 2002 (DSSD=104)
and part (b), the bottom row, is Gwydir for 12 December 2004 (DSSD=256). All images are presented as Landsat bands 5, 4, 3 displayed as RGB with the same stretch applied to
all images for each study site.
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STARFMhad the highest r2 (Figs. 6n and 7n) and lowest RMSDs (Figs. 6o
and 7o).

The expectationwhen comparing the advanced algorithms (STARFM
and ESTARFM) to the simple algorithms (LIM and GEIFM) is that the
advanced algorithms should have lower errors due to their increased
complexity. From an operational standpoint, then, there is interest
in defining when the extra complexity and associated computational
cost of the advanced algorithms are not required. As examples, at
Coleambally, STARFM and ESTARFM had a much larger bias than
GEIFM for DSSD 097 across all bands (Fig. 4a, d, g). Also at Coleambally,
LIM had a higher r2 than the other algorithms formost of the time series

for B4 (Figs. 4n and 5n) and an RMSD that was lower or approximately
equal to the other algorithms for DSSD 104 for all bands (Figs. 4o and
5o). These two examples showed that at a site where spatial variance
is by far the dominant factor andwhere there is a high temporal density
of imagery, even an algorithm as simple as LIM can outperform the
advanced algorithms, given the right conditions. Since most of the vari-
ances at Coleambally occurred at a finer spatial resolution than that
of MODIS (Fig. 2), there should be less difference between LIM and the
two industry standard algorithms at Coleambally than at Gwydir.

The percentage best algorithm area estimates for the entire sites
and for the subset areas (i.e., Coleambally irrigated strata and Gwydir

Fig. 4. Summary error and accuracy metrics for the whole Coleambally site. Parts (a) to (c) are bias, r2 and RMSD for the GEIFM algorithm, respectively. Parts (d) to (l) are the same
three statistics for the STARFM (d to f), ESTARFM (g to i) and LIM (j to l) algorithms, respectively. These 12 blocks are ordered by DSSD from left to right and by Landsat bands from
top to bottom. Part (m) illustrates a single scatter plot, with the relevant statistics highlighted by the bold square. Part (n) is a time series of r2 statistics for the four algorithms
illustrated in the horizontal rectangles (shown directly above in parts b, e, h and k) with the vertical grey lines indicating dates when cloud-free data are available. Part (o)
shows the band dependence of RSMD for the four algorithms illustrated in the vertical rectangles (shown directly above in parts c, f, i and l).
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inundated area) are shown in Fig. 8a–d. At Coleambally this land
cover stratification clearly highlighted the higher performance of
the advanced algorithms for the selected irrigated fields (compare
Fig. 8a and b). The advanced algorithms produced the lowest RMSD
for about 80% of the pixels in the irrigated strata (Fig. 8b), while
over the whole Coleambally this advantage was not seen (see
Fig. 8a where the combined advanced algorithms and the combined
simple algorithms are both ~50% of the area). At Gwydir, there was
little difference between the percentage best algorithms whether
considering the entire site (Fig. 8c) or only the inundated area
(Fig. 8d). As the dominant feature over the entire site and time series
was the flood, as discussed above, this result was expected. STARFM
outperformed ESTARFM for most bands with respect to percent area
having the lower RMSD (Fig. 8c–d). At Gwydir (both the whole site

and the inundated area) the advanced algorithms clearly outperformed
the simple algorithms. The percentage area, where the advanced algo-
rithms were better, ranged between 71% (i.e., B4 in Fig. 8c) and 84%
(i.e., B5 in Fig. 8d). Land cover explained the spatial pattern of which
blending algorithm was best, with little variation in spatial pattern
observed between bands for both sites (Emelyanova et al., 2012; their
Fig. 8). Several other spectrally dependent error analyses for both spe-
cific dates and summarising the entire datasets (both for whole sites
and the land cover strata) are provided in Emelyanova et al. (2012;
their Tables 5 and 6, respectively).

The overall Landsat and MODIS variances over the entire dataset
at each site was partitioned into spatial and temporal components
for each spectral band (i.e., at Coleambally the overall variance
was calculated using the entire image for the 17 dates and at Gwydir

Fig. 5. Summary error and accuracy metrics for the Coleambally irrigation strata; see Fig. 4 for a detailed description of sub-plots.
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using the entire image for the 14 dates), see Fig. 9a–d. In Fig. 9, sym-
bols are coloured by which algorithm between ESTARFM and
STARFM (or LIM and GEIFM) had the lowest RMSD, and symbols
differentiate study sites. Based on the lowest RMSD there was a
strong association by study site and algorithm (i.e., ESTARFM with
Coleambally and STARFM with Gwydir (Fig. 9a–b) or i.e., LIM with
Coleambally and GEIFM with Gwydir (Fig. 9c–d)). From Fig. 2a–b
and e–f, it was determined that the spatial and temporal variances
at Coleambally primarily occurred at a finer spatial resolution than
that of MODIS, essentially limiting the benefit from blending
Landsat with MODIS there. Because of this, it is expected that spatial
and temporal variances as ametric of algorithm performance should

have rather poor predictive power in this case. This is confirmed
by Fig. 9a–b, where ESTARFM had the lowest overall RMSD for all
spectral bands at Coleambally regardless of their spatial or temporal
variance.

