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Abstract. We present abstract inhomogeneousStrichartz estimates for dispersive operators, extending
previous work by M. Keel and T. Tao on the one hand, and generalising results of D. Foschi, M. Vilela,
M. Nakamura and T. Ozawa on the other hand. It is shown that these abstract estimates imply new
inhomogeneousStrichartz estimates for the wave equation and some Schrödinger equations involving
potentials.
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1 Introduction

This paper is concerned with a priori estimates for dispersive partial differential equations,
expressed in norms given by

‖G‖Lq (R;B) =
(∫

R

‖G(t)‖qB dt

)1/q

,

where B is a Banach space. Consider, for example, the inhomogeneous Schrödinger initial
value problem

{
iu′(t) + Δu(t) = F(t) ∀t ≥ 0

u(0) = f ,
(1)

whose formal solution u is given by

u(t) = eitΔf − i
∫ t

0
ei(t−s)ΔF(s) ds

via Duhamel’s principle.The seminal paper [18] of R. Strichartz showed that if u is a solution
to (1) in n spatial dimensions and q = q̃ = r = r̃ = 2(n + 2)/n, then

‖u‖Lq(R;Lr (Rn )) � ‖f ‖L2(Rn) + ‖F‖Lq̃′ (R;Lr̃′ (Rn ))(2)
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whenever f ∈ L2(Rn ) and F ∈ Lq′ (R; Lr′(Rn)). Since then, various authors (see especially
[6], [22], [2] and [13]) have published similar a priori estimates for solutions to Schrödinger’s
equation where the time exponent q and the space exponent r are unequal. Such estimates
have proved fruitful for determining whether various semilinear Schrödinger equations are
well-posed (see, for example, [6], [11] and [3]).

By respectively taking F and f as 0 in (1), estimate (2) becomes

∥∥∥eitΔf
∥∥∥

Lq(R;Lr (Rn))
� ‖f ‖L2(Rn )(3)

and

∥∥∥∥
∫ t

0
ei(t−s)ΔF(s) ds

∥∥∥∥
Lq (R;Lr (Rn ))

� ‖F‖Lq̃′ (R;Lr̃′ (Rn )) .(4)

The first of these estimates is called an homogeneous Strichartz estimate and the second
is known as an inhomogeneous Strichartz estimate. The problem of finding all possible
exponents pairs (q, r) such that (3) is valid has been completely solved. That is, (3) holds if
and only if

q ∈ [2,∞],
1

q
+

n

2r
=

n

4
and (q, r, n) �= (2,∞, 2)(5)

(see [13] and the references therein). The corresponding problem for the inhomogeneous
Strichartz estimate (4) remains open. It is known that if the exponent pairs (q, r) and (q̃, r̃)
satisfy (5) then the inhomogeneous estimate (4) is also valid. However, it was observed by T.
Cazenave and F. Weissler [4] and T. Kato [12] that there are exponent pairs (q, r) for which
the inhomogeneous Strichartz estimate holds but the homogeneous estimate fails. Using
the techniques introduced in [13], D. Foschi [5] and M. Vilela [21] independently obtained
what is currently the largest known range of exponent pairs (q, r) and (q̃, r̃) for which the
inhomogeneous Strichartz estimate (4) for the Schrödinger equation is valid.

Similar remarks may be made for the wave equation. The precise set of Lebesgue space-
time exponents for which the homogeneous Strichartz estimate for the wave equation is
known (see [14], [13, Section 1] and the references therein) while a complete description
for the set of exponents for which the inhomogeneous estimate is valid remains open (see
the early work of D. Oberlin [17] and J. Harmse [9] and more recent advances by Foschi [5]).
It must also be noted that, previous to the work of Foschi, a large set of exponents for in-
homogeneous Strichartz-type estimates for solutions of the Klein–Gordon equation were
obtained by M. Nakamura and T. Ozawa [16].

In this paper, results of [16], [21] and especially [5] are generalised to the abstract setting
introduced in [13], thus enabling us to find new inhomogeneous Strichartz-type estimates
for other dispersive equations, including the wave equation and Schrödinger equations with
potential. Suppose that H is a Hilbert space with inner product 〈 · , · 〉, (B0, B1) is a Banach
interpolation couple and σ > 0. Suppose also that for each time t in R we have an operator
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U(t) : H → B∗0. Its adjoint U(t)∗ is an operator from B0 to H. We will assume that the
family {U(t) : t ∈ R} satisfies the energy estimate

‖U(t) f ‖B∗0 � ‖ f ‖H ∀f ∈ H ∀t ∈ R,(6)

and the dispersive estimate

∥∥U(s)U(t)∗g
∥∥

B∗1
� |t − s|−σ ‖g‖B1

∀g ∈ B1 ∩B0 ∀ real s �= t.(7)

Using the energy estimate, we consider the operator T : H→ L∞(R; B∗0), defined by the
formula

T f (t) = U(t)f ∀f ∈ H ∀t ∈ R.

Its formal adjoint T∗ : L1(R; B0)→ H is given by the H-valued integral

T∗F =
∫

R

U(s)∗F(s) ds.

The composition TT∗ : L1(R; B0)→ L∞(R; B∗0), given by

TT∗F(t) =
∫

R

U(t)U(s)∗F(s) ds,

can be decomposed as the sum of retarded and advanced parts, respectively given by

(TT∗)RF(t) =
∫

s<t
U(t)U(s)∗F(s) ds

and

(TT∗)AF(t) =
∫

s>t
U(t)U(s)∗F(s) ds.

