Article

Volume 13, Number 12

18 May 2012

Q12740, doi:10.1029/2012GC004115
ISSN: 1525-2027

k. Geochemistry | j
*  Geophysics ;

Geosystems J

Published by AGU and the Geochemical Society

Estimation of significance levels and confidence intervals
for first-order reversal curve distributions

David Heslop and Andrew P. Roberts
Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia
(david. heslop@anu.edu.au)

[1] First-order reversal curve (FORC) distributions provide a means with which to describe a magnetic min-
eral assemblage in terms of coercivities and interaction fields. In recent years the use of experimentally
derived FORC distributions has increased dramatically and they are being placed in an increasingly quan-
titative interpretational framework. An outstanding issue for calculation and interpretation of FORC data
sets is the statistical significance that can be assigned to structures in experimentally determined distribu-
tions. Without this knowledge, the selection and characterization of structures that can be deemed interpret-
able within a FORC distribution is a subjective process. We demonstrate how FORC processing algorithms
can be adapted to provide a measure of statistical significance and a confidence interval for each point in a
FORC distribution. This information can guide measurement protocols and provides a more quantitative
framework for interpretation of FORC distributions.
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1. Introduction

[2] Since development of an efficient measurement
protocol [Pike et al., 1999], first-order reversal curve
(FORC) diagrams have become a popular hysteresis-
based method with which to characterize magnetic
mineral assemblages. FORC distributions provide a
means with which to estimate the distributions of
coercivities and interaction fields within a magnetic
particle system and, therefore, provide information

Copyright 2012 by the American Geophysical Union

on both mineralogical composition and domain state
[Roberts et al., 2000; Winklhofer and Zimanyi, 2006;
Muxworthy and Roberts, 2007].

[3] Recent studies have addressed several issues
concerned with both calculation and interpretation
of FORC distributions. Statistical analysis of mea-
sured magnetization data now allows estimation of
a FORC distribution with an optimized signal-
to-noise ratio [Heslop and Muxworthy, 2005;
Harrison and Feinberg, 2008]. An extended FORC
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Figure 1. An example of a FORC originating from the
reversal field, B,, and measured at various values of B,
as the field returns to positive saturation.

formalism has been developed so that undefined
regions of FORC distributions can be estimated via
imputation [Pike, 2003; Winklhofer et al., 2008].
Theoretical and experimental studies have produced
type FORC distributions for systems such as super-
paramagnetic, single domain and multidomain fer-
rimagnets as well as for interacting single domain
systems [e.g., Pike et al., 1999; Roberts et al., 2000;
Pike et al., 2001a, 2001b; Muxworthy et al., 2004;
Newell, 2005; Egli, 2006; Egli et al., 2010]. Artifi-
cial samples have been examined to understand the
expression of mixed magnetic mineral assemblages
and magnetostatic interactions in FORC distribu-
tions [Muxworthy et al., 2005; Carvallo et al.,
2006a; Krdsa et al., 2009, 2011]. Fitting paramet-
ric functions to profiles taken through FORC dis-
tributions has helped to elucidate the behavior of
complex systems and quantify the relative abun-
dance of different magnetic components within
natural mixing systems [Egli, 2006; Chen et al.,
2007; Yamazaki, 2009; Egli et al., 2010]. Finally,
the magnetic mineral assemblages contained within
a wide variety of geological, biological and extra-
terrestrial materials have been characterized using
the FORC method [Roberts et al., 2000; Pan et al.,
2005; Carvallo et al., 2006b; Roberts et al., 2006;
Acton et al., 2007a; Chen et al., 2007; Carvallo et al.,
2009; Yamazaki, 2009].

[4] In recent years, there has been an effort to place
FORC data into a more quantitative framework to
enable interpretation of subtle features of calculated
distributions [Newell, 2005; Egli, 2006; Winklhofer
and Zimanyi, 2006; Egli et al., 2010]. 1t is therefore
necessary to provide an objective assessment of the

fidelity of structures observed in experimental
FORC distributions. Without such information, the
decision as to which features of a FORC distribu-
tion are a real expression of the magnetic particle
system becomes a subjective decision.