At Gwydir the land cover dynamics occurred at a spatial resolution
observable with MODIS (Fig. 2). This means that the spatial and
temporal variances should be more useful for predicting algorithm
performance. This is corroborated using the Gwydir nearest temporal
neighbour spatial and temporal variances as calculated for Fig. 2d
and h for two selected time periods. At Gwydir there were two pe-
riods where the underlying spectral feature influenced both Landsat
and MODIS variances proportionately. These are shown in Fig. 9e–f

Fig. 6. Summary error and accuracy metrics for the whole Gwydir site; see Fig. 4 for a detailed description of sub-plots.
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for Landsat and MODIS variances, respectively. During these times
and for these spectral bands (i.e., Landsat B4 and B5 and the MODIS
equivalents), spatial and temporal variances have discriminating abil-
ity to predict which algorithm would simulate observed data better
between both ESTARFM and STARFM (Fig. 9e–f). The implication is
that when the land cover signal is strong enough and large enough
that Landsat and MODIS both observe the same variance dynamics,
then the spatial and temporal variances appear to have good predic-
tive power (Fig. 9e–f). This assessment was performed to summarise
our two sites in a manner useful for placing our results and those of
future studies into context, and forms the basis of our framework
for blending algorithm selection (discussed below).

Computing cost was evaluated by recording the time required
to simulate a six band image at the Gwydir site. All four blending
algorithms were run on a PC with an Intel(R) Core(TM) i7-2760M
processor (2.4 GHz, 6 MB Cache) with Turbo Boost Technology and
4 GB 1333 MHz DDR3 SD RAM. No other applications were run
during the testing and all data were stored and written to the local
disk to avoid network issues. STARFM required ~6 h (21,600 s) to sim-
ulate a Landsat-like six band image; ESTARFM needed around twice
as long (i.e., ~12 h or 45,000 s). Runtimes are dependent on the size
of the moving window for both algorithms and these tests use the
‘research code’ (i.e., without any code parallelisation/optimisation).
In comparison, the two simple algorithms, LIM and GEIFM, completed

Fig. 7. Summary error and accuracy metrics for the Gwydir inundation area; see Fig. 4 for a detailed description of sub-plots.
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the processing in less than 1 min (i.e., 25 s and 55 s, respectively). The
trade-off between computational costs and accuracy for operational
use, as a function of spatial heterogeneity and temporal dynamics, is
discussed below.

4. Discussion

To place our results in context we reviewed studies which used
STARFM and/or ESTARFM. Table 3 shows that since 2006, when
STARFM was first published, the number of case studies using it
has increased every year. STARFM is now widely used by the remote
sensing research community, and the number of applications using
ESTARFM has also grown since its publication; both algorithms have
been applied across the globe. Despite STARFM being developed to
simulate Landsat-like reflectances from L–M pairs, it has also been
successfully used to simulate thermal imagery (study 10) and re-
motely sensed based grids of actual evapotranspiration (studies 12
and 19). While spatial extents of the study areas varied from hun-
dreds to tens of thousands of square kilometres, temporal extents
were mostly comparatively short (i.e., from 2 to 8 months), although
for some studies much larger temporal extents were available: from
1 year up to 10 years (i.e., studies 4, 11, 13, 17, 19–22 and 24). One
L–M pair per month was rarely available for the short-term studies
and the number of L–M pairs per year did not exceed 8 for the
long-term studies. In contrast with the other studies–except for

study 22 which often used two Landsat images per month–those
conducted here (summarised as studies 23 and 24 in Table 3, respec-
tively) used 17 L–M pairs over 8 months (Coleambally) and 14 L–M
pairs over 12 months (Gwydir; see Table 2 for details). Moreover,
our Gwydir site (study 24) is the first time where blending algorithms
have been used in a highly temporally dynamic flooding and subse-
quent inundation environment.

