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Abstract— We discuss and analyze generalized linear dy-
namic factor models. These models have been developed re-
cently and they are used to model high dimensional time series
in order to overcome the “curse of dimensionality”. The basic
idea in factor models is to seperate “comovement” between
the variables (caused by a relatively small number of factors)
from individual (idiosyncratic) variation. Here factor analysis
is considered in a time series context, where concentration of
information is performed in the cross-sectional and in the time
dimension. The models considered are linear dynamic in nature
and stationarity of the processes is assumed. As opposed to the
classical case, in the generalized case considered here, a certain
form of weak dependence of the noise components is permitted.
In the core part of the paper, we are concerned with structure
theory, namely with realizing the singular rational spectral
density of the latent variables by a linear system. Special
emphasis ! is laid on the autoregressive case, which is generic
in our setting. These autoregressions may have a singular
innovation variance, which may cause multiple solutions for
the Yule Walker equations. Finally, identification procedures,
using a suitable denoising procedure and estimators suggested
by our structure theory, are discussed.

I. INTRODUCTION

The main reasons for (joint or conditional) modelling of
multivariate time series are:
• To model the relations between time series
• To extract information common to all single time series
• Forecasting using imformation from the past contained

in several time series
As is well known, traditional multivariate time series analysis
is plagued by the so called “curse of dimensionality”, i.e.
by the fact that the dimension of the parameter-space may
be large in relation to sample size, T say. For instance in
multivariate “unstructured” (i.e. no extra restrictions being
imposed) AR modelling the dimension of the parameter
space is N2p+N(N+1)/2 (where the first part corresponds
to the system parameters and the second part to the noise
parameters), with N the cross-sectional dimension (i.e. the
number of single time series) and p the maximum lag.
Thus the dimension of the parameter space grows with N2,
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whereas the number of data points, NT , is linear in N . In a
certain sense, this is not surprising in a situation where the
relation of every single time series with all other time series
has to be modelled. On the other hand, for high dimensional
time series and relatively small sample size, alternative
modelling approaches ! are needed. As an example think
of a macro-economic model of the EU-15 countries, which
has to be estimated from quarterly data. In such alternative
approaches, the necessary dimension-reduction of parameter-
spaces is performed by a-priori information or, data driven,
by model selection. Examples for such approaches are:
• “structural modelling”, or to use a term from systems

engineering, “grey box modelling”, where economic
or physical a-priori information, e.g. in form of zero-
restrictions on parameters, is used.

• Cointegration, where for non-stationary time series the
(static) long run equilibrium relation is extracted.

• Graphical time series modelling, where e.g. sparsity of
the inverse of the covariance matrix or of the spectral
density is used.

Here we consider the approach via factor models. Factor
models have been introduced more than a hundred years ago
in psychometrics, in order to extract intelligence factors from
measured test items ([6], [26]). The basic idea behind factor
models is to separate comovement between the variables
from individual (“idiosyncratic”) fluctuations: Let yNt denote
the vector of observations, then

yNt = ŷNt + uNt (1)

where ŷNt are the so called latent variables and uNt is the
idiosyncratic noise. The comovement in the latent variables
can be expressed by modelling these variables as a function
of lower dimensional factors.

Factor analysis has been applied to many different
fields like psychology, economics, chemistry or signal
processing and has undergone a substantial development
during the last hundred years, leading to many different
kinds of factor models.

The original factor models were not used in a time
series context, time series factor models have been proposed
during the last 50 years ([5], [11], [15], [22], [23]). Whereas,
in a certain sense, in original factor models, the aim was to
condense information in cross-section, in time series factor
models information in concentrated in two dimensions,



namely in cross-section and in time dimension.

Another important development was the introduction of
generalized factor models, first in a static context by [7] and
[8]. There the concept of uncorrelated noise components
(strict idiosyncracy) was generalized by allowing for a
certain form of weak dependence (weak idiosyncracy).

Combining linear dynamic factor models with the concept
of weak dependence lead to the development of generalized
dynamic factor models (GDFM’s), which are the topic
of this semiplenary lecture. The theory of GDFM’s has
been developed during the last decade, in particular in the
following papers: [12], [14], [13], [24], [25]. GDFM’s are
now used, in particular in econometrics, for forecasting
and analysis. A number of reserve banks, for instance the
European Central Bank, base forecasts on such models.