In applications (see Sections 7 and 8 for examples), {U(t) : t ∈ R} is the evolution family
associated to a homogeneous differential equation, T solves the initial value problem of the
homogeneous equation and (TT∗)R solves the corresponding inhomogeneous problem with
zero initial data. Hence, if Bθ denotes the real interpolation space (B0, B1)θ,2 whenever
θ ∈ [0, 1], then corresponding homogeneous and inhomogeneous Strichartz estimates are
given by

‖T f ‖Lq (R;B∗θ ) � ‖ f ‖H ∀f ∈ H(8)

and

∥∥(TT∗)RF
∥∥

Lq(R;B∗θ) � ‖F‖Lq̃′ (R;B
θ̃

) ∀F ∈ Lq̃′ (R; B
θ̃
) ∩ L1(R; B0).(9)
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The following theorem of M. Keel and T. Tao gives conditions on the exponent pairs (q, θ)
and (q̃, θ̃) such that these abstract Strichartz estimates hold.

Definition 1.1. Suppose that σ > 0. We say that a pair of exponents (q, θ) is sharp σ-
admissible if (q, θ, σ) �= (2, 1, 1), 2 ≤ q ≤∞, 0 ≤ θ ≤ 1 and 1

q = σθ
2 .

Theorem 1.2 (Keel–Tao,Theorem 10.1 [13]). Suppose thatσ > 0. If {U(t) : t ∈ R} satisfies
the energy estimate (6) and the dispersive estimate (7) then the Strichartz estimates (8) and
(9) hold for all sharp σ-admissible pairs (q, θ) and (q̃, θ̃).

The range of exponents given by Theorem 1.2 for which the homogeneous estimate (8) is
valid cannot be improved. (One can show this by considering the case when U(t) = eitΔ,
σ = n/2, H = L2(Rn) and (B0, B1) = (L2(Rn), L1(Rn )), which corresponds to the setting
of the Schrödinger equation; see, for example, [13, Section 8].) However, as noted in [13], the
range of exponents given by Theorem 1.2 for the inhomogeneous estimate (9) is suboptimal.
One of the aims of this paper is to extend this range. This has already been achieved by D.
Foschi [5,Theorem 1.4] for the special case when (B0, B1) = (L2(X ), L1(X )).The following
theorem, introduced after Definition 1.3, generalises Foschi’s result and is the main theorem
of our paper.

Definition 1.3. Suppose that σ > 0. We say that a pair (q, θ) of exponents is σ-acceptable
if either

1 ≤ q <∞, 0 ≤ θ ≤ 1,
1

q
< σθ

or (q, θ) = (∞, 0).

If (B0, B1) is a Banach interpolation couple then write Bθ, q for the real interpolation space
(B0, B1)θ, q .

Theorem 1.4. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the energy estimate (6)
and the dispersive estimate (7). Suppose also that the exponent pairs (q, θ) and (q̃, θ̃) are
σ-acceptable and satisfy the scaling condition

1

q
+

1

q̃
=

σ

2
(θ + θ̃).(10)

(i) If

1

q
+

1

q̃
< 1,(11)

(σ − 1)(1− θ) ≤ σ(1 − θ̃), (σ − 1)(1− θ̃) ≤ σ(1− θ),(12)
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Inhomogeneous Strichartz estimates 829

and, in the case when σ = 1, we have θ < 1 and θ̃ < 1, then the inhomogeneous Strichartz
estimate (9) holds.

(ii) If q, q̃ ∈ (1,∞)

1

q
+

1

q̃
= 1(13)

and

(σ − 1)(1− θ) < σ(1− θ̃), (σ − 1)(1− θ̃) < σ(1− θ)(14)

then the inhomogeneous Strichartz estimate

∥∥(TT∗)RF
∥∥

Lq(R;(Bθ, q′ )∗)
� ‖F‖Lq̃′ (R;B

θ̃, q̃′ )
∀F ∈ Lq̃′(R; B

θ̃, q̃′ ) ∩ L1(R; B0)(15)

holds.

Remark 1.5. Suppose that the scaling condition (10) holds. Then the exponent conditions
appearing in (i) and (ii) above are always satisfied if σ < 1 or if σ = 1, θ < 1 and θ̃ < 1.

The closure in the cube [0, 1]4 of the set of points (1/q, θ, 1/q̃, θ̃) that satisfy the hypotheses
of Theorem 1.4 forms a convex polyhedral solid. Projections of this set onto the θq−1–plane
and the θθ̃–plane, as well as the improvement of Theorem 1.4 over Theorem 1.2, are shown
in Figure 1. In Figure 1 (a), the closed line segment OQ corresponds to sharp σ-admissible
pairs (q, θ), while the shaded region represents the set of σ-acceptable pairs. The region
AOEDB in Figure 1 (b) illustrates pairs (θ, θ̃) that correspond to inhomogeneous Strichartz
estimates given by Theorem 1.4. In contrast, the region AOEC represents pairs (θ, θ̃) that
correspond to valid exponents for Theorem 1.2.

