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Summary

1. Quantifying individual heterogeneity in plasticity is becoming common in studies of evolution-

ary ecology, climate change ecology and animal personality. Individual variation in reaction norms

is typically quantified using random effects in a mixed modelling framework. However, little is

known about what sampling effort and design provide sufficient accuracy, precision and power.

2. I developed ‘odprism’, an easy-to-use software package for the statistical language R, which can

be used to investigate the accuracy, precision and power of random regression models for various

types of data structures. Moreover, I conducted simulations to derive rules-of-thumb for four

design decisions that biologists often face.

3. First, I investigated the trade-off between samplingmany individuals a few times versus sampling

few individuals often. Generally, at least 40 individuals should be sampled with a total sample size of

at least 1000 to obtain accurate and precise estimates of individual variation in elevation and slopes

of linear reaction norms and their correlation. Contrasting a previous recommendation, it is worth-

while to bias the ratio of number of individuals over replicates towards samplingmore individuals.

4. Second, I considered how the range of environmental conditions over which individuals are

sampled affects the optimal sampling strategy. I show that when all individuals experience the same

conditions during a sampling event, sampling each individual only twice should be strictly avoided.

5. Third, I examined the case where the number of replicates per individual is constrained by their

lifespan, as is common when sampling annual traits in the wild. I show that for a given sampling

effort, it is much easier to detect individual variation in reaction norms for long-lived than for short-

lived species.

6. Fourth, I investigated the performance of random regression models when studying traits under

selection. Reassuringly, directional viability selection barely caused any bias in estimates of variance

components.

7. Random regression models are inherently data hungry, and reviewing the literature shows that

particularly behavioural studies have low sampling effort. Therefore, the software and rules-

of-thumbs I identified for designing reaction-norm studies should help researchers make more

informed choices, which likely improve the reliability and interpretation of plasticity studies.

Key-words: annual traits, bias, I · E, life-history, lifespan, mixed model, phenotypic plastic-

ity, random slopes, statistics, viability selection

Introduction

Phenotypic plasticity, the change in the phenotype of an organ-

ism in response to environmental change, is an important

source of trait variation (Pigliucci 2001). Interest in individual

variation in phenotypic plasticity is growing apace, because it

is increasingly recognized that such variation is important from

evolutionary, ecological as well as behavioural perspectives.

Natural selection not only acts on variation in the mean trait

value, but can also act on variation in levels of plasticity; if

individual variation in plasticity has a heritable basis, such
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selection directly impacts the course ofmicroevolution (Nussey

et al. 2005; Nussey, Wilson & Brommer 2007). Similarly, the

degree of plasticity is thought to be a key determinant of the

ability of populations to respond to climate change, which ulti-

mately determines whether numbers decline or not (Visser

2008; Chevin, Lande & Mace 2010; Reed et al. 2010). Indi-

vidual variation in plasticity also influences the amount of indi-

vidual heterogeneity in vital rates and thereby directly affects

population dynamics and extinction risk (Vindenes, Engen &

Saether 2008). Finally, in the field of animal personality, indi-

vidual variation in behavioural personality and behavioural

plasticity are considered complementary aspects of the individ-

ual phenotype (Sih et al. 2004; Dingemanse et al. 2010).

Phenotypic plasticity in labile continuous traits is typically

conceptualized in terms of reaction norms, functions that

relate individual phenotypes to an environmental variable (de

Jong 1990; Pigliucci 2001). In its simplest form, the linear reac-

tion-norm approach is characterized by two components: ele-

vation and slope. If the environmental covariate of interest is

mean-centred, the elevation component reflects the expected

trait value in the average environment. The slope component

describes the change in phenotype across an environmental

gradient and is therefore ameasure of phenotypic plasticity.

Individual variation in reaction norms is usually quantified

using a specific type of mixed model, the random regression

model (Henderson 1982), which estimates the amount of

among-individual variation in both elevations and slopes of

reaction norms (see Methods). Significant variance in slopes

among individuals can be interpreted as an individual by envi-

ronment interaction (‘I · E’; Nussey, Wilson & Brommer

2007), which may provide the basis for further investigations

into whether such heterogeneity is caused by genetic or perma-

nent environmental effects. Several recent papers have advo-

cated the use of random regression models in various fields of

biology (e.g. van de Pol & Verhulst 2006; Nussey, Wilson &

Brommer 2007; van de Pol & Wright 2009; Dingemanse et al.

2010), and they are being used with increasing frequency (see

overview in Appendix S1). Even if one is not interested in indi-

vidual variation in plasticity per se, it can still be important to

model such heterogeneity to obtain reliable estimates of popu-

lation levels of plasticity (Schielzeth&Forstmeier 2009).

Despite the popularity of random regression models to

quantify individual variation in reaction norms, very little is

known about the data requirements for such models and how

this affects the accuracy, precision and power of reaction-norm

analysis (Martin et al. 2011). When designing a study, such

knowledge is important, as systematic bias in parameters can

result in incorrect interpretation of the amount of individual

variation in phenotypic plasticity. Low precision increases the

likelihood of extreme outcomes for individual case studies,

which also gives the impression that there is little pattern across

studies. And, lack of adequate statistical power results in

frequent null results, which are difficult to interpret and also

frustrate meta-analyses because of publication bias towards

statistically significant results.