[5] We demonstrate how FORC algorithms can
be adapted to provide measures of statistical
significance and confidence intervals for each point
in a calculated distribution. Significance levels can
be mapped across a FORC distribution to quantify
the structure of large-scale characteristic features,
for example, the field to which a central ridge pro-
duced by non-interacting single domain grains pro-
pagates [Egli et al., 2010]. When fitting parametric
functions to FORC data it is essential to consider the
uncertainty associated with the points in the
selected profile and thus the level of correspon-
dence that is required between the model and data
[Egli, 2006; Chen et al., 2007; Yamazaki, 2009;
Egli et al, 2010]. Confidence intervals can be
assigned to each point in a profile enabling a
realistic model to be formulated that takes into
account the uncertainty in the data. Finally, aver-
aging multiple FORC runs is considered to be an
effective means with which to increase the signal-
to-noise ratio of a FORC distribution [Egli et al.,
2010]. Significance levels and confidence inter-
vals can guide the decision of how many runs must
be made to produce an averaged FORC distribution
with sufficient fidelity for the task at hand. For
example, if the aim of the analysis is to produce
profiles that elucidate the nature of a mixed mag-
netic mineral assemblage, runs can be repeated
until the confidence intervals associated with the
profile are sufficiently narrow to allow construction
of a meaningful mixing model. We demonstrate our
approach with a number of examples.

2. Estimation of a FORC Distribution

[¢] Estimation of a FORC distribution is based on
measurement of a collection of FORCs. An indi-
vidual FORC is measured by first saturating a
sample in a positive magnetic field and then
decreasing the field to a pre-defined reversal field,
B,. From this reversal point, the field is once again
increased and the magnetization, M, is measured at
each applied field, B, (Figure 1). The magnetization
at any given point along a FORC is therefore a
function of both the reversal field and the applied
fields. A FORC diagram is constructed by mea-
suring a suite of FORCs across a range of B,
values, which yields a grid of magnetization data:
M(B,, By).
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[7] A FORC distribution is given by the mixed
second derivative of the magnetization data with
respect to B, and B, [Mayergoyz, 1986]:

2
(o) = —5 T B Be), )
where p is only well defined for B, > B, and is
displayed in a rotated {B,., B,} coordinate system
given by B. = (B, — Bp)/2 and B, = (B, + B)/2
[Pike et al., 1999]. When estimated directly from a
measured data set, p will usually have a low signal-
to-noise ratio, thereby hindering interpretation of
the FORC distribution. To overcome this issue,
Pike et al. [1999] employed a local second-order
polynomial surface that is fitted to a regular grid of
points surrounding a point of interest using ordi-
nary least squares (OLS). The polynomial surface
takes the form a;, + a»B, + a;B> + a4B), + asBs +
ae¢B,By; multiplication of the ag coefficient (associ-
ated with the mixed B,,B,, term) by —0.5 provides an
estimate of p. The size of the local grid is controlled
by a smoothing factor (SF), with larger values
yielding a smoother FORC distribution [Roberts
et al., 2000]. The optimal value of SF provides a
balance between removing noise from the FORC
distribution while ensuring that the structure of the
distribution is not distorted by excessive smoothing
[Heslop and Muxworthy, 2005; Harrison and
Feinberg, 2008]. The FORCIT software package
of Acton et al. [2007b] provides a full implementa-
tion of the Pike et al. [1999] approach.

[8] An alternative locally weighted polynomial
regression (LOESS) approach to estimate p was
presented by Harrison and Feinberg [2008]. While
Pike et al. [1999] used a regular grid of points,
Harrison and Feinberg [2008] selected points
around a location of interest on a nearest-neighbor
basis. A second-order polynomial surface is then
fitted to the selected points using weighted least
squares (WLS), where the weight of each point
decreases with increasing distance from the loca-
tion of interest. The approaches of Pike et al. [1999]
and Harrison and Feinberg [2008] are used rou-
tinely to estimate FORC distributions.