The proof of Theorem 1.4 is given in Sections 2 to 5, using techniques introduced in [13]
and adapting part of the argument of [5]. Section 2 states some preliminary results that
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Figure 1 Range of exponents for Theorem 1.4 when σ > 1.
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830 R. Taggart

are used in later sections. Section 3 presents inhomogeneous Strichartz estimates that are
localised in time. In particular, we prove a local estimate corresponding to the point F in
Figure 1 (b), and then interpolate between F and the square AOEC (which corresponds
to local estimates implied by Theorem 1.2) to obtain local estimates for exponents in the
region AOEF . The global inhomogeneous estimates of Theorem 1.4 are then obtained by
decomposing the operator (TT∗)R dyadically as a sum of operators (see Section 4) and
estimating each term in the sum by a local inhomogeneous estimate. The summability of
the local estimates is obtained in Sections 4 and 5 by imposing further conditions on the
exponents, from which we deduce global inhomogeneous estimates in the region AOEDB.

The sharpness of Theorem 1.4 is discussed in Section 6. The rest of the paper is devoted
to applications of Theorem 1.4. In Section 7, we indicate how the results of Vilela [21]
and Foschi [5] for the Schrödinger equation may be recovered from Theorem 1.4. It is
then shown that, for a certain class of potentials, our generalisation allows one to obtain
new Strichartz estimates for Schrödinger equations that cannot be deduced from the more
specialised theorem of [5]. In Section 8, new inhomogeneous Strichartz-type estimates are
obtained for the wave equation by using homogeneous Besov spaces, in the same spirit as
those presented by J. Ginibre and G. Velo [7]. Finally, we indicate how one derives Strichartz
estimates for the Klein–Gordon equation, thus recovering all the inhomogeneous estimates
found by Nakamura and Ozawa [16], as well as giving some new ‘boundary’ estimates.

Acknowledgements. The author would like to thank Michael Cowling for introducing him
to the field of Strichartz estimates, Andrew Hassell for the interest he took in this work and
the staff and graduate students of the School of Mathematics at the University of NSW for
their collegiality. This research was funded by an Australian Postgraduate Award and by
the Australian Research Council’s Centre of Excellence for Mathematics and Statistics of
Complex Systems.

2 Some preliminaries

In this section we give some basic tools that will be used to prove Theorem 1.4. First we
introduce a scaling invariance result that generalises the observation in [13, Section 1].
Second, we present a bilinear formulation of the inhomogeneous Strichartz estimate (9).

Lemma 2.1. If λ > 0 then the estimates (6) and (7) are invariant under the scaling

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U(t) ← U(t/λ)

〈f, g〉 ← 〈f, g〉
‖ f ‖B0

← ‖ f ‖B0

‖ f ‖B1
← λσ/2 ‖ f ‖B1

.

(16)

The lemma can be easily verified by observing that the scaling (16) induces the scaling

‖φ‖B∗1 ← λ−σ/2 ‖φ‖B∗1 ∀φ ∈ B∗.
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Inhomogeneous Strichartz estimates 831

We note here that if θ ∈ [0, 1] then scaling (16) implies the scaling

‖ f ‖Bθ
← λσθ/2 ‖ f ‖Bθ

.

This may be proved directly from the definition of the real interpolated space Bθ using, say,
the K-functional (see [19, Section 4.3] for details).

Following the lead of [13], the Strichartz estimate expressed in (9) as an operator estimate
will be re-expressed as a bilinear estimate, thus facilitating flexibility in manipulation and
interpolation. When B is not the Hilbert space H, denote by 〈 f, g〉B the action of a linear
functional g on an element f of B. Suppose that F and G are in L1(R; B0). Then

〈
(TT∗)RF , G

〉
L∞(R;B∗0) =

∫
R

〈
U(t)

∫ t

−∞
U(s)∗F(s) ds, G(t)

〉
B∗0

dt

=
∫∫

s<t

〈
U(s)∗F(s), U(t)∗G(t)

〉
ds dt.

Now define the bilinear form B on L1(R; B0)× L1(R; B0) by

B(F , G) =
∫∫

s<t

〈
U(s)∗F(s), U(t)∗G(t)

〉
ds dt.(17)

It is not hard to prove the following lemma.

Lemma 2.2. Suppose that q, q̃ ∈ [1,∞] and θ, θ̃ ∈ [0, 1]. Then the inhomogeneous
Strichartz estimate (9) is equivalent to the bilinear estimate

(18) |B(F , G)| � ‖F‖Lq̃′ (R;B
θ̃

) ‖G‖Lq′ (R;Bθ )

∀F ∈ Lq̃′ (R; B
θ̃
) ∩ L1(R; B0) ∀G ∈ Lq′(R; B

θ̃
) ∩ L1(R; B0),

where the bilinear form B is given by (17).

3 Local inhomogeneous Strichartz estimates

Our proof of Theorem 1.4 spans the next three sections, the first two of which closely
follow [5, Sections 2 and 3]. The main result of this section gives the existence of localised
inhomogeneous Strichartz estimates. The following lemma is a preliminary version of this
result.

Lemma 3.1. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the energy estimate
(6) and the dispersive estimate (7). Assume also that I and J are two time intervals of unit
length separated by a distance of scale 1 (that is, |I | = |J | = 1 and dist(I , J ) ≈ 1). Then
the local inhomogeneous Strichartz estimate

∥∥TT∗F
∥∥

Lq (J ;B∗θ) � ‖F‖Lq̃′ (I ;B
θ̃

) ∀F ∈ Lq̃′ (I ; B
θ̃
) ∩ L1(I ; B0)(19)
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holds whenever the pairs (q, θ) and (q̃, θ̃) satisfy the conditions

q, q̃ ∈ [1,∞], θ, θ̃ ∈ [0, 1],(20)

(σ − 1)(1− θ) ≤ σ(1 − θ̃), (σ − 1)(1− θ̃) ≤ σ(1− θ),(21)

1

q
≥ σ

2
(θ − θ̃),

1

q̃
≥ σ

2
(θ̃ − θ).(22)

If σ = 1 then θ and θ̃ must be strictly less than 1.