The rest of the talk is organized as follows: In section
2 the model class of GDFM’s is described, section 3 deals
with structure theory, in particular with the realization of
the singular rational spectral density of the latent variables
by linear systems. In section 4 we treat the special case
of autoregressive systems, which are generic in our context.
Yule Walker equations are analyzed. In section 5 we discuss
the use of structure theory for actual data dricen modelling.

II. THE MODEL CLASS

We commence from equation (1), where t ∈ Z denotes
discrete time and assume
• (ŷNt ) and (uNt ) are wide sense stationary with abso-

lutely summable covariances
• EŷNt = EuNt = 0
• EŷNt uNs

′ = 0 ∀s, t
Thus the spectral densities exist, and, using an evident
notation, we get:

fNy (λ) = fNŷ (λ) + fNu (λ), λ ∈ [−π, π] (2)

Motivated by the fact, that we consider cases, where both T
and N are large, the asymptotic analysis for assessing the
quality of estimation and inference procedures, is performed
for T → ∞ and N → ∞. Then the underlying stochastic
process is doubly indexed

(yit|i ∈ N, t ∈ Z) (3)

where yit is the i-th element of the observation vector yNt
for i ≤ N .
Now we list the “core assumptions” defining GDFM’s:

Assumption 1: There is an N0 such that for all N ≥ N0,
fNŷ is a rational spectral density with constant rank q < N
for all λ ∈ [−π, π].

Assumption 2: The double indexed sequence (3) corre-
sponds to a nested sequence of models in the sense that
(using an evident notation) ŷit and uit do not depend on N
for i ≤ N .

Assumption 3: The rank q of fNŷ is independent of N
(N ≥ some N0).

Assumption 4: The dimension, n say, of a minimal state
space realization of a stable and miniphase spectral factor of
fNŷ is independent of N (N ≥ some N0).

Let ωNu,r denote the r-th largest eigenvalue of fNu .

Assumption 5: (weak dependence): ωNu,1 is uniformly
bounded in λ and N .

Assumption 6: (strong dependence): The first q (i.e. the
q largest) eigenvalues of fNŷ diverge to infinity, for all
frequencies, as N →∞.

From now on, unless the contrary is stated explicitly, we will
drop the superindex N .
Let us make a few comments on the core assumptions above.
By assumption 1, we can write

wfy = 0 (4)

where w is a (N − q) × N polynomial matrix whose rows
form a basis for the left kernel of fy . Equation (4) is
equivalent to

w(z)ŷt = 0 (5)

where in this paper we use z for both, for a complex
variable and for the backward shift (on the integers Z).
After eventually reordering the elements in ŷt, such that in
w = (w1, w2) the square matrix w1 is non-singular, we may
write (5) as:

w1ŷ0,t = −w2ŷI,t (6)

where ŷt = (ŷ′0,t, ŷ
′
I,t)
′, (if det(w1) 6= 0 , |z| = 1) ŷ0,t and

ŷI,t may be interpreted as outputs and inputs respectively.
Equations (6) and (1) constitute an errors-in-variables model
(see [18] and [23]), because here also the inputs may be
subject to noise.

As opposed to dynamic factor models with strictly idiosyn-
cratic noise, GDFM’s are identifiable only for N → ∞,
in the sense that the elements of fNŷ and ŷNt are uniquely
determined from ŷNt for N → ∞ ([8], [14]). For instance,
the static factors may be obtained from the yNt by the
following Hilbert space construction in the space of all
square integrable random variables (Note: Once static factors
are given, the latent variables are easily obtained in a unique
way): Choose an arbitrary basis for the space of all limits of
linear combinations of the form

N∑
i=1

aNi yi,t where lim
N→∞

N∑
i=1

aNi
2 = 0

Dynamic factors are obtained analogously [14]. Such a
procedure leads to “averageing out” the noise from the
observations.

A particular way to approximate fŷ is to use dynamic
principal components analysis (PCA). Note however that
PCA gives dimension reduction in cross section only and
does not give a nested sequence of models. In addition



in dynamic PCA problems of non-causality may arise ([13]).

As has been shown in [14], GDFM’s can be characterized
by properties of fy .