Unfortunately, determining the optimal study design is

typically complicated for mixed models, and unambiguous

conclusions can be difficult to make (Scherbaum & Ferreter

2009). The difficulty arises from the complexity of these mod-

els, in which (i) both the number of individuals and the number

of replicates per individual sampled can vary, including unbal-

anced designs where some individuals are sampled more often

than others, (ii) there are many fixed (e.g. mean slope) and

random parameters (e.g. variance in slopes among individuals)

of interest, and maximizing each of their precision may exert

different demands on the optimal sampling design and (iii) the

optimal sampling design may depend on patterns in the data,

such as the degree with which traits vary among and within

individuals, which in turn is contingent on the biological con-

text. Moreover, accuracy and precision can also depend on the

algorithm used to estimate parameters (Maas&Hox 2004b).

Scherbaum & Ferreter (2009) and Hox (2010) provide com-

prehensive overviews of the statistical literature on sample size

and power analysis in mixed models. A rule-of-thumb appears

to be that random parameters can typically be estimated with

lower precision than fixed parameters (Hox 2010). Also, a large

sample of individuals is typically more important than a large

number of replicates per individual (Maas & Hox 2004b; Hox

2010), although when interested in parameters that vary within

individuals, it can – in specific circumstances – be important to

focus sampling effort on replicates (Snijders 2005). Finally, low

sample size can result in biased estimates of variance compo-

nents and their standard errors as well as low power (Verbeek

2000). Notwithstanding, recommendations for minimum sam-

ple sizes vary widely (ranging from 10 to 100 individuals; Snij-

ders & Bosker 1999; Maas & Hox 2004b), while Martin et al.

(2011) suggested that power to statistically detect individual

heterogeneity in slopes is highest if the ratio of number of indi-

viduals over replicates is a half.

The study by Martin et al. (2011) may be particularly rele-

vant, as it specifically focussed on the power of random regres-

sion models while addressing issues that are inherent to data

collection in an ecological and reaction-norm context, such as

censored unbalanced data and the type of environmental vari-

ability. However, Martin et al. (2011) did not investigate how

sampling strategy affects the accuracy and precision of vari-

ance component estimates, while quantitative biologists may

be at least as interested in using accuracy and precision as crite-

ria for study design than statistical power alone.

Here I develop and introduce an easy-to-use flexible set of

functions (library ‘odprism’; van de Pol 2011) for the freely

available statistical language R (R Development Core Team

2010), which can be used to investigate the accuracy, precision

and power of random regression models for various types of

data structures commonly encountered in biology. Building on

the work byMartin et al. (2011), I subsequently present results

on data simulations which are used to derive rules-of-thumb

for four types of study design decisions that biologists often

face: (i) the trade-off between sampling many individuals a few

times versus sampling few individuals often, (ii) the range of

environmental conditions over which individuals are sampled,

(iii) how the longevity of study species affects study design

when the number of replicates per individual is constrained by

their lifespan, as is commonwhen sampling annual traits in the
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wild and (iv) the accuracy of random regression models when

studying traits under viability selection, which may be poor

when survivors with specific trait values are overrepresented.

Methods

In Table 1, I provide an overview of the abbreviations and key defini-

tions used throughout the paper. For reasons of simplicity, I focus on

continuous labile traits that follow a normal distribution and exhibit

linear reaction norms. Moreover, given the interest in plasticity, I

only discuss individual’s phenotypic responses to environmental vari-

ables; however, this framework is equally relevant for intrinsic vari-

ables (e.g. age, physiological state). Similarly, I consider data to be

grouped within individuals, but the framework also applies to data

structured by other grouping variables, for example a social group,

population or genotype.

RANDOM REGRESSION MODELS

Random regressionmodels aremixedmodels that contain both a ran-

dom intercept and random slope term, and routinely estimate three

key parameters: (i) the variance among individuals in intercepts (ele-

vations), (ii) the variance among individuals in slopes and (iii) the

covariance (or correlation) between individual’s intercepts and slopes

(e.g. Snijders & Bosker 1999). Themodel can be described by:

Yij ¼ b0 þ u0i þ ðb1 þ u1iÞXij þ e0ij eqn 1a

where subscripts i and j refer to the structuring of the data, with

Yij being the value of the dependent variable and Xij to the value

of the environment for measurement j from individual i. Further-

more, the intercept of the regression equation b0 can be inter-

preted as the population mean when the environmental variable

is mean-centred ( �X ¼ 0). The population slope (i.e. plasticity) of

the dependency of Y on X is given by b1. The error term e0ij, the

random intercept u0i and the random slope term u1i are typically

assumed to be drawn from (multivariate) normal distributions

with expectations 0 and (co)variances such that:

e0ij�Normalð0;r2
e0ij
Þand

u0i

u1i

� �
�MVNormalð0;XuÞ : Xu

¼
r2
u0i

ru0i ;u1i r2
u1i

" # eqn 1b

The term r2
e0ij
is used to estimate the within-individual residual

variance (VR), the term r2
u0i

is used to estimate the among-individual

variance in elevation (VE), the term r2
u1i

is used to estimate the among-

individual variance in slopes (VS), and the covariance term ru0i ;u1i is

used to estimate the correlation between the intercepts and slopes of

individuals (rE,S). I prefer to report the correlation instead of the

covariance, because a correlation lies between )1 and 1, allowing one

to conclude that a model with a correlation close to those extremes is

weakly identifiable.