This lemma and other results appearing in the ensuing sections are proved using a localised
version of Lemma 2.2. Given two intervals I and J of R, write I × J as Q and define BQ by
the formula

BQ(F , G) = B(1I F , 1JG) =
∫∫

(s,t)∈I×J

〈
U(s)∗F(s), U(t)∗G(t)

〉
ds dt(23)

whenever F and G belong to L1(R; B0). One can easily show that the local inhomogeneous
estimate (19) is equivalent to the bilinear estimate

(24) |BQ(F , G)| � ‖F‖Lq̃′ (I ;B
θ̃

) ‖G‖Lq′ (J ;Bθ)

∀F ∈ Lq̃′(I ; B
θ̃
) ∩ L1(I ; B0) ∀G ∈ Lq′ (J ; Bθ) ∩ L1(J ; B0).

Proof of Lemma 3.1. Suppose that I and J are two intervals satisfying the hypothesis of
the theorem and write I × J as Q. Let Ψ denote the set of points (1/q, θ; 1/q̃, θ̃) in [0, 1]4

corresponding to the pairs (q, θ) and (q̃, θ̃) for which estimate (19), or its bilinear equivalent
(24), is valid.

The dispersive estimate (7) implies that

|BQ(F , G)| ≤
∫∫

Q
| 〈F(s), U(s)U(t)∗G(t)

〉
B1
| ds dt(25)

≤
∫∫

Q
‖F(s)‖B1

∥∥U(s)U(t)∗G(t)
∥∥

B∗1
ds dt

�
∫

J

∫
I
|t − s|−σ ‖F(s)‖B1

‖G(t)‖B1
ds dt

� ‖F‖L1(I ;B1) ‖G‖L1(J ;B1) .

Hence (0, 1; 0, 1) ∈ Ψ . On the other hand, the dual∥∥∥∥
∫

R

U(s)∗F(s) ds

∥∥∥∥
H
� ‖F‖Lq′ (R;Bθ) ∀F ∈ Lq′ (R; Bθ) ∩ L1(R; B0)

of the homogeneous Strichartz estimate (8) of Theorem 1.2 implies that

|BQ(F , G)| ≤
∥∥∥∥
∫

I
U(s)∗F(s) ds

∥∥∥∥
H

∥∥∥∥
∫

J
U(t)∗G(t) ds

∥∥∥∥
H

(26)

� ‖F‖Lq̃′ (I ;B
θ̃

) ‖G‖Lq′ (J ;Bθ)
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whenever (q, θ) and (q̃, θ̃) are sharp σ-admissible. Complex interpolation between (25)
and (26) shows that Ψ contains the convex hull of the set

(0, 1; 0, 1) ∪
{

(1/q, θ; 1/q̃, θ̃) : (q, θ) and (q̃, θ̃) are σ-admissible pairs
}

.(27)

Since G is restricted to a unit time interval, Hölder’s inequality gives

‖G‖Lq′ (J ;Bθ) = ‖1JG‖Lq′ (J ;Bθ ) ≤ ‖1J‖Lr′ (J) ‖G‖Lp ′ (J ;Bθ ) � ‖G‖Lp ′ (J ;Bθ)

whenever 1/q′ = 1/r ′+ 1/p ′. We can always perform this calculation provided that p ≤ q.
Similarly, if p̃ ≤ q̃ then

‖F‖Lq̃′ (I ;B
θ̃

) � ‖F‖Lp̃ ′ (I ;B
θ̃

) .

Hence if (1/q, θ; 1/q̃, θ̃) ∈ Ψ then (1/p , θ; 1/p̃ , θ̃) ∈ Ψ whenever p ≤ q and p̃ ≤ q̃. If we
apply this property to the points of the convex hull of (27) then we obtain a set Ψ∗, contained
in Ψ , that is described precisely by the conditions appearing in Lemma 3.1. Details of this
computation are analogous to those of [5, Appendix A] and will be omitted.

Recall (see Lemma 2.1) that the energy estimate (6) and dispersive estimate (7) are invariant
with respect to the rescaling (16). By applying this scaling to the local inhomogeneous
estimate (19), we obtain a version of Lemma 3.1 for intervals I and J that are not of unit
length. Define β(q, θ; q̃ , θ̃) by the formula

β(q, θ; q̃ , θ̃) =
1

q
+

1

q̃
− σ

2
(θ + θ̃).(28)

Theorem 3.2. Suppose that σ > 0, λ > 0 and {U(t) : t ∈ R} satisfies the energy estimate
(6) and the untruncated decay estimate (7). Assume also that I and J are two time intervals
of length λ separated by a distance of scale λ (that is, |I | = |J | = λ and dist(I , J ) ≈ λ).
Then the local inhomogeneous Strichartz estimate

∥∥TT ∗F
∥∥

Lq (J ;B∗θ) � λβ(q,θ;q̃,θ̃) ‖F‖Lq̃′ (I ;B
θ̃

) ∀F ∈ Lq̃′ (I ; B
θ̃
) ∩ L1(I ; B0)(29)

holds whenever the pairs (q, θ) and (q̃, θ̃) satisfy the conditions appearing in Lemma 3.1.

4 Dyadic decompositions

Theorem 3.2 gives spacetime estimates for (TT∗)R which are localised in time. In this section
we move toward obtaining global spacetime estimates for this operator.