The following simple example shows the meaning and the
consequences of weak and strong dependence respectively:
Let

yt =

 1
...
1

 εt

︸ ︷︷ ︸
ŷt

+

 u1t

...
uNt


︸ ︷︷ ︸

ut

(7)

where (εt) is one-dimensional white noise with Eε2t = 2π,
and (ut) is white noise with Eutu′t = 2πIN . Then (2) is of
the form

fy =

 1 · · · 1
... · · ·

...
1 · · · 1

+ I

Then

N−1
N∑
i=1

yi,t = εt +N−1
N∑
i=1

ui,t︸ ︷︷ ︸
→0 for N→∞

III. A STRUCTURE THEORY OF GDFM’S

Our final aim is to identify the linear system underlying the
latent variables ŷt from the observations yt, t = 1, . . . , T .
In a first step, at least, we are not interested in modelling
the noise (ut). In the structure theory described in this
and the next section, an idealized setting is considered, as
we commence from the population second moments of the
of the latent varibles, rather than from the sample second
moments of the observations. Nevertheless this structure
theory provides valuable insights as well as an identifictaion
algorithm.

Thus we here commence from the rational singular
spectral density fŷ to obtain a linear system. We distinguish
two major steps, spectral factorization and realization of a
tall spectral factor.

A. Spectral Factorization and Wold-Decomposition

The following result has been given in [21], [16].
Theorem 1: Every N ×N rational spectral density fŷ of

constant rank q for all λ ∈ [−π, π] can be factorized as

fŷ(λ) = (2π)−1w(e−iλ)w(e−iλ)∗ (8)

where w(z), z ∈ C is an N × q real rational matrix of full
column rank which has no poles and zeros for |z| ≤ 1 and
where ∗ denotes conjugate transpose.

In addition, it is easy to show that w(z) is unique up to
postmultiplication by constant orthogonal matrices.

The spectral factors

w(z) =
∞∑
j=0

wjz
j , wj ∈ RN×q (9)

correspond to a causal linear finite dimensional system

ŷt =
∞∑
j=0

wjεt−j (10)

where the inputs (εt) are white noise with Eεtε′t = 2πIq .
By (10), (ŷt) is obtained by a linear dynamic transformation
from (εt) where N > q. For this reason, (εt) is called
a dynamic factor. In addition (εt) is a minimal dynamic
factor, since there is no other dynamic factor, expressing
(ŷt) by a linear dynamic system, of dimension less than
q. Clearly the minimal dynamic factors are not unique and
they need not to be white noise.

The Smith-McMillan form of w(z) is given by

w = udv (11)

where u and v are unimodular (i.e. polynomial with constant
nonzero determinant) and d is an N×q rational matrix whose
top q×q block is diagonal with diagonal elements ni

di
, where

di and ni are coprime, monic polynomials and di+1 divides
di and ni divides ni+1. All other elements of d are zero. The
matrix d is unique for given w and the (finite) zeros of w are
the finite zeros of the ni and the poles of w are the zeros of
the di. Note that w(z) has no poles and no zeros for |z| ≤ 1.

For N > q, w has no unique left inverse, not even a
unique causal left inverse. We define a particular left inverse
by

w− = v−1(d′d)−1d′u−1 (12)

As is easily seen, w− has no poles and no zeros for |z| ≤ 1.
As is also easily seen, for given w, the input εt in (10) is
uniquely determined from ŷt, ŷt−1, ... independently of the
particular choice of the causal left inverse by

εt = w−(z)ŷt (13)

Thus (10) corresponds to Wold-Decomposition (see e.g.
[17]), and the spaces spanned by {ŷis|i = 1, ..., N, s ≤ t}
and {εis|i = 1, ..., q, s ≤ t} respectively, in the Hilbert space
of square integrable random variables, coincide. In addition
(εt) can be chosen independently of N , from a certain N0

onwards.

B. State Space Realization

Every rational causal transfer function w can be realized
by a state space system, by an ARMA system (or a left matrix
fraction description) or by a right matrix fraction description
(MFD). Let us start with state space realizations of the form

xt+1 = Fxt +Gεt+1 (14)
ŷt = Hxt (15)



where xt is the n-dimensional state and F ∈ Rn×n, G ∈
Rn×q, H ∈ RN×n. We assume that the system is minimal,
stable, i.e.

|λmax(F )| < 1 (16)

(where λmax(F ) denotes an eigenvalue of maximum mod-
ulus) and mini-phase, i.e. the right side of (18) below has
no zeros for |z| ≤ 1. The transfer function for (14)–(15) is
given by

w(z) = H(I − Fz)−1G = HG+
∞∑
j=1

HF jGzj . (17)