GENERAL APPROACH OF SIMULATIONS

The general approach in all four scenarios described below was to

generate data sets of total sample size N consisting of I individuals

and J replicates per individual sampled. For each data set, I generated

X-values using a standard normal random variable [X � Nor-

mal(0,1)]. By inserting these X-values into eqns 1a & 1b, I generated

Y-values, whereby all fixed effects were set to 0 (b0 = b1 = 0) and

whereby error and random terms were generated by drawing from

(multivariate) normal random variables with expectations 0 and

(co)variances equal to VR,VE, VS, rE,S. This process was repeated to

generate 5000 different data sets for each combination of sampling

design and values ofVR,VE,VS, rE,S.

In all scenarios, I standardized the expected total variance atX=0

to one by setting VE + VR = 1, which implies that the intraclass

Table 1. Explanation of abbreviations and definition of key concepts used in the paper

Term Meaning and definition

Estimated parameters

VE Among-individual variance in elevation (intercept)

VS Among-individual variance in slope

rE,S Correlation among individuals’ elevation and slope

VR Within-individual (residual) variance

Sampling variables

I Number of individuals sampled

J Number of replicates sampled per individual

P Population size sampled in each year

T Number of years population is sampled

N Total sample size (note that N = I · J and N = P · T)

Q Annual adult survival probability

Model performance

Accuracy & bias (In)accuracy is used as a qualitative term describing the (dis)agreement between model estimates and

the ‘true’ value, while bias is used as a quantitative term, operationalized as the difference between the

median model estimate of the 5000 simulated data sets and the value used to generate the data sets,

e.g. the relative bias (%) in VE equals V̂E � VE

�� ��=VE � 100

Precision (Im)precision describes the degree to which different simulations give (dis)similar results, quantified by

the width of the distribution of parameter estimates from 5000 simulated data sets, i.e. here the

difference between the 75% and 25% percentile

Statistical power Proportion of mixed models applied to 5000 simulated data sets that correctly rejected the false null

hypothesis of no effect (i.e. P < 0Æ05)
Model convergence Proportion of mixed models applied to the 5000 simulated data sets that did not convergence or

reported convergence problems
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correlation coefficient s at X = 0 – a measure of repeatability – has

the same value as VE [since sX = 0 = VE ⁄ (VE + VR)]. Inspired by

repeatabilities commonly observed in biological studies (Martin et al.

2011), I investigated the parameter conditions sX = 0 = VE = 0.2

or sX = 0 = VE = 0.4 and explored the conditions VS = 0.1 or

VS = 0.2 and rE,S = 0.25 or rE,S = 0.5. The values 2–10, 12, 14, 16,

18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 200 were

sampled for both I and J, and bilinear interpolation between these

integer values was used to determine isoclines of similar accuracy,

precision and power.

SCENARIO 1 : SAMPLING MANY INDIV IDUALS OR MANY

REPLICATES?

In scenario 1, I explore the trade-off between sampling many indi-

viduals a few times versus sampling few individuals often. Given

that one can only sample a limited number of times, what is a rea-

sonable number of individuals and how often should one sample

each individual?

SCENARIO 2: TYPE OF ENVIRONMENTAL VARIABIL ITY

In scenario 1, all individuals experienced different environmental con-

ditions when sampled at a given occasion. Such a situation reflects,

for example, the case where the environmental variable is food abun-

dance, and food abundance varies between territories where individu-

als are sampled (e.g. at sampling occasions 1 and 2, individual A

experienced food abundance 1Æ2 and 2Æ3, while individual B experi-

enced food abundance 3Æ5 and 0Æ9). However, in many situations, the

environmental conditions might be the same for all individuals on a

given occasion. For example, when studying the effect of spring tem-

perature on the timing of egg-laying, all birds sampled in a specific

breeding season have experienced the same spring temperature (e.g.

at sampling occasions 1 and 2, individual A experienced temperatures

17Æ2 and 19Æ1, and individual B also experienced temperatures 17Æ2
and 19Æ1). In experimental studies, one typically also exposes each

individual to the same set of environmental conditions. In scenario 2,

I therefore explore the influence of the type of environmental variabil-

ity, by using sampling strategies where all individuals have either a

different or the same value of environmental variable X on a given

sampling occasion.

SCENARIO 3 : CONSTRAINTS IMPOSED BY THE STUDY

SPECIES

In scenario 3, I address a typical problem encountered when sam-

pling annual traits in the wild. When sampling traits that are only

measured or expressed once a year (e.g. body mass at the start of

the reproductive season, timing of flowering), one is not completely

free to choose the number of individuals and replicates sampled.

Some individuals may live longer than others and when following a

population of individuals over time, the number of replicates per

individual will ultimately be constrained by an individual’s lifespan.