We begin with a few preliminaries. We say that λ is a dyadic number if λ = 2k for some
integer k. Denote by 2Z the set of all dyadic numbers. We say that a square in R2 is a dyadic
square if its side length λ is a dyadic number and if the all the coordinates if its vertices are
integer multiples of λ. It is well known (see, for example, [8, Appendix J]) that any open
set Ω in R2 can be decomposed as the union of essentially disjoint dyadic squares whose
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Q

Figure 2 Whitney’s decomposition for the region s < t.

lengths are approximately proportional to their distance from the boundary ∂Ω of Ω. Such
a decomposition is known as a Dyadic Whitney decomposition of Ω.

From now on, let Q denote the Dyadic Whitney decomposition illustrated in Figure 2 for
the domain Ω, where

Ω = {(s, t) ∈ R2 : s < t}.

For each dyadic number λ, let Qλ denote the family contained in Q consisting of squares
with side length λ. Each square Q in Qλ is the Cartesian product I × J of two intervals of
R and has the property that

λ = |I | = |J | ≈ dist(Q, ∂Ω) ≈ dist(I , J ).

Since the squares Q in the decomposition of Ω are essentially pairwise disjoint, we have the
decomposition

B =
∑

λ∈2Z

∑
Q∈Qλ

BQ,(30)

where B is given by (17) and BQ is given by (23) whenever Q = I × J . The bilinear estimate

(31) |BQ(F , G)| � λβ(q,θ;q̃,θ̃) ‖F‖Lq̃′ (I ;B
θ̃

) ‖G‖Lq′ (J ;Bθ )

∀F ∈ Lq̃′ (I ; B
θ̃
) ∩ L1(I ; B0) ∀G ∈ Lq′ (J ; Bθ) ∩ L1(J ; B0)

is equivalent to the scaled local inhomogeneous Strichartz estimate (29). The next proposi-
tion will enable us to replace the localised spaces Lq̃′(I ; B

θ̃
) and Lq′(J ; Bθ) with Lq̃′(R; B

θ̃
)

and Lq′(R; Bθ) at the cost of imposing another condition on q̃ and q.
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Proposition 4.1. Suppose that σ > 0, 1/q +1/q̃ ≤ 1, λ is a dyadic number and {U(t) : t ∈
R} satisfies the energy estimate (6) and untruncated decay (7). If the pairs (q, θ) and (q̃, θ̃)
satisfy the conditions appearing in Lemma 3.1 then

(32)
∑

Q∈Qλ

|BQ(F , G)| � λβ(q,θ;q̃,θ̃) ‖F‖Lq̃′ (R;B
θ̃

) ‖G‖Lq′ (R;Bθ )

∀F ∈ Lq̃′ (R; B
θ̃
) ∩ L1(R; B0) ∀G ∈ Lq′(R; Bθ) ∩ L1(R; B0).

The proposition is a consequence of Theorem 3.2 and [5, Lemma 3.2].

5 Proof of the global inhomogeneous Strichartz estimates

To obtain the required global bilinear estimate (18), one cannot simply sum (32) over all
dyadic numbers λ, since the right-hand side is not summable in λ. To overcome this prob-
lem, we perturb the exponents slightly and interpolate to gain summability. It is at this
stage that we depart from the approach of Foschi [5, Sections 4 and 5], preferring to use
an abstract argument that appeals to real interpolation theory in much the same way as
[13, Section 6]. The abstract argument has the advantage of admitting function spaces other
than the Lebesgue spaces with the side-benefit of shorter proofs.

We require two facts about real interpolation. The first concerns real interpolation of
weighted Lebesgue sequence spaces. Whenever s ∈ R and 1 < q < ∞, let �

q
s denote the

space of all scalar-valued sequences {aj }j ∈Z such that

∥∥{aj }j ∈Z

∥∥
�

q
s

=
( ∑

j ∈Z

2j s|aj |q
)1/q

<∞.

If q =∞ then the norm is defined by

∥∥{aj }j ∈Z

∥∥
�∞s

= sup
j ∈Z

2j s|aj |.

A special case of [1, Theorem 5.6.1] says that if s0 and s1 are two different real numbers
and 0 < θ < 1 then

(�∞s0
, �∞s1

)θ,1 = �1
s ,(33)

where s = (1− θ)s0 + θs1.
The second fact needed is given by the following lemma.

Lemma 5.1 ([1, pp. 76–77]). Suppose that (A0, A1), (B0, B1) and (C0, C1) are interpola-
tion couples and that the bilinear operator S acts as a bounded transformation as indicated
below:
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S : A0 ×B0→ C0

S : A0 ×B1→ C1

S : A1 ×B0→ C1.

If θ0, θ1 ∈ (0, 1) and p , q, r ∈ [1,∞] such that 1 ≤ 1/p + 1/q and θ0 + θ1 < 1, then S also
acts as a bounded transformation in the following way:

S : (A0, A1)θ0,pr × (B0, B1)θ1,qr → (C0, C1)θ0+θ1,r .

We are now ready to prove the global inhomogeneous Strichartz estimates of Theorem 1.4.

Lemma 5.2. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the energy estimate
(6) and the dispersive estimate (7). Then the inhomogeneous Strichartz estimate (9) holds
whenever the exponent pairs (q, θ) and (q̃, θ̃) satisfy the conditions

q, q̃ ∈ (1,∞), θ, θ̃ ∈ [0, 1],

(σ − 1)(1− θ) ≤ σ(1 − θ̃), (σ − 1)(1− θ̃) ≤ σ(1− θ),

1

q
>

σ

2
(θ − θ̃),

1

q̃
>

σ

2
(θ̃ − θ),

1

q
+

1

q̃
< 1

and

1

q
+

1

q̃
=

σ

2
(θ + θ̃).(34)

If σ = 1 then we also require that θ < 1 and θ̃ < 1.