Half of the studies applied STARFM and/or ESTARFM in landscapes
where forestry was the dominant land cover with various temporal
dynamics (studies 1, 4–6, 8–9, 11, 15, 18 and 21 in Table 3). Other
studies have been conducted where the primary land cover type in-
cluded woodland, agricultural, urban areas, patches of bare soil and
open water. Some sites (studies 17 and 18) contained dryland forest
with a moderately temporally dynamic understory. Even though pre-
vious studies encompass a range of land cover types, most performed
a whole image assessment. Just a few (i.e., studies 5, 20, and 21,
Table 3) presented specific land cover type accuracy assessment
and none reported dependence between accuracy and patch size.
We found a strong relationship between algorithm performance and
land cover type at both of our sites (Fig. 8). Here, the advanced algo-
rithms were considered the best models in a much higher percentage
of area within the irrigated strata at Coleambally when compared to
the entire study site (Fig. 8). Thus, land cover stratification provided
a different interpretation of results than would have been made if ac-
curacy was assessed without such stratification.

Fig. 8. Percent area for the six Landsat reflective bands with the smallest RMSD (i.e., greatest accuracy) for the four blending algorithms. Part (a) is Coleambally whole; (b) is
Coleambally irrigated strata; (c) is Gwydir whole; and (d) is the Gwydir inundated areas. The numbers in white are the area percentages for each algorithm, and to aid in interpre-
tation when comparing the two advanced algorithms (shown in red colours) with the two benchmarks (shown in blue colours) a white dashed line at 50% is overlaid.
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Before applying a computationally expensive blending algorithm
in a heterogeneous and/or temporal dynamic region, the use of com-
putationally cheaper and simpler algorithms should be considered.
This is the first study that compared advanced and benchmarking
algorithms. Such a comparison provided a critical context for accuracy
assessment, and without it, our interpretation of accuracy metrics
would have been less meaningful and potentially misguided. We

showed that very often, the simple algorithms had similar or lower
errors than one or both of the advanced algorithms (e.g., Fig. 4o),
with this effect varying across spectral, spatial, and temporal domains.

Zhu et al. (2010) tested STARFM and ESTARFM at two sites
(Table 3), which is the only other study besides ours to test both algo-
rithms. Their study was mainly represented by large forest areas with
geographically specific growing seasons and temporal dynamics. The
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Fig. 9. Analysis of temporal variance and spatial variances. Part (a) is both whole sites calculated using the whole Landsat data cube coloured by lower RMSD between STARFM and
ESTARFM; (b) as for (a), but with MODIS data; (c) as for (a), but coloured by lower RMSD between LIM and GEIFM; and (d) as for (b), but coloured by lower RMSD between LIM and
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but with MODIS data. Part (g) is a conceptual model for STARFM (S) and ESTARFM (E); and (h) is a conceptual model for LIM (L) and GEIFM (G). In parts (a) to (f) all internal sym-
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periods of monitoring for both sites were 5 months with only 4 L–M
pairs used for simulation. The area of the largest site was about
1300 km2. Zhu et al. (2010) concluded that ESTARFM outperformed
STARFMwhen applied to two heterogeneous landscapes by: (i) visual
assessment; (ii) comparing observed vs. simulated reflectances on
scatter plots; and (iii) calculating the mean difference andmean abso-
lute difference between observed and simulated images (see Table 3,
studies 8 and 9). Considering all the error metrics we reported
(Figs. 4–9), ESTARFM clearly outperformed STARFM at Coleambally,
while STARFM clearly outperformed ESTARFM at Gwydir. Because
the spatial and temporal variances of each site fundamentally influ-
ence blending algorithm performance, and on the basis of our results
we conclude that a universally best algorithm probably does not
exist. That is, although ESTARFM is arguably in many ways an ‘en-
hanced’ version of STARFM, it does not always perform better. In par-
ticular, STARFM had a lower RMSD at Gwydir during the flood (e.g.,
Figs. 7o and 9e–f). Our study demonstrated that consideration of the
spatial and temporal variances of imagery acquired for a site was
needed to ensure optimum blending algorithm selection.

The results were very different at our two sites, whichwe attributed
to both the effective patch size and the spatial and temporal variances
(Fig. 2 and Section 2.2). The dominance of spatial variance at
Coleambally reduced STARFM accuracy when compared to ESTARFM
due to specific algorithm assumptions (Fig. 4). We showed that most
of the variances at Coleambally occurred below the spatial resolution
of MODIS (Fig. 2a, b, e, f), which meant that the inclusion of MODIS
data could not greatly improve the blending accuracy. Since the
MODIS data are meant to improve the modelling of the temporal
dynamics, this particularly limited STARFM (compared to ESTARFM)
as the main algorithm design advantage of STARFM (over ESTARFM)
is its non-linear temporal assumption. The limited ability of MODIS
to observe variance at Coleambally also meant that there was less sep-
aration between the four algorithms at Coleambally than at Gwydir
(e.g., Fig. 3). This suggests that at siteswhereMODIS does not adequate-
ly sample the spatial variance, the extra effort of the more complicated
blending algorithms have diminishing returns. In the case of a highly
dense time series of L–M pairs (i.e., up to 3 a month) the simple algo-
rithms like GEIFM and LIM could be an appropriate choice. However,
theGEIFM-used global relationship between Landsat andMODIS should
be less relevant as the spatial extent of a site increases. Our two sites
were not very large, so the difference between GEIFM and STARFM or
ESTARFMmight not be as obvious as it would be if the sites were larger
(e.g., spatial extent of an entire Landsat scene).