Censoring after the last year of study is another mechanism con-

straining the number of replicates per individual sampled. Even

though mortality precludes complete control over the number of

individuals and replicates sampled in a long-term population study,

their numbers can be predicted. Assuming that death individuals

are replaced (i.e. constant population size), the expected number of

individuals E(I) that can be sampled depends on the annual sur-

vival Q, monitored population size P and number of years moni-

tored T:

EðIÞ ¼ Pþ Pð1�QÞðT� 1Þ eqn 2a

The expected number of replicates per individuals E(J) depends on

a species annual survival and the study period but is independent of

the study’s population size:

EðJÞ ¼ PT

EðIÞ ¼
T

1þ ð1�QÞðT� 1Þ eqn 2b

Another key consequence of sampling annual traits is that – in con-

trast to the balanced data sets in scenarios 1 and 2 – variation in life-

span results in unbalanced data sets, with some individuals measured

only once or twice, while others measured up to, for example, ten

times. Small differences in annual survival between species can result

in large differences in life expectancy (Fig. 1a), which profoundly

influences the distribution of number of replicates per individual

obtainable from species of varying longevity (Fig. 1b). In a long-term

population study, one cannot expect to be able to measure most indi-

viduals more than once in short-lived species (annual survival £ 0Æ5),
while in long-lived species (survival ‡ 0Æ8), one can expect to be able

to measure the majority of individuals at least thrice (Fig. 1b). This

begs the question to what extent species longevity – and thereby

choice of study species – affects the ability to reliably quantify individ-

ual heterogeneity in reaction norms.

Therefore, I generated data sets with population size P that were

followed over a number of years T, in which I varied the annual sur-

vival probability Q between 0Æ3 and 1Æ0, whereby Q was assumed to

be the same for all individuals and invariable with age. When an indi-

vidual died, it was replaced by a new individual in the data simulation

process (i.e. no inheritance of trait values). All individuals were given

the same value of environmental variableX on a given sampling occa-

sion. The values 2–10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70,

80, 90, 100, 125, 150, 200 were sampled for bothP and T, and bilinear

interpolation between these integer values was used to determine

isoclines of similar accuracy, precision and power.

SCENARIO 4 : TRAITS UNDER VIABIL ITY SELECTION

In scenario 4, I consider the question to what extent viability selection

on annual traits affects the accuracy of estimates of model parame-

ters. Awareness is growing that viability selection may cause bias in

estimating various evolutionary parameters of interest (Vaupel,

Manton& Stallard 1979; van de Pol & Verhulst 2006; Hadfield 2008).

When survival depends on a trait value, viability selection causes the

population of survivors to be a nonrandom subset of the population,

which Martin et al. (2011) hypothesized could also bias reaction-

norm parameters.

To investigate the effects of viability selection, I generated data sets

similar as in scenario 3 but made individuals’ survival probability Q

from year t to t + 1 dependent on the trait valueY in year t. I consid-

ered viability selection generated by the logistic function:

Qit ¼ 1= 1þ expð�ðc0 þ c1YitÞÞð Þ eqn 3

and varied c0 between )0Æ8 and 2Æ2 to explore the impact of vari-

ation in mean annual survival (i.e. species longevity), and varied

c1 between 0 and 10 to investigate the impact of the strength of

directional selection. To maximize chances of detecting any bias,

data sets considered large populations (i.e. P = 1000, T = 10).

PERFORMANCE OF RANDOM REGRESSION MODELS

I assessed four measures of model performance: accuracy\bias, preci-

sion, statistical power and model convergence; Table 1 describes how
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they are defined and operationalized. I did not explore the accuracy

of the standard errors of random parameters, because they are likely

to be asymmetric and thus difficult to interpret. I assessed statistical

power to detect among-individual variation in slopes by comparing

the likelihood of the model described in eqns 1a & 1b with the like-

lihood of a model where the terms used to estimate VS and rE,S were

both constrained to 0 (i.e. r2
u1i
¼ ru0i ;u1i ¼ 0). Individual variation in

elevation was tested for by comparing the likelihood of a model that

contained only a random intercept with the likelihood of a null model

where the term used to estimate VE was constrained to 0 (i.e.

r2
u0i
¼ 0). To obtain P-values, differences in )2 · log-likelihood were

compared to a chi-square-distribution with the degrees of freedom

equal to the number of constrained parameters (likelihood ratio test;

Pinheiro & Bates 2000). Alternative, potentially better methods

exist for statistical inference (Visscher 2006; Scheipl, Greven &

Kuchenhoff 2008) and model selection (e.g. information theoretic

approaches); however, I focus on the widely used likelihood ratio test

that also allows for comparison with results from Martin et al.

(2011).

EASY-TO-USE FUNCTIONS IN R: PACKAGE ‘ODPRISM’

Existing software for assessing the optimal design of mixed models,

such as ‘PINT’ (Snijders & Bosker 1993), ‘Optimal Design’ (Rauden-

bush et al. 2011) and ‘pamm’ (Martin et al. 2011), does not allow for

most of the four scenarios to be investigated. Therefore, I developed

the package ‘odprism’ (optimal design and performance of random

intercept and slope models; van de Pol 2011), which contains a set of

easy-to-use flexible functions written in the statistical language R that

can (i) simulate all the types of data sets from scenarios 1–4, (ii) run

random regression models on these data sets and (iii) quantify model

performance. The functions in odprism use the ‘lmer()’ function from

the R-package ‘lme4’ (Bates, Maechler & Dai 2008) to estimate the

model parameters based on a restricted maximum likelihood

(REML) approach in which estimated variance–covariance matrices

are constrained to be positive-definite. The source code of odprism

and its manual with example code are available on the Comprehen-

sive R Archive Network (http://cran.r-project.org/web/packages/

odprism/).