[9] Additional consideration has been given to the
measurement resolution required to identify spe-
cific features in a FORC distribution [Egli et al.,
2010] and methods to select an optimal value of
SF for a given data set [Heslop and Muxworthy,
2005; Harrison and Feinberg, 2008]. Little atten-
tion, however, has been given to the statistical sig-
nificance of features within a FORC distribution.
As interpretation of FORC distributions becomes

more quantitative, it is essential that subtle features
can be demonstrated to be statistically significant
and not simply an artifact of measurement noise or
the algorithm employed to estimate p. In this paper
we demonstrate how significance levels and confi-
dence intervals can be calculated for estimated
values of p from the approaches of Pike et al. [1999]
and Harrison and Feinberg [2008]. The signifi-
cance levels can be mapped in the {B,., B,} plane to
illustrate which parts of a calculated FORC distri-
bution are significantly non-zero, while the confi-
dence intervals provide crucial information when
profiles through a distribution are analyzed.

3. Estimating p(B,, B;) and Its
Significance Level

[10] We consider the regression problem of fitting a
second-order polynomial surface to a collection of
M(B,, Bp) points using the OLS approach of Pike
et al. [1999] and WLS approach of Harrison and
Feinberg [2008]. The initial step in both techni-
ques is to select n points around a location of interest
inthe {B,, B,} plane (where n is a function of SF). A
design matrix, X, is then constructed to contain the
regressors, with each row of the matrix containing a
constant and field terms ([1, B,, B2, By, Bj, B.B,])
for one of the n selected points. The magnetization
values of the n selected points are then placed in the
column vector, y. Using matrix notation, the mag-
netization values are related to the design matrix by
the linear model:

y=Xa+te, 2

where a is a vector containing the coefficients a; to
a¢ and e is a n-by-1 vector of errors. An estimate of
the vector of regression coefficients, a, then pro-
vides an estimate of p(B,, B) from a¢. Because ag is
only an estimate of the true value of a¢ and thus of
p(B,, Bp), it is essential to examine the result sta-
tistically. Specifically, this requires calculation of a
p-value for the null hypothesis that a5 = 0 and thus
that p(B,, By) = 0. To test the null hypothesis, an
estimate of the error on a¢ must be made.

[11] It is important to consider the ability of a
local second-order polynomial surface to represent
the FORC function of a collection of sampled
points. Generally such a trend-surface should
perform well in most regions of the FORC dia-
gram providing that data have been collected at
sufficient resolution. In such regions the e term in
the linear model (equation (2)) should correspond
to the measurement errors. The central ridge of a
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FORC distribution (produced by noninteracting
single domain particles) is a more complicated
case. Because the ridge results from a discontin-
uous FORC function, its form cannot be repre-
sented using a second-order polynomial surface
[Egli et al., 2010]. Therefore part of the FORC
signal will be incorrectly assigned to e because
the fitted function provides an inadequate repre-
sentation of the true function. The implications of
this issue will be considered in more detail below.

[12] The linear model presented in equation (2) could
be extended easily to fit FORC diagrams using
higher-order polynomial functions with more flexi-
ble surfaces. This would simply require addition
of appropriate terms to the design matrix and a
corresponding adjustment to the degrees-of-freedom
in the statistical analysis presented below.

3.1. Ordinary Least Squares

[13] Using the OLS approach, a solution to
equation (2) is found by minimizing the sum of
squared errors:

ele=(y—Xa)' (y — Xa), (3)
which yields:
a=(X"X)"'X7y. (4)

The measured magnetizations of the selected
points, y, and their estimates from the regression
model, y, can be related by the so-called “hat”
matrix, H. If y = Hy then:

H=X(X"X)"'X". (5)

The mean squared error, MSE, of the fitted regres-
sion model can be found using the hat matrix:

y'(I-H)y

MSE =
n—6 '

(6)
where I is a n-by-n identity matrix. Once the MSE
has been found, the variance-covariance matrix of
the regression coefficients can be estimated:

3 = (X'X) 'MSE. (7)

The estimated standard error, SE, on ag is then given
by the square root of the sixth diagonal element of
3%;. To obtain a p-value with which to test the null
hypothesis (i.e., that ag = 0), the ratio of a4 to the SE
is compared to a Student’s z-distribution in a two-
sided manner (thus taking into consideration that ag

can be different from 0 in two ways; a¢ > 0 and
ag < 0). The p-value is given by:

p =2(1 - ta(|a6|/SE)), (8)

where ¢ represents the value of the Student’s #-
distribution with n-6 degrees of freedom at a
specified « level. The p-value gives the proba-
bility that the null hypothesis is true given the
observations. Thus, if p falls below a pre-defined «
significance level, the null hypothesis can be rejec-
ted and the alternative hypothesis (ag # 0) will be
accepted. Typically, o would be set at a value of
0.05, which implies that there is a 5% chance that
the test will incorrectly reject a true null hypothesis
(i.e., the test returns ag # 0 incorrectly).