Proof. Suppose that the exponent pairs (q, θ) and (q̃, θ̃) satisfy the conditions appearing in
the statement of the theorem. Then there is a positive ε such that the pairs (q0, θ) and (q̃0, θ̃)
and the pairs (q1, θ) and (q̃1, θ̃), defined by

1

q0
=

1

q
− ε,

1

q̃0
=

1

q̃
− ε,

1

q1
=

1

q
+ 2ε,

1

q̃1
=

1

q̃
+ 2ε,

also satisfy all the conditions appearing in the statement of the theorem except for (34).
Define a function B̃ on L1(R; B0)× L1(R; B0) by

B̃(F , G) =

{ ∑
Q∈Q2−j

BQ(F , G)

}

j ∈Z

.
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Proposition 4.1 implies that the maps

B̃ : Lq̃′0 (R; B
θ̃
)× Lq′0 (R; Bθ)→ �∞

β(q0,θ;q̃0 ,θ̃)

B̃ : Lq̃′0 (R; B
θ̃
)× Lq′1 (R; Bθ)→ �∞

β(q1,θ;q̃0 ,θ̃)

B̃ : Lq̃′1 (R; B
θ̃
)× Lq′0 (R; Bθ)→ �∞

β(q0,θ;q̃1 ,θ̃)

are bounded. Note that β(q1, θ; q̃0, θ̃) = β(q0, θ; q̃1, θ̃). So we may apply Lemma 5.1 to
obtain the bounded map

(35) B̃ :
(
Lq̃′0 (R; B

θ̃
), Lq̃′1(R; B

θ̃
)
)
η0,q̃′ ×

(
Lq′0(R; Bθ), Lq′1 (R; Bθ)

)
η1,q′

→ (
�∞
β(q0,θ;q̃0,θ̃)

, �∞
β(q1,θ;q̃0 ,θ̃)

)
η,1

where η0 = η1 = 1
3 and η = η0 + η1. It is easy to check that

(1 − η)β(q0, θ; q̃0, θ̃) + ηβ(q1, θ; q̃0, θ̃) = β(q, θ; q̃, θ̃) = 0.

If we combine this with (33) then (35) simplifies to

B̃ : Lq̃′ (R; B
θ̃
)× Lq′(R; Bθ)→ �1

0,

from which we obtain the bilinear estimate (18).

In the above proof we first perturbed the time exponents q and q̃ in estimate (32) and then
interpolated. Successful perturbation required strict inequalities in the conditions appearing
in Lemma 3.1 that involved q and q̃. The proof (which we omit) of the next lemma uses the
same idea, except that the spatial exponents θ and θ̃ are perturbed instead. This allows us to
recover some boundary cases that the previous lemma excludes.

Lemma 5.3. Suppose that σ > 0 and that {U(t) : t ∈ R} satisfies the energy estimate (6)
and the untruncated decay estimate (7). Then the inhomogeneous Strichartz estimate (15)
holds whenever the exponent pairs (q, θ) and (q̃, θ̃) satisfy the conditions

q, q̃ ∈ (1,∞], θ, θ̃ ∈ (0, 1),

(σ − 1)(1− θ) < σ(1− θ̃), (σ − 1)(1− θ̃) < σ(1− θ),

1

q
>

σ

2
(θ − θ̃),

1

q̃
>

σ

2
(θ̃ − θ),(36)

1

q
+

1

q̃
≤ 1

and

1

q
+

1

q̃
=

σ

2
(θ + θ̃).
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The two previous lemmata combine to give Theorem 1.4. For example, suppose that (q, θ)
and (q̃, θ̃) satisfy the conditions appearing in Theorem 1.4 case (ii). If θ > 0 and θ̃ > 0 then
σ-acceptability is equivalent to (36) by the scaling condition (10). In this case, Lemma 5.3
shows that the retarded Strichartz estimate (15) holds. On the other hand, if either θ = 0
or θ̃ = 0 then σ-acceptability, (10) and (14) imply that both (q, θ) and (q̃, θ̃) are sharp
σ-admissible. Hence the Strichartz estimate (9) holds by Theorem 1.2. But since q ≥ 2 and
q̃ ≥ 2, [1, Theorem 3.4.1] gives the continuous embeddings Bθ,q′ ⊆ Bθ and B

θ̃,q̃′ ⊆ B
θ̃

and thus (9) implies (15).

6 The sharpness of the main theorem

In this section we briefly comment on the sharpness of the exponent conditions appearing
in Theorem 1.4.

Proposition 6.1. Suppose that σ > 0 and that the inhomogeneous Strichartz estimate (9)
holds for any {U(t) : t ≥ 0} satisfying the energy estimate (6) and the dispersive estimate (7).
Then (q, θ) and (q̃, θ̃) must be σ-admissible pairs that satisfy the following conditions:

1

q
+

1

q̃
=

σ

2
(θ + θ̃),(37)

1

q
+

1

q̃
≤ 1,(38)

|θ − θ̃| ≤ 1

σ
(39)

and

(σ − 1)(1− θ) − 2

q
≤ σ(1− θ̃), (σ − 1)(1− θ̃)− 2

q
≤ σ(1− θ).(40)

Moreover, if σ = 1 then the inhomogeneous estimate is false when θ = θ̃ = 1.