Results

In all scenarios, convergence problems were rare (<1%) as

long as total sample size exceeded N = 20; therefore, I hence-

forth only present results on accuracy, precision and power.

Also, I focus on the results for parameter conditions

VE = 0Æ2, VS = 0Æ1 and rE,S = 0Æ5, while results for other

parameter conditions (VE = 0Æ4, VS = 0Æ2 or rE,S = 0Æ25)
are presented inAppendices S1–S6.

SCENARIO 1 : SAMPLING MANY INDIV IDUALS OR MANY

REPLICATES?

For a given sampling effort, there are many possible combina-

tions to sample I individuals J times (see lower and upper

x-axes in Fig. 2). Reproducing the results from the study by

Martin et al. (2011), I also found that (i) power to detect indi-

vidual variation in elevation is typically higher than power to

detect individual variation in slopes (Fig. 2a–c), (ii) power is

always high ifN ‡ 1000 (Fig. 2c) and (iii) power appears to be

maximized at a ratio of I ⁄J of 0Æ5 (at five individuals sampled

10 times each ifN = 50, Fig. 2a; at 10 individuals sampled 20

times each ifN = 200, Fig. 2b).

However, a sampling strategy that generates high statistical

power to detect individual variation in intercept and slopes

does not necessarily ensure that the accuracy and precision of

these terms are also high. Specifically, there always was an

Fig. 1. (a) Survival curves of hypothetical species with different

annual adult survival probabilities ranging from short-lived (0Æ5) to
long-lived (0Æ9); the adult life expectancy for each of the species is

depicted by the black square symbols. (b) The expected frequency dis-

tribution of the number of repeat observations per individuals if a

population of each of the hypothetical species would be followed over

a long period.
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upward bias for rE,S at low total sample sizes (N £ 200;

Fig. 2j–k) and for I £ 10 at large sample size (Fig. 2l). More-

over, independent of total sample size, both VE (Fig. 2d–f)

and VS (Fig. 2g–i) were biased downward when I £ 10.

Finally, the imprecision of (co)variance components –

described by the width of the distribution of parameter esti-

mates shown in grey areas in Fig. 2d–l – was also minimized

at a much higher number of individuals (I ‡ 10 if N = 50;

I ‡ 20 if N = 200; I ‡ 40 if N = 1000) than required for

maximizing power.

(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

(j) (k) (l)

Fig. 2. (a–c) Power of detecting individual heterogeneity in elevation (black triangles) and slopes (white triangles) and accuracy and precision of

VE (d–f), ofVS (g–i) and of rE,S (j–l) for different total sample sizeN (left, middle or right panels) made up of different combinations of number of

individuals I (lower x-axis) and replicates per individual J (upper x-axis). In (d–l), circles represent the median estimates of 5000 simulated data

sets, while the dark and light grey areas depict, respectively, the 25–75% and 2Æ5–97Æ5% distribution of parameter estimates. The horizontal

dashed lines depict the values used to generate the data (VE = 0Æ2,VS = 0Æ1, rE,S = 0Æ5). Note that the right y-axes depict the relative deviation

from the values used to generate the data.
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A more comprehensive pattern about optimal sampling

strategies emerges when considering how accuracy, precision

and power change when one allows I and J to vary indepen-

dently. To avoid a substantial systematic bias (>10%) in esti-

mating VE and VS, I should be at least 10–20 (independent of

J; Fig. 3a,b), while to avoid substantial bias in rE,S, one

should sample at least 10 individuals and total sample effort

should be N ‡ 300 (e.g. sample 10 individuals 30 times or 150

individuals two times; Fig. 3c). Obtaining high precision is

hardest for the correlation parameter rE,S and to obtain an

imprecision of 0Æ2 (meaning that in the absence of bias, there

is a 50% chance that the estimate is within 0Æ1 of the ‘true’

value of e.g. rE,S = 0Æ5), one would need to sample at least

40 individuals 40 times, or more efficiently in terms of mini-

mizing N: sample 100 individuals 10 times or 200 individuals

five times (i.e. I ‡ 40, N ‡ 1000 & I ⁄J ‡ 1 Fig. 3f). Finally, to

obtain power of at least 0Æ8 for both the test of individual var-

iation in elevation and slopes, total sample size should be at

least 300 and the ratio of I ⁄J should not be too skewed (i.e.

roughly between 0Æ2 and 3; Fig. 3g,h). Thus, when interested

in optimizing accuracy, precision as well as statistical power,

obtaining high precision of rE,S puts the strongest demand on

sampling design, and if one selects a sampling design that

optimizes the precision of rE,S, this should also provide pre-

cise and unbiased estimates of other covariance components

as well as high power.