[14] By applying the OLS method in the above
manner the measurement errors of the magnetiza-
tion in y are assumed to be uncorrelated random
variables with zero means and constant variance.
The assumption of errors with constant variance is
termed homoscedasticity and bias can be intro-

duced into 2@ and in turn into SE and p, if the
assumption is not met.

[15] Errors that do not have a constant variance are
termed heteroscedastic and require special consid-
eration. For a small local grid of points over which
the linear model (equation (2)) is fitted, errors in the
measurement of M and those related to the applied
field can be assumed to be effectively homosce-
dastic. Instrument drift during FORC measurement
will potentially induce different noise character-
istics in each of the curves included in a local grid
[Jackson and Solheid, 2010]. Such drift related
errors must be considered to be heteroscedastic.

[16] A heteroscedasticity-consistent standard error
(HCSE) estimator is adopted, which should allow
robust inferences to be drawn even if the assump-
tion of homoscedasticity is violated. The HC3
estimator [MacKinnon and White, 1985] provides a
heteroscedasticity robust estimator of 3;:

2
HC3 = (X7X) ™' X" diag [(1 eih )2] x(xX'x)", (9
where e =y — Hy and /;; are the diagonal elements
of H. Once the HC3 estimate of X; is made,
equation (8) can be solved to obtain p. Although a
variety of HCSE estimators exist, empirical inves-
tigations demonstrate that HC3 performs well when
using z-tests to assess regression coefficients in both
homoscedastic and heteroscedastic cases [Long and
Ervin, 2000].
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Homoscedastic errors

Heteroscedastic errors

Figure 2. Examples of (left) homoscedastic and (right) heteroscedastic errors used to test for bias in the regression
analysis (units of the field grids are arbitrary). The homoscedastic errors are drawn from a normal distribution defined
by N(0, 1) and are thus independent of the applied field. The heteroscedastic errors are drawn from normal distribu-
tions, the variance of which increases as a linear function of B,. The spatial correlation of the errors in the latter case
violates the assumptions of the least squares approach and a heteroscedastic-consistent method must be adopted.

3.1.1. Testing for Bias in OLS

[17] To test the OLS approach outlined above, a
numerical experiment was performed that mimicked
the calculation of a FORC distribution. A regular
11 x 11 grid of points in the interval [—5, 5] was
constructed to simulate calculation of p(0, 0) with
SF = 5. The true magnetization value of each point
on the grid was set to zero, therefore it is known
that the second-order polynomial surface defined
by the error free magnetizations is given by
a; = =ae= 0. Random numbers were then added
to the magnetizations to simulate measurement
noise. These random numbers took two forms to
investigate the homoscedastic and heteroscedastic
scenarios, respectively.

[18] In the homoscedastic case, random numbers
were drawn from a normal distribution with a mean
of 0 and a variance of 1, i.e., N'(0, 1) (Figure 2). To
represent heteroscedastic errors a simple model of
instrument drift was developed. It was assumed that
drift within the segment of any given FORC
included in a local grid is negligible, but the influ-
ence of drift between the different FORCs is
important. To represent this effect the variance of
the errors associated with each FORC was
increased linearly between 0.01 and 1 as a function
of B, (Figure 2). Regression coefficients were
estimated for both the homoscedastic and hetero-
scedastic cases and their corresponding p-values
for the null hypothesis (ag = 0) were determined.
This procedure was repeated for 10* realizations

and the resulting distributions of p examined
(Figure 3).