The proof follows from considerations on the Schrödinger group {eitΔ : t ∈ R} on L2(Rn);
see [5] or [21] for details.

We note that the difference in the necessary and sufficient conditions for the validity of
the inhomogeneous Strichartz estimate (9) essentially lies in two places. First there is the
gap between (40) and (12). Second, there is the gap between the range of values for θ and θ̃
as shown in Figure 3. In particular, the region AOEDB corresponds to sufficient conditions
for θ and θ̃ while the region AOED′B′ corresponds to necessary conditions. The boundaries
of each region are included except the line segment BD for the sufficient conditions. This
discrepancy along BD is muted somewhat by the validity of the inhomogeneous estimate
(15) when σ

2 (θ + θ̃) = 1.
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1

1 θ

θ̃

1
σ

1
σ

||

|
|

O

A

B
B′

C

D

D′

E

F

Figure 3 Necessary and sufficient conditions on the exponents θ and θ̃ for global inhomogeneous
Strichartz estimates.

7 Application to the Schrödinger equation with potential

In this section we show how Theorem 1.4 is used to obtain Strichartz estimates for various
Schrödinger equations. First we consider the standard Schrödinger equation (that is, without
potential) and show that Theorem 1.4 recovers the Strichartz estimates obtained by Foschi
[5] and Vilela [21]. After this we obtain Strichartz estimates for Schrödinger equations with
potential (see Corollary 7.7); these cannot be deduced from the results of [5] and [21].

First we remind readers about the real interpolation of Lp spaces. Suppose that p0, p1 ∈
[1,∞], p0 �= p1, min(p0, p1) < q ≤ ∞ and 0 < θ < 1. If 1/p = (1− θ)/p0 + θp1 then

(
Lp0 (Rn), Lp1 (Rn)

)
θ, q = Lp ,q(Rn),

where Lp ,q(Rn) denotes the Lorentz space (with exponents p and q) on Rn (see [1, Theorem
5.2.1]). Moreover, we have the continuous embedding

Lp (Rn) ⊆ (Lp0(Rn), Lp1 (Rn)
)
θ, q = Lp ,q(Rn)

whenever p ≤ q (see [1, p. 2]).
Suppose that n is a positive integer. We say that a pair (q, r) of Lebesgue exponents are

Schrödinger n-acceptable if either

1 ≤ q <∞, 2 ≤ r ≤ ∞,
1

q
< n

(
1

2
− 1

r

)

or (q, r) = (∞, 2).
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Corollary 7.1 (Foschi [5], Vilela [21]). Suppose that n is a positive integer and that the
exponent pairs (q, r) and (q̃, r̃) are Schrödinger n-acceptable, satisfy the scaling condition

1

q
+

1

q̃
=

n

2

(
1− 1

r
− 1

r̃

)

and either the conditions

1

q
+

1

q̃
< 1,

n − 2

r
≤ n

r̃
,

n − 2

r̃
≤ n

r

or the conditions

1

q
+

1

q̃
= 1,

n − 2

r
<

n

r̃
,

n − 2

r̃
<

n

r
,

1

r
≤ 1

q
,

1

r̃
≤ 1

q̃
.

When n = 2 we also require that r < ∞ and r̃ < ∞. If F ∈ Lq̃′ (R; Lr̃′ (Rn)) and u is a
weak solution of the inhomogeneous Schrödinger equation

iu′(t) + Δu(t) = F(t), u(0) = 0

then

‖u‖Lq(R;Lr (Rn)) � ‖F‖Lq̃′ (R;Lr̃′ (Rn )) .(41)

Proof. This is a simple application of Theorem 1.4 when H = L2(Rn ), (B0, B1) =
(L2(Rn), L1(Rn)), σ = n/2 and U(t) = eitΔ. That the energy estimate is satisfied fol-
lows from Plancherel’s theorem, while the dispersive estimate follows from a simple bound
on the integral representation of eitΔ (see, for example, [5, Section 6] for details). To obtain
(41) from (15), we use the embedding Lr′ (Rn) ⊆ Lr′,q′ (Rn) whenever r ′ ≤ q′.

We now show that our generalisation of Foschi’s work [5] allows one to obtain new Strichartz
estimates for Schrödinger equations involving certain potentials.

Suppose that V : R3→ R is a real-valued potential on R3 with decay

|V(x)| ≤ C 〈x〉−β ∀x ∈ R3,(42)

where β > 5/2 and 〈x〉 = (1 + |x |2)1/2. Consider the Hamiltonian operator H , given by
H = −Δ+V, on the Hilbert space L2(R3) with domain W2,2(R3), where Wk,p (X ) denotes
the Sobolev space of order k in Lp (X ). Our goal is to obtain spacetime estimates for the
solution u of the inhomogeneous initial value problem

{(
i ∂
∂t + H

)
u(t) = F(t) ∀t ∈ [0, τ ],

u(0) = f ,
(43)

where τ > 0 and, for each time t in R, f and F(t) are complex-valued functions on R3.
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Hamiltonians that satisfy the above conditions are considered by K.Yajima in [23]. There
it mentions that H is self-adjoint on L2(R3) with a spectrum consisting of a finite number
of nonpositive eigenvalues, each of finite multiplicity, and the absolutely continuous part
[0,∞). Denote by Pc the orthogonal projection from L2(R3) onto the continuous spectral
subspace for H . Under the general assumption (42), it is known that Pc, when viewed as an
operator on Lp (R3), is bounded only when 2/3 < p < 3.