As w(z) (which has rank q almost everywhere) has no poles
or zeros in |z| ≤ 1, w(0) = HG has rank q also. Since G
has q columns this means rkG = q. If (F,G,H) is minimal,
the poles of w(z) are the reciprocals of the eigenvalues of
F . Also, the transfer function w has a zero for some finite
z0 if and only if the matrix

M(z) =
(
I − Fz −G
H 0

)
(18)

has rank less than n+q at z0. Starting with the power series
expansion (9), the form (14)–(15) can be obtained by the
“Akaike-Kalman procedure” [1] from the equation

ŷt
ŷt+1|t
ŷt+2|t

...


︸ ︷︷ ︸

Ŷt

=


w0 w1 · · ·
w1 w2 · · ·
w2 w3 · · ·
...

...
. . .


︸ ︷︷ ︸

H

 εt
εt−1

...

 (19)

where ŷt+r|t denotes the (best linear least squares) predictor
of ŷt+r given the infinite past ŷt, ŷt−1, . . . . The matrix H
is called the (block) Hankel matrix of the transfer function.
As is well known, every basis for the (finite dimensional)
space spanned by the (one-dimensional) components of Ŷt
in the Hilbert space of all square integrable random variables,
defines a minimal state. Let S ∈ Rn×∞ denote the matrix
selecting the first components from Ŷt making up a basis.
Note that although S is an infinite matrix, it has only a finite
number (n in fact) of nonzero entries, where n is the basis
dimension. Then the equations

xt = SŶt (20)

S

 w1 w2 · · ·
w2 w3 · · ·
...

...
. . .

 = FSH (21)

G = S (w′0, w
′
1, . . . )

′ (22)
(w0, w1, . . . ) = HSH (23)

(compare [9]) define a (minimal) state space system (14)–
(15) in echelon form. Every other minimal state is obtained
by premultiplying the echelon state by a constant nonsingular
matrix.

C. ARMA Representations and Right MFD’s

We also consider ARMA systems

a(z)ŷt = b(z)εt (24)

where a is N × N and b is N × q and where (a, b) are
left coprime polynomial matrices. The set of observationally
equivalent left coprime ARMA systems is obtained by left
multiplication by unimodular matrices (see e.g. [17]). Note
that for a coprime ARMA system, the zeros of w are the
zeros of b and the poles of w are the zeros of det a. Thus
by our assumptions

det a(z) 6= 0, |z| ≤ 1 (25)

and
b(z) has full rank q, |z| ≤ 1 (26)

A right MFD has been used in [13].

D. Static Factors

A static factor is a process (zt) of dimension r say, with
r < N such that (ŷt) can be obtained by a linear static
transformation

ŷt = Lzt (27)

Again, we are only interested in minimal static factors, i.e. in
static factors of minimal dimension. As easily can be seen, r
is equal to the rank of the zero lag covariance matrix Eŷtŷ′t
and writing

Eŷtŷ′t = MM ′,M ∈ RN×r

we may define a minimal static factor with unit variance as

zt = (M ′M)−1M ′ŷt (28)

Thus
ŷt = Mzt (29)

As is easily seen, minimal static factors are unique up to
multiplication by constant nonsingular matrices.

From (15) we see that a minimal state xt is a static
factor. Note that, by controllability, the state covariance
matrix Extx′t has full rank n. However the matrix H may
have rank less than n; then there exists a nonsingular matrix
T say, such that

ŷt = HTT−1xt = (H1, 0)T−1xt = H1zt (30)

where H1 has full column rank, r say, and zt is a minimal
static factor. Clearly, the state is a minimal static factor if and
only if rkH = n holds. In general we have n ≥ r ≥ q. A
particular static factor can be obtained from the echelon form
(20) by selecting the first r linearly independent components
of ŷt

zt = S1ŷt

where

S =
(
S1

S2

)
, S1 ∈ Rr×∞, S2 ∈ R(n−r)×∞



By assumption 4, also r does not depend on N , from a
certain N0 onwards. From (10) and (28) we obtain

zt = (M ′M)−1M ′w(z)εt = k(z)εt (31)

for a transfer function k(z), which has no poles and no
zeros for |z| ≤ 1. As is easy to show, a minimal state
space realization for k(z) may be obtained from (F,G,H)
as (F,G,C) and vice-versa by choosing

C = (M ′M)−1M ′H (32)
H = MC (33)

Thus, on the one hand, there is a simple linear static relation
between the latent variables and (minimal) static factors
and on the other hand, both have “essentially” the same
dynamics. Since (zt) has the advantage of being lower
dimensional, with dimension r not depending on N , from
now on, we emphasize modelling of the static factors.