[19] If the assumptions of OLS are met then the
observed p-values should be distributed uniformly
in the interval [0, 1], therefore their empirical
cumulative distribution function, F(p), will follow
a line of unity between 0 and 1. In the case of the
homoscedastic errors, both the traditional OLS
and the HCSE methods perform well. Bias in the
p-values, estimated simply as F(p) — F(p), where
F(p) is a uniform cumulative distribution func-
tion, is small. In contrast, the heteroscedastic case
has a positive bias in p based on calculation of
3 using equation (7). Such a bias would lead to
the null hypothesis a¢ = 0 being rejected too
infrequently. The use of HC3 (equation (9)) yields
a negligible bias compared to the traditional esti-
mate (equation (7)). The good performance of HC3
regardless of the presence or absence of hetero-
scedasticity supports the recommendation of Long
and Ervin [2000] that HCSE estimators should be
used in OLS unless homoscedasticity can be
guaranteed.

3.2. Weighted Least Squares

[20] In the method of Harrison and Feinberg
[2008], a vector of associated weights, w, form a
n-by-n diagonal matrix, W = diag(w) (i.e., all the
elements of W are zero except along the main
diagonal, which is filled with the values of w). The
weight, w;, of a point, i, is given by the tri-cube
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Figure 3. Empirical cumulative distributions, F, of the p-values calculated using an OLS approach under the
assumption of homoscedastic errors (black) and using the heteroscedasticity-consistent estimator, HC3 (gray). The
bias of each approach can be estimated by finding the difference between the empirical distribution, F'(p), and a uni-
form distribution, F(p). The heteroscedasticity-consistent estimator performs well in both the homoscedastic and het-
eroscedasticity cases, whereas the standard OLS approach has a bias in the presence of heteroscedasticity.

function [Cleveland, 1988; Harrison and Feinberg,

2008]:
3
Wi — 17{7”?_?"” r (10)
’ maxlF — 7] )

where 7 defines the position in the {B,, B,} plane
for which p is to be estimated, 7; defines the position
of the point for which the weight is being calculated
and max||[7 — 7;||is the maximum Euclidean dis-
tance between 7 and the points selected in the
local grid. In the WLS approach, a solution to
equation (2) is found by minimizing the weighted
sum of squared errors:

" We = (y — Xa)" W(y — Xa). (11)

The weighted least squares estimate, a, of the
vector a is given by:

a= (X"wx)"' X" wy, (12)
and the corresponding hat matrix is:

H=X(X"WX)"'X"w. (13)

In WLS the mean squared error is:

yI(W— WH)y

MSE =
n—=6 ’

(14)
and the estimate of the variance-covariance matrix,
34, 1s given by:

3 = (X" WX) 'MSE. (15)

The standard error on the WLS estimate of ag is
given by the square root of the sixth element on
the main diagonal of 33; and in turn the p-value of
the null hypothesis (i.e., ag = 0), can be obtained
from equation (8).

[21] As with the OLS approach discussed in
section 3.1, the statistics associated with the WLS
method may be biased if certain assumptions are
not met. In the formulation of the WLS method,
the estimate a will only be the best linear unbi-
ased estimator (BLUE) when the weight of each
point is equal to the reciprocal of the variance of
the point (i.e., the reciprocal of the variance of
the error on the magnetization). The tri-cube
based weights do not meet this requirement and,
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Figure 4. Empirical cumulative distributions, ¥, of the p-values calculated using a WLS approach under the assump-
tion of homoscedastic errors (black) and using the heteroscedasticity-consistent estimator, HC3y, (gray). The hetero-
scedasticity-consistent estimator performs well in both the homoscedastic and heteroscedasticity cases because of
the heteroscedasticity introduced by the tri-cube weighting scheme. We conclude that it is advisable to use the
HC3y estimator (equation (16)) when performing weighted least squares to calculate FORC distributions.

given their spatial autocorrelation, will induce
heteroscedasticity in the estimated error terms. As
with the OLS approach a HCSE can be adopted,
this time in a weighted form:

w,-el?

(1 — hy;)?

} xX(x"wx)™".

HC3y = (X" WX) ™' X" W diag [

(16)
3.2.1. Testing for Bias in WLS

[22] The numerical experiment involving homo-
scedastic and heteroscedastic errors (section 3.1.1)
was repeated for the outlined WLS procedure with
sample weights calculated with respect to the center
of the grid according to equation (10). In the case of
homoscedastic errors, the WLS approach using the
calculation of 3; in equation (15) produces a slight
bias in p (Figure 4). As discussed above this bias
results from use of the tri-cube based weights that
tend to induce heteroscedasticity, which means that
ae 1s not BLUE. In contrast, use of HC3, reduces
much of the bias.