It does not seem commonplace to question whether a computa-
tionally expensive blending algorithm provides benefit over a simple
one, but rather just presume that it does. Our results suggested that
whether a site can substantially benefit from the inclusion of MODIS
data can be determined by comparing the spatial and temporal vari-
ances through time at both Landsat and MODIS spatial resolutions
(Fig. 2). When variances from the MODIS spatial resolution are sub-
stantially less than that of the Landsat spatial resolution, MODIS will
likely not improve the simulation much (this should be confirmed
at other sites).

We found that the alternating dominance of spatial and temporal
variances at Gwydir across spectral bands made it a more challenging
test for the blending algorithms. When green vegetation amount was
maximal (DSSD 128), the NIR bands' spatial variance was dominant at
both Landsat and MODIS spatial resolutions, and ESTARFM was more
accurate than STARFM (Fig. 9e–f). During the flood (DSSD 256) the
temporal variance of the SWIR bands was dominant at both Landsat
and MODIS spatial resolutions (Fig. 2d and h) and STARFM was more
accurate than ESTARFM (Fig. 9e–f). This result fits well with known
weaknesses and strengths of these two algorithms (Gao et al., 2006;
Zhu et al., 2010).

To date, a gap in blending research is that there has been no common
metric to quantify the spatial and temporal dynamics of L–M pair time

series in order to assess the suitability of blending algorithms. Here,
we used the method of Sun et al. (2010) and determined that spatial
and temporal variances as a metric, while very useful, did not have
complete predictive power regarding algorithm performance. We
attributed this largely to the effective domain characteristics of each
site. However, if the actual temporal change really is linear and/or the
time interval between images is short enough (i.e., the temporal density
of images is high), then the single rate of change assumption would not
reduce the accuracy of ESTARFM output much. STARFM is expected to
outperform ESTARFM when temporal variance is relatively large and
observed at both Landsat and MODIS spatial resolutions. Our results in-
dicated that spatial and temporal variances were only relevant for
predicting algorithm performance between ESTARFM and STARFM
when Landsat and MODIS variances corresponded (Fig. 9e–f). Based
on this result, we propose the two conceptual models presented in
Fig. 9g–h where spatial and temporal variances might be used to
guide algorithm selection. As discussed above, the relationship pro-
posed in Fig. 9g–h will not hold under all situations. For example, if a
site is similar to Coleambally, then STARFM may never outperform
ESTARFM because the temporal dynamics modelled by MODIS are
negligible due to the patch size of the site, thus removing STARFM's
design advantage.

We encourage future comparisons of blending algorithms to:
(i) report their study sites' spatial and temporal variances in order to
put their results into a meaningful context; and (ii) further populate
the data-space of the plots presented in Fig. 9 to test the framework
we proposed. If spatial and temporal variances were reported for all
studies as part of a ‘site characterisation’ exercise, comparing studies as
in Table 3would be easier. In a similar vein to assessingdataset complex-
ity, currently there is no consistent manner of measuring spectrally de-
pendent accuracy of the simulated reflectances (see Table 3). If there
was an agreed standard used by the blending community this would
be advantageous. As results can be site specific, to eradicate this differ-
ence when assessing new blending algorithms, the two L–M pair data-
bases developed here are made freely available for further research.

5. Conclusion

We conclusively showed that ESTARFM did not always produce
lower errors than STARFM, and that the advanced algorithms did
not always produce lower errors than the simple algorithms, which
address our first objective. Land cover was shown to be strongly
associated with algorithm performance and was intricately linked
with site domain characteristics, spatial and temporal variances, and
spectral band. To address the second objective, we proposed a frame-
work for blending algorithm selection based on how the overall
variance is partitioned into the spatial and temporal components at
both Landsat and MODIS spatial resolutions. Our results indicated
that ESTARFM should, in general, be a superior blending algorithm for
sites and/or times and for those spectral bands where spatial variance
is dominant. Conversely, STARFM should generally be preferable when
a given spectral band is dominated by temporal variance. This relation-
ship was shown to not hold when the magnitudes of MODIS variances
were much less than those of Landsat. Comparing Landsat resolution
and MODIS resolution variances was suggested as a practical method
to determine if andwhenMODIS could addmuch value to a blending ex-
ercise. If most of the variances occur at a finer spatial resolution than
MODIS, then a researcher ormanagermay determine the site unsuitable
for blending Landsat and MODIS, or may decide that complicated and
computationally expensive blending algorithms should be replaced by
simpler and computationally cheaper algorithms.
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