Clearly, (zt) can be modelled by an ARMA system.
In [27] the autoregression-regression approach [19], [20]
has been applied for this purpose, but also other ARMA
identification methods may be applied.

The simplest case occurs if H = n holds, i.e. if the
minimal state is a static factor and thus is described by the
AR(1) system (14,15). This case has been described in detail
in [24].

IV. ZEROLESS TRANSFER FUNCTIONS AND
AUTORGRESSIVE SYSTEMS

A transfer function is called zeroless if all numerator
polynomials in the matrix d of its Smith McMillan form
(11) are equal to one. Note that the transfer function w,
as well as the transfer function k for r > q, are zeroless.
As will be pointed out in this section, tall rational transfer
functions, are relatively to a specified set - generically,
i.e. on an open and dense subset - zeroless. A transfer
function w (or k) is zeroless if and only if it can be realized
by an AR system. The genericity mentioned above is the
justification why we restrict ourselves to the AR case. As
is well known for square transfer functions AR systems
are highly non-generic. One of the main advantages of AR
systems vs. ARMA systems is that simple least squares
estimation methods like the Yule Walker equations give
estimatiors that are both numerically fast on the one hand
and asymptotically efficient on the other hand. For the next
theorem see [3]

Theorem 2: Consider an r × q, r > q rational transfer
function k with a minimal state space realization (F,G,C)
with state dimension n. Then for given n, the transfer
function k is zeroless for generic values of (F,G,C).

An intuitive understanding of Theorem 2 can be obtained
from the fact, that for r > q, k(z) has at least two q × q
minors, which generically have no common zeros.

Note that by definition of a minimal static factor Eztz′t
is nonsingular, whereas for r > q, its spectral density is
singular.

The proof of the next theorem, which relates zeroless
transfer functions and AR systems is given in [2], [10]

Theorem 3: Let (zt) denote a minimal static factor, then
the following statements are equivalent:

(i) The spectral factors k of the spectral density fz of
(zt) satisfying the properties listed in Theorem 1 are
zeroless.

(ii) There exists a polynomial left inverse, k− say, of
k, corresponding to (13) and thus the input εt in
(10) is determined from a finite number of outputs
zt, zt−1, . . . , zt−L for some L.

(iii) (zt) is the stationary solution of a stable AR system

zt = e1zt−1 + . . .+ epzt−p + νt , ei ∈ Rr×r (34)

where

det(I − e1z − . . .− epzp︸ ︷︷ ︸
e(z)

) 6= 0 for |z| ≤ 1 (35)

and νt are white noise innovations with Eνtν′t = Σν ,
rk Σν = q.

If rk Σν = r holds, then we have an “ordinary” or regular
AR system. For rk Σν < r, we call the AR system singular.
As is well known, in the regular case the matrices

Γm =

 γ0 , . . . , γm−1

. . . , γ0 , . . .
γm−1

T , . . . , γ0


where γj = Ezt+jz′t are nonsingular for all m ∈ N and
e(z) is uniquely determined from the (popualtion) second
moments of (zt) [16]. For singular AR systems the situation
is more subtle.

In a certain sense, singular AR systems share some proper-
ties with more general ARMA systems. Let Σν = ff ′ , f ∈
Nr×q and rk Σν = q, then νt = fεt, where (εt) is white
noise with Eεtε′t = 2πIq and the system (34) can be written
as

e(z)zt = fεt (36)

Then we have [2], [10], [4]

Theorem 4:

(i) Every singular AR system (34) satisfying (35) can be
written such that (e(z), f) are left coprime

(ii) Let (e(z), f) be left coprime; then the class of all
observationally equivalent (ē(z), f̄) where the degree
of ē(z), δ(ē(z)) say, is given by(

ē(z), f̄
)

= u(z)(e(z), f) (37)



where the polynomial matrix u(z) satisfies

detu(z) 6= 0, |z| ≤ 1;u(0) = I (38)
δ(u(z)e(z)) ≤ p; δ(u(z)f) = 0 (39)

In addition, (ē(z), f̄) is left coprime if and only if u(z)
is unimodular.