[23] For the heteroscedastic case, the values of p
obtained from 3; in equation (15) exhibit a similar
bias to that observed for homoscedastic errors.
This correspondence is a result of the weighting
procedure employed in the WLS approach. The
extremes of the grid where the relative differences
in the drift are greatest are down-weighted, while
the center of the grid, which exhibits smaller dif-
ferences in the drift, are up-weighted. For the case
of heteroscedasticity the bias in the traditional
WLS approach can again be largely suppressed
using HC3y. As with the analysis of OLS and
HC3, it is advisable to employ HC3 in both the
homoscedastic and heteroscedastic cases when
performing WLS to estimate FORC distributions.

4. Statistically Significant Regions
in FORC Distributions

[24] If the p-value for each point in a FORC distri-
bution has been determined it becomes possible to
map the statistically significant regions of p in the
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Figure 5. (top) FORC distribution calculated from an
analytical Preisach model [from Pike et al., 1999] with
a simulated noise contribution. The thick contour line
indicates the regions of the FORC distribution that are
significant at the 0.05 level once the Bonferroni correc-
tion is taken into consideration. (bottom) The gray band
represents the 95% confidence interval for the p values
along B, = 0 mT for the FORC distribution in Figure 5
(top). The black line represents the p values estimated
from the data.

{B., B,} plane. Such regions should correspond to
larger-scale features of the distribution and signifi-
cance levels can be used to show their form and
extent in terms of both B, and B,,.

[25] Once a FORC distribution is calculated on the
basis of a predetermined optimal SF, locations in
the {B,, B,} plane where p < « can be identified.
As discussed in section 3.1, the value of « implies
that there is a probability of « that the test will
incorrectly reject a true null hypothesis (i.e., the test
incorrectly returns ag # 0). Calculation of a FORC
distribution requires multiple tests to be performed,
one for each considered location in the {B,, By}
plane and, by definition, a fraction of « of those
tests will incorrectly reject the null hypothesis. This
will result in a FORC distribution where the num-
ber of locations specified as ag # 0 is artificially
high. To control the error-rate during the calcula-
tion, the so-called Bonferroni correction is adopted
[Miller, 1981]. The correction states that if a

collection of g tests is to be made on a data set, then
the significance level for each individual test should
be set at a/g rather than a. With the Bonferroni
correction in place, the significance level for the
FORC distribution as a whole, rather than at any
single location, should be a. Therefore, the region
of the FORC distribution that is statistically sig-
nificant at the « level can be identified by mapping
p < a/g in the {B,, B,} plane.

[26] Insection 3 the inability of a local second-order
polynomial surface to fit the central ridge of a
FORC function was considered. If part of the FORC
signal is assigned incorrectly to the model errors, the
MSE will increase. In turn, the corresponding
p-value will be elevated, increasing the probability
that the null hypothesis (ag = 0) will be accepted
incorrectly. This implies that significance levels
around a central ridge must be considered carefully.
However, the high values of p associated with cen-
tral ridges suggest that the regions will remain sta-
tistically significant even when the errors are
artificially high. An example of this is shown below.

[27] Finally, it is important to note that the signifi-
cant regions of a FORC distribution will depend on
the SF employed in the calculation of p. It would
therefore be inappropriate to tune the SF to ensure
that certain parts of the distribution become signif-
icant. Instead, an optimal SF should be preselected
on the basis of an independent method [Heslop and
Muxworthy, 2005; Harrison and Feinberg, 2008].

4.1. Calculation of Confidence Intervals

[28] Recent studies have shown that fitting para-
metric functions to profiles taken through FORC
distributions, for example, along the line B, = 0,
provides information concerning the composition
and grain size of the magnetic mineral assemblage
[Egli, 2006; Chen et al., 2007; Egli et al., 2010;
Roberts et al., 2011]. By providing confidence
intervals on such profiles robust assessment of the
level of mismatch between the data and fitted
model can be achieved. For example, if confidence
intervals on a profile are large, it may demonstrate
that a close data-model match cannot be expected
and inferences drawn from the modeling results
should be treated with caution.