Most of the above patterns (presented for VE = 0Æ2,
VS = 0Æ1 & rE,S = 0Æ5) seem to be fairly robust to changing

(a) (b) (c)

(f)(e)(d)

(g) (h)

Fig. 3. Inaccuracy (relative bias; a–c) and imprecision (d–f) of estimates of random regression variance componentsVE, VS and rE,S and the sta-

tistical power to detect individual heterogeneity in elevation (g) and slopes (h; a combined test of bothVS and rE,S) as a function of the number of

individuals I and replicates J sampled. The definitions of accuracy, precision and power are given in Table 1. Different colours depict areas

between isoclines of similar levels of inaccuracy, imprecision and power (see legends); isoclines were determined by bilinear interpolation between

the sampled integer values of I and J. The values used to generate the data wereVE = 0Æ2,VS = 0Æ1& rE,S = 0Æ5.
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the parameter conditions used to generate the data (i.e. when

doubling VE or VS or halving rE,S, see Appendix S2), although

this search of the parameter space is not exhaustive. The main

difference when dealing with a situation of higher values ofVE,

VS and rE,S seems to be that for a given sampling design impre-

cision increases slightly, but also the statistical power (Figs B1–

B3 in Appendix S2 vs. Fig. 3). Although dealing with higher

values of VE, VS and rE,S did not affect the accuracy of these

parameters much (Figs B1–B3 in Appendix S2 vs. Fig. 3), it

should be realized that I express accuracy in terms of relative

bias, implying that doubling or halving these parameters

means that the absolute bias also roughly doubled or halved.

In summary, when choosing a sampling design to obtain

unbiased (<10%) and precise (50% of estimates within 0Æ1 of
the ‘true’ value) estimates of all variance components, while

also having high statistical power (>0Æ8), the general rule-of-
thumb appears to be to sample at least 40 individuals and have

a total sample size of at least 1000. If these two conditions are

fulfilled, the choice between sampling many individuals or rep-

licates does notmatter toomuch as long as one biases sampling

towardsmore individuals (I ⁄J ‡ 1).

SCENARIO 2: TYPE OF ENVIRONMENTAL VARIABIL ITY

When comparing a situation where all individuals experienced

different environmental conditions when sampled at a given

occasion (Fig. 3) with a situation where all individuals experi-

enced the same environmental conditions at a given sampling

occasion (Fig. 4), there is one major incongruity. Sampling all

individuals only twice should be strictly avoided when all indi-

viduals experienced the same environmental conditions at a

given occasion. In such a situation, it becomes impossible to

reliably decompose variance components, resulting in extreme

bias in all variance component estimates (Fig. 4a–c). Variance

(a) (b) (c)

(f)(e)(d)

(g) (h)

Fig. 4. Same as Fig. 3, with the difference that all individuals experienced the same environmental conditions at a given sampling occasion.
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components are also quite biased and imprecise when sampling

all individuals three or four times, but this problem can be

overcome by sampling many individuals (Fig. 4a–f). The

above problem disappears when sampling individuals five

times or more (compare Fig. 4 with Fig. 3). Similar results

were obtained for other values of VE, VS and rE,S (see Appen-

dix S3). Thus, as long as one avoids sampling individuals only

twice, thrice or four times, the demands on sampling design are

almost identical for a situation where all individuals experi-

enced either the same or different environmental conditions at

a given sampling occasion.

It is important to realize that the comparison between a situ-

ation where all individuals experienced either different (Fig. 3)

or the same (Fig. 4) environmental conditions at a given sam-

pling occasion represent the two extreme cases. For example,

environmental variables that differ between individuals at a

given occasion, such as food abundance, can still be correlated

between individuals at a given sampling occasion (e.g. owing

to ‘year’ effects or spatial autocorrelation in the environment).

Furthermore, when environmental variables are the same for

all individuals at a given occasion, this does not preclude indi-

vidual variation in the environment that individuals experi-

enced: when one would sample on three occasions, but would

only sample each individual on two of the three occasions,

some individuals could experience conditions A&B, others

B&C and even others A&C. In this latter scenario, it is possible

to reliably decompose variance components and obtain

unbiased estimates, despite the fact that individuals are only

sampled twice (Fig. D1 in Appendix S4).

SCENARIO 3 : CONSTRAINTS IMPOSED BY THE STUDY

SPECIES

When sampling traits that aremeasured or expressed annually,

the number of replicates per individual ultimately depends on

the lifespan of individuals, causing data sets to be unbalanced.

A direct consequence of this constraint is that for a given sam-

pling design (population of size P, sampled for T years), the

longevity of a study species affects the estimation of individual

variation in elevation and slopes in a long-term population

study (Fig. 5). In short-lived species, both statistical power

(Fig. 5a,b) and precision (Fig. 5c–h) are lower than in long-

lived species; similar results were obtained for other parameter

values ofVE,VS and rE,S (see Appendix S5). This positive asso-

ciation between species longevity and power and precision is

likely to be a direct result from the fact that studying short-

lived species precludes one from measuring most individuals

more than once (Fig. 1b), while individuals measured only

once do not contribute directly to the estimation of individual

variation in slopes. When aiming to obtain unbiased (<10%)

and precise (50% of estimates within 0Æ1 of the ‘true’ value)

estimates of all (co)variance components with high statistical

power (>0Æ8), the minimum sampling requirement for a long-

lived species with annual survival of 0Æ9 is to have a total

sample size of 1000, while for short-lived species with annual

survival of 0Æ5, one requires a total sample size of at least 1500

(Appendix S6).