(iii) Let (e(z), f) be left coprime and e(0) = I; Then
(e(z), f) is unique if and only if rk(ep, f) = r holds.

As is easy to show, for singular AR systems the matrix
Γp+1 is singular and the matrix Γp may be singular.

The Yule Walker equations [16] are of the form

(e1, . . . , ep)Γp = (γ1, . . . , γp) (40)
Σν = γ0 − (e1, . . . , ep)(γ1, . . . , γp)′ (41)

Here (40) is used to determine e1, ..., ep (and thus e(z))
from the (in this case population) second moments of the
minimal static factors, and then (41) is used to obtain Σν
(and thus f ). For (40) a solution (e1, ..., ep) always exists
and if Γp is nonsingular then this solution is unique. The
variance matrix Σν is uniquely determined from (41) in any
case. If Γp is singular, then for every row in (e1, ..., ep)
the solution set is an affine subspace of Rrp, namely a
particular solution plus the left kernel of Γp.

In the set of all solutions (e1, ..., ep) of (40) we define the
minimum norm solution as follows:

(ē1, ..., ēp) = (γ1, . . . , γp)Γ#
p (42)

where Γ#
p is the Moore Penrose inverse of Γp. The solution

set may contain elements corresponding to stable as well as
to unstable elements. However we have the following result
[10]

Theorem 5: The minimum norm solution (42) always
corresponds to a stable system.

V. FROM DATA TO MODEL

In this section we discuss the use of the results obtained
from structure theory for actual identification.

As has been stated already, our aim is to obtain a model
for the latent variables from the observations. Generally
speaking an identification procedure consists of two steps
• Model selection. Here integers, such as the dimension
q of (minimal) dynamic factors, the dimension r of the
static factors, the state dimension n or the maximum
lag p for the AR case have to be estimated.

• Parameter estimation in a specified model. In our con-
text this may be thought of as consisting of three steps:

– Denoising, i.e. removing the noise from the obser-
vations in order to obtain estimates of the latent
variables.

– Estimation of the static factors.

– Estimation of an AR model for the static factors
from the estimators of the static factors.

There are several procedures available for denoising. The
following procedure has been proposed in [24]. Commence
from the sample variance matrix

Γ̂Ny,T = T−1
T∑
t=1

yNt y
N
t
′

and perform a static PCA. Then, as can be shown, under
suitable assumptions, the r largest eigenvalues of Γ̂Ny,T for
T,N → ∞, tend to infinity, whereas the other eigenvalues
converge to finite values. In this way, r can be estimated.
Let ONT denote the matrix of eigenvectors corresponding to
these largest eigenvalues, then we obtain an estimator of zt
by

ẑt = ONT
′yNt

Now ẑt is used to estimate the AR order p (e.g. using in-
formation criteria), as well as the autoregressive coefficients
from the Yule Walker equations, now using

γ̂j = T−1

T−j∑
t=1

ẑt+j ẑ
′
t forj ≥ 0

instead of γj in (40). The stability properties of a suitably
regularized Yule Walker estimator are described in [10].
From (41) an estimator of Σν , Σ̂ν say, is obtained. By a
static PCA on Σ̂ν , q and εt can be estimated. In a second
denoising step we get a second estimator of zt, using the
estimated AR parameters and the estimator of εt.

VI. CONCLUSIONS

In this paper we analyzed generalized linear dynamic
factor models (GDFM’s) from a system theoretic point of
view. In a certain sense, identification of GDFM’s may be
divided into two steps: Denoising of the observations, in
order to obtain estimators of the latent variables and, as
the second step, identifying a linear system driven by white
noise, for the latent variables. The second step, again consists
of two parts: First identifying the linear static transformation
from the latent variables to the static factors and second
estimating the linear system underlying the static factors.
The emphasis of our paper is on the corresponding structure
theory and on models for the static factors. It is pointed out
that AR models are generic in this context, these AR models
may have singular innovation variance. A key advantage of
parameter estimation in AR models, compared to ARMA or
state space models, is that asymptotically efficient estimators
are obtained by solving the Yule Wa! lker equations, which
are linear. In our case the solutions of these Yule Walker
equations are not necessarely unique, which creates some
extra complexity.
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