[29] Once the SE on a¢ has been found, it is a
simple task to calculate a 100(1 — «)% confidence
interval that incorporates the Bonferroni correction
for the estimated value of p:

p=—0.5(ag +t ' (o/2g)SE), (17)
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Figure 6. (top) FORC distribution (SF = 3) for the mag-
netite-bearing plagioclase sample reported by Harrison
and Feinberg [2008]. The thick contour line indicates
the regions of the FORC distribution that are significant
at the 0.05 level once the Bonferroni correction is taken
into consideration. (bottom) The gray band represents
the 95% confidence interval for p values along B, =
0 mT for the FORC distribution in Figure 6 (top). The
black line represents the p values estimated from the data.

where g is the number of points included in the
profile and 7' is the inverse of the Student’s
t-distribution with n — 6 degrees of freedom.

[30] As with the discussion of significance levels it
is important to consider the behavior of confidence
intervals around a central ridge. Because a second-
order polynomial surface is inadequate to represent
the central ridge, artificially high errors will
increase the confidence interval associated with a
given point. In this way the calculated confidence
interval is a conservative estimate of the true con-
fidence interval.

5. Examples

[31] To demonstrate our approach, a number of brief
examples are provided below. All FORC distribu-
tions were calculated using the LOESS approach of
Harrison and Feinberg [2008], which allows esti-
mation to B. = 0 without employing the extended
FORC protocol of Pike [2003]. Additionally,

standard errors on the calculated values of a¢ were
estimated using the weighted HCSE approach to
limit the influence of heteroscedasticity.

5.1. A Basic Preisach Model

[321 A smooth FORC diagram was constructed
analytically using a basic Preisach model [Preisach,
1935] as employed by Pike et al. [1999]. The dia-
gram was constructed from hysterons with a normal
distribution of local interaction fields with zero
mean and a standard deviation of 9 mT and a log-
normal distribution of switching fields with a mean
of log(60 mT) and a standard deviation of 0.3. To
simulate measurement noise, random numbers were

=
£
m:!
0 20 40 60 80 100 120 140
B [mT]
Cc
1 4
3
of
- 05
Q
0 . . . . . .
0 20 40 60 80 100 120 140
B [mT]
Cc
1
3
oF
< 05
Q

-40 -20 0 20 40

B, [mT]
Figure 7. (top) FORC distribution (SF = 5) for a grei-
gite-bearing sediment from the Crostolo River, Italy
[Tric et al., 1991; Roberts et al., 2005]. The strong mag-
netostatic interactions within the magnetic assemblage
produce the broad vertical spread of the FORC distribu-
tion, which has p values that are significant at the 0.05
level almost throughout the entire diagram. (middle)
The gray band represents the 95% confidence interval
for p along B, = —4 mT for the FORC distribution in
Figure 7 (top). The black line represents the p values
estimated from the data. (bottom) A vertical profile of
the magnetic interaction field distribution through the
FORC distribution at B, = 65 mT.
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Figure 8. (a) FORC distribution (SF = 4) for a magnetically weak sample from marine sediment core MD002361.
The thick contour line indicates the regions of the FORC distribution that are significant at the 0.05 level once the Bon-
ferroni correction is taken into consideration. (b) The gray band represents the 95% confidence interval for p values
along B, = 0 mT for the FORC distribution in Figure 8a. At high values of B, the large confidence intervals demon-
strate that p is poorly defined and the apparent central ridge structure cannot be quantified properly. (c) FORC distri-
bution (SF = 4) obtained by averaging nine repeat measurement runs of the same sample. The FORC distribution is
defined more clearly with the statistically significant region extending further in both the horizontal and vertical direc-

tions. (d) Averaging nine FORC runs reduces the confidence interval along the B, =

structure remains significant until B. = 95 mT.

drawn from the normal distribution A/ (0, 10~*) and
were added to the magnetization values. The cal-
culated FORC distribution (SF = 2) is shown in
Figure 5 with a contour indicating the a = 0.05
significance level. A profile through the FORC
distribution at B, = 0 mT is also shown in Figure 5
with the associated 95% confidence interval for
each estimated value of p. The lognormal distribu-
tion of switching fields used to construct the model
consistently lies within the 95% confidence interval
of the estimated p values along the profile.