SCENARIO 4 : TRAITS UNDER VIABIL ITY SELECTION

There was no strong support for the hypothesis that direc-

tional viability selection on traits affects the accuracy of

estimates of the variance components of reaction-norm

parameters. None of the (co)variance components was

biased by more than 2% in both short- and long-lived spe-

cies, even when directional selection was very strong (i.e. c0
was varied between )0Æ8 and 2Æ2, c1 between 0 and 10; using

VE = 0Æ2 or 0Æ4, VS = 0Æ1 or 0Æ2 rE,S = 0Æ25 or 0Æ5,
P = 1000, T = 10).

Discussion

I derived rules-of-thumb for designing reaction-norm studies

with sufficient accuracy, precision and power. The results

confirm and contrast some recommendations of previous

studies, as well as generate some novel suggestions that are

of specific interest when designing reaction-norm studies on

wild populations. Before discussing these rules-of-thumb, I

would like to stress that there are many ways in which the

data structure can vary, as exemplified by the different sce-

narios considered in this study. And for each scenario, I only

explored a limited part of the possible parameter space (but

reassuringly most results were robust). Moreover, depending

on the biological question, one might aim for other levels of

accuracy, precision and power than used here. Thus, biolo-

gists designing reaction-norm studies are advised to perform

their own simulation studies suited to their specific biological

context and the R-package odprism that I developed should

make this job much easier.

SAMPLING MANY INDIV IDUAL OR MANY REPLICATES?

My recommendation to sample at least 40 individuals is

higher than Snijders & Bosker (1999), lower than Maas &

Hox (2004a), but comparable to what Kreft (1996) advised.

In contrast to the recommendation by Martin et al. (2011)

to choose a ratio of I ⁄J of about a half, my results

suggests that it is better to samples more individuals than

replicates (I ⁄J ‡ 1) if one is interested in maximizing the

accuracy and precision of variance component estimates.

Moreover, random regression models are data hungry, and

I suggest that total sampling effort should be at least 1000,

comparable to what Kreft (1996) and Martin et al. (2011)

advised.

A comparison of previous studies that have used random

regression approaches confirms that total sample size is a good

predictor for statistical evidence for individual variation in

slopes (Fig. 6), with the 15 analyses reporting no evidence hav-

ing a median sample size of only 250, while the 23 analyses

reporting positive evidence having a median sample size of

649. Strikingly, the vast majority of analyses with low total

sample size concerned behavioural studies, with 23 of 25

behavioural analyses having N < 1000, while in only four of

13 analyses on life-history or morphological traits sample size

was lower than 1000 (Fig. 6). The risk of false negatives and
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biased or imprecise variance component estimates is thus likely

to be greatest in the existing behavioural reaction-norm litera-

ture.

The demands on the optimal sampling design in terms of

sufficient accuracy, precision as well as statistical power were

largely driven by the high sampling effort required for obtain-

ing precise estimates of the correlation between individuals’

elevations and slopes. I think that in most biological contexts

estimating the correlation parameter precisely is of similar

importance as estimating the variances in elevations and slopes

precisely, because the correlation parameter directly affects the

patterns of variation in individual reaction norms (i.e. the

amount of fanning in or out; see fig. 2 in Nussey, Wilson &

Brommer 2007).

(a) (b)

(c) (d)

(f)(e)

(g) (h)

Fig. 5. (a,b) Power of detecting individual

heterogeneity in elevation (black triangles)

and slopes (white triangles) and accuracy and

precision of VE, (c,d) of VS (e,f) and of rE,S
(g,h) for species with different annual survival

probabilities (lower x-axes) in scenarios

where either a population of 20 individuals

(left panels) or 100 individuals (right panels)

was followed for a period of 10 years. The

expected number of individuals I and repli-

cates per individual J associated with differ-

ent levels of annual survival are shown on the

upper x-axes (see eqn 2). In (c–h), circles rep-

resent themedian estimates of 5000 simulated

data sets, while the dark grey and light grey

areas depict, respectively, the 25–75% and

2Æ5–97Æ5% distribution of the parameter esti-

mates. The horizontal dashed lines depict the

values used to generate the data (VE = 0Æ2,
VS = 0Æ1, rE,S = 0Æ5). Note that the right

y-axes depict the relative deviation of from

the value used to generate the data.
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TYPE OF ENVIRONMENTAL VARIAB IL ITY

Environmental variables that are either the same or different

for all individuals at a given sampling occasion are both com-

mon in the reaction-norm literature (Appendix S1). I showed

that the type of environmental variability does not strongly

affect sampling design, except that when all individuals experi-

ence the same environmental conditions, one should strictly

avoid sampling all individuals only twice (Fig. 4), even though

this is the simplest possible design for a reaction-norm study.

These results sharply contrast to the situation when all individ-

uals experience different environmental conditions at a given

sampling occasion, in which case sampling all individuals twice

does not typically result in identifiability problems (Fig. 3).