5.2. Magnetite-Bearing Plagioclase

[33] In their description of the FORCinel algorithm,
Harrison and Feinberg [2008] gave an example of
a magnetite-bearing plagioclase sample with an
optimal SF of ~3. The calculated FORC distribu-
tion and « = 0.05 significance levels for this sample

0 mT profile and the central ridge

are shown in Figure 6. The a = 0.05 contour fol-
lows the main body of the FORC distribution and
demonstrates how far the central ridge propagates
along the B, axis. The profile of normalized p
values along B, = 0 mT has relatively wide 95%
confidence intervals. This implies that any unmix-
ing analysis based on fitting appropriate distribu-
tions to the profile should be performed with
caution while taking uncertainty in the p values into
account.

5.3. Crostolo River Section, Italy

[34] Sediments from the Crostolo River section
contain a magnetic assemblage that is dominated
by authigenic greigite [Tric et al., 1991; Roberts
et al, 2005], with strong magnetic interactions
(Figure 7). When calculated with an optimal SF
of 5, the interacting SD greigite particles produce
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a large vertical spread in the FORC distribution;
even away from the main body of the distribu-
tion values remain significant at the 0.05 level
(Figure 7). Profiles through the distribution along
B, = —4 mT and B, = 65 mT reveal the extent
of the distribution, the magnitude of the magnetic
interactions, and the relatively small confidence
intervals associated with the individual values
of p.

5.4. Marine Sediments, Eastern Indian
Ocean

[35] A sample of carbonate-rich sediment was ana-
lyzed from core MD002361, which was recovered
offshore of northwestern Australia at a water depth
of ~1800 m [Spooner et al., 2011]. An age model
based on correlation of §'%0 to a pre-existing orbital
chronology suggests that the studied sediment sam-
ple originates from marine isotope stage 8 [Spooner
et al., 2011]. A FORC distribution for this sample
(Figure 8a, SF = 4) has vertical spreading indicative
of pseudosingle domain and interacting single
domain particles [Roberts et al., 2000; Muxworthy
and Dunlop, 2002] and a central ridge that may
correspond to noninteracting single domain particles
[Roberts et al., 2000; Egli et al., 2010]. The rela-
tively large noise contribution means that the appar-
ent ridge structure is poorly defined at B, values
above ~60 mT, but p remains significant until B, =
80 mT (Figure 8a). A profile along B, = 0 mT con-
firms this observation, with large uncertainties indi-
cating that p is poorly defined at higher values of B,
(Figure 8b). Additionally, a small significant region
at B. = 90 mT indicates that, if a ridge is present, it
may extend further across the diagram than sug-
gested by the main significant region.

[36] As recommended by Egli et al. [2010], repeat
measurements of the sediment sample were under-
taken to determine if the high field region of the
central ridge structure was being suppressed by
noise. After averaging nine measurement runs,
values are clearly significant at higher B. values
and the high field part of the ridge has been
recovered from the noise (Figure 8c). The averaged
FORC distribution and the confidence intervals on
the corresponding B, = 0 mT profile (Figure 8d)
indicate that the central ridge is statistically signif-
icant until B, = 95 mT, which is in good agreement
with earlier work [Egli et al., 2010]. This example
demonstrates that parts of a FORC distribution can
be rendered ambiguous by large noise contribu-
tions. Determination of statistical significance and
confidence intervals can not only identify these

regions, but also reveal if the regions become sig-
nificant after repeat measurement.

6. Conclusions

[37] First-order reversal curve distributions have
become a popular tool with which to characterize
complex magnetic mineral assemblages. We have
presented simple extensions to existing FORC pro-
cessing algorithms whereby significance levels and
confidence intervals can be estimated for experi-
mentally and numerically determined distributions.
This information aids interpretation and quantifica-
tion of FORC distributions because it enables
assessment of whether given features are statistically
significant. Additionally, where parametric functions
are to be fitted to profiles through FORC distribu-
tions, calculation of confidence intervals quantifies
the level of uncertainty in the distribution and there-
fore the level of uncertainty that can be tolerated by
any attempt to fit components to such distributions.
We recommend use of a heteroscedasticity-consis-
tent standard error estimator when calculating FORC
distributions. Such estimators remove the necessity
for an assumption of errors with constant variance
that, if violated, can introduce large biases into cal-
culated significance levels.
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