Notwithstanding, I have noticed that biologists–possibly

because of their familiarity with classical regression models –

seem to be averse towards applying random regression models

to individuals that have beenmeasured only twice. Such hesita-

tion is unjustified as long as one samples individuals under

variable conditions. However, sampling individuals more

than twice is of course crucial for assessing the nonlinearity of

reaction norms.

Many studies with unbalanced data sets have removed all

individuals that have been measured only once, twice or even

three times prior to analyses (e.g. Brommer et al. 2005; Nussey

et al. 2005; Reed et al. 2006; Charmantier et al. 2008; Dinge-

manse et al. 2011). Clearly, removing individuals measured

only twice or thrice is a waste of valuable information. Even

including individuals measured only once in the analyses can

be valuable, as they can improve the estimation of non-slope

model parameters and thereby indirectly also increase the sta-

tistical power to detect individual variation in slopes (Martin

et al. 2011).

CONSTRAINTS IMPOSED BY THE STUDY SPECIES

I showed that sampling effort should be substantially higher

for short-lived than for long-lived species when investigating

annual traits, all else being equal (Fig. 5, Figs F1 and F2 in

Appendix S6). The main problem of sampling annual traits in

short-lived species is that most individuals can only be sampled

once and then die, and that such individuals do not directly

contribute to estimation of individual variation in plasticity.

However, studying short-lived species may also have its bene-

fits in reaction-norm studies: often the reason for quantifying

random slopes is that evidence for ‘I · E’ provides the basis

for further investigations into genotype by environment inter-

actions (‘GxE’; Nussey, Wilson & Brommer 2007). To quan-

tify ‘GxE’, one typically needs deep pedigrees, which take

much less years to collect for species with a short generation

time. In fact, some of the best-known examples of reaction-

norm studies in the wild are on very short-lived species (Brom-

mer et al. 2005; Nussey et al. 2005; Charmantier et al. 2008);

notably, each of these studies had considerable sampling effort

(T ‡ 23 years,N > 2000).

TRAITS UNDER VIABIL ITY SELECTION

Despite the fact that survivors can be a nonrandom subset of

the population with respect to plastic traits (Vaupel, Manton

& Stallard 1979; van de Pol & Verhulst 2006; Hadfield 2008),

reassuringly, variance components were barely affected by

directional viability selection on traits in the simulations.

Apparently, the combination of viability selection against indi-

viduals with specific trait values and their replacement by

individuals with random trait values barely affect the among-

individual variance components. Possibly, the situation is

different when viability selection takes other forms (e.g. diver-

gent), or acts not on the trait value, but instead acts directly on

the slopes of individuals, as might occur in cases of phenologi-

cal mismatch (Nussey et al. 2005). Also, viability selection

might more strongly impact variance components when there

is a heritable component to an individual’s elevation or slope.

SIMULATIONS AS A BEST CASE SCENARIO

In several respects, the situation in the real world is likely to be

more complex and thus, simulations represent a best case sce-

nario. The rules-of-thumbs derived here should therefore be

interpreted conservatively. For example, in reality, there are

unobserved variables that cause additional unexplained heter-

ogeneity. Also, reaction norms might be nonlinear, which

potentially alters the optimal design considerably. Model

assumptions concerning normality or homogeneity of variance

might be violated by the data (Maas & Hox 2004a,b). And

because binary and count data contain less information than

normal data, studies investigating noncontinuous traits almost

Fig. 6. Sampling design of 38 published analyses (see Appendix S1

for details) that used random regression models to test for variation

in slopes of behavioural traits (circles) or of life-history ⁄morphologi-

cal traits (square symbols). Analyses that reported evidence for varia-

tion in slopes among grouping units are depicted by white symbols,

while analyses that reported no evidence for variation in slopes are in

depicted in black.
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certainly require higher sampling effort for accurate and pre-

cise estimation (Moineddin, Matheson & Glazier 2007).

Finally, my study did not consider the case of nonindepen-

dence among individuals due to genetic relatedness; results

may thus not be representative for random regression animal

models, because suchmodels not only estimate additional vari-

ance components but also incorporate more information (i.e.

pedigree).

CAUTION IN INTERPRETING RANDOM SLOPES AS I · E

In the reaction-norm literature, evidence for individual varia-

tion in slopes is typically interpreted as evidence for the exis-

tence of an individual by environment interaction (‘I · E’;

Nussey, Wilson & Brommer 2007). However, evidence for

individual variation in slopes may also result from characteris-

tics that are not necessarily ‘consistently’ different between

individuals. For example, suppose that the response to the

environment changes with age (‘A · E’; van de Pol, Osmond

& Cockburn, in press) and one collects data on a population

consisting of individuals of variable age. In this scenario, the

fact that onemeasured some individuals at older ages than oth-

ers may result in the slope of some individuals to be different

from others. However, such individual variation in slopes is

not caused by I · E but instead caused by unobserved A · E.

Thus, state variables may interfere with interpreting variance

in slopes as evidence for I · E, and it therefore is important to

account for key state variables (e.g. age, body size, social sta-

tus) in reaction-norm studies.
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