Denote by Hγ the weighted Lebesgue space L2(R3, 〈x〉2γ dx). When γ ∈ (1/2, β−1/2),
define the null space N by

N =
{

φ ∈ H−γ : φ(x) +
1

4π

∫
R3

V(y)φ(y)

|x − y| dy = 0

}
.

As noted in [23], the space N is finite dimensional and is independent of the choice of γ in
the interval (1/2, β−1/2). All φ belonging to N satisfy the stationary Schrödinger equation

−Δφ(x) + V(x)φ(x) = 0,(44)

where (44) is to be interpreted in the distributional sense. Conversely, any function φ ∈
H−3/2 which satisfies (44) belongs to N. Hence, if 0 is an eigenvalue of H with associated
eigenspace E, then E is a subspace of N.

Definition 7.2. We say that H or V is of generic type if N = {0} and is of exceptional type
otherwise. The Hamiltonian H is of exceptional type of the first kind if N �= {0} and 0 is not
an eigenvalue of H . It is of exceptional type of the second kind if E = N �= {0}. Finally, we
say that H is of exceptional type of the third kind if {0} ⊂ E ⊂ N with strict inclusions.

While most V are of generic type, examples that are of exceptional type are interesting
from a physical point of view. In particular, if V is of exceptional of the third kind then any
function φ in N\E is called a resonance of H .

We would like to apply Theorems 1.2 and 1.4 to the case where U(t) is the operator eitH ,
defined by the functional calculus for self-adjoint operators. However, if g is an eigenfunction
of H with corresponding eigenvalue λ, then

U(s)U(t)∗g = ei(s−t)Hg = ei(s−t)λg(45)

and therefore U(s)U(t)∗g is stationary. Consequently, the dispersive hypothesis (7) is not
satisfied. Fortunately, this is not the case if g lies in the continuous spectral subspace of H .

Theorem 7.3 (K. Yajima [23]). There exists a positive constant Cp such that the dispersive
estimate

∥∥eitH Pcg
∥∥

p ′ ≤ Cp |t|−3(1/p−1/2) ‖g‖p ∀g ∈ L2(R3) ∩ Lp (R3) ∀ real t �= 0(46)

is satisfied in the following two cases:



�

�
“Forum Mathematicum, Verlag Walter de Gruyter GmbH & Co. KG” — 2010/3/1 — 13:21 — page 842 — #18

�

�

�

�

�

�

842 R. Taggart

(i) if H is of generic type, β > 5/2 and 1 ≤ p ≤ 2; and
(ii) if H is of exceptional type, β > 11/2 and 3/2 < p ≤ 2.

Remark 7.4. If H is of exceptional type then (46) cannot hold when p = 1, otherwise it
would contradict the local decay estimate of Jensen–Kato [10] or Murata [15]. Hence one
cannot apply the results of Foschi [5] to this situation.

Our immediate goal is to apply Theorems 1.2 and 1.4 to the continuous spectral subspace
of H . If u is a solution to (43), define uc by uc(t) = Pcu(t) for all t in [0, τ ]. Similarly, let
Ppp denote the orthogonal projection onto the pure-point spectral subspace of H and define
upp by upp (t) = Ppp u(t) for all t in [0, τ ]. It is clear that u = upp + uc .

The dispersive estimate (46) gives rise to the admissibility conditions

1

q
+

3

2r
=

3

4
, 4 < q ≤ ∞; 1

q̃
+

3

2r̃
=

3

4
, 4 < q̃ ≤ ∞(47)

sketched in Figure 4. These correspond to the sharp σ-admissibility conditions in the case
when σ = 3(1/p − 1/2), H = B0 = L2(R3), B1 = Lp (R3) and p → 3/2 from above.
Note that they also correspond to the Schrödinger admissibility conditions (5) when n = 3,
but with restricted range.

When considering the inhomogeneous problem with zero initial data, the exponent con-
ditions of Theorem 1.4 reduce to the scaling condition

1

q
+

1

q̃
=

3

2

(
1− 1

r
− 1

r̃

)
(48)

and the acceptability conditions

1 ≤ q <∞, 2 ≤ r < 3,
1

q
< 3

(
1

2
− 1

r

)
, or (q, r) = (∞, 2);(49)

1 ≤ q̃ <∞, 2 ≤ r̃ < 3,
1

q̃
< 3

(
1

2
− 1

r̃

)
, or (q̃, r̃) = (∞, 2).(50)

This is because σ = 3(1/p − 1/2) < 1.

Corollary 7.5. Suppose that u is a (weak) solution to problem (43) for some data f in
L2(R3), some source F and for some time τ in (0,∞).

(i) If (q, r) and (q̃, r̃) satisfy the admissibility condition (47) and F belongs to
Lq̃′ ([0, τ ]; Lr̃′ (R3)), then

‖uc‖Lq([0,τ ],Lr(R3)) � ‖ f ‖L2(R3) + ‖F‖Lq̃′ ([0,τ ],Lr̃′(R3)) .(51)

(ii) If the exponent pairs (q, r) and (q̃, r̃) satisfy conditions (48), (49) and (50), f = 0 and
F ∈ Lq̃′ ([0, τ ]; Lr̃′(R3)), then

‖uc‖Lq([0,τ ],Lr(R3)) � ‖F‖Lq̃′ ([0,τ ],Lr̃′(R3)) .
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1
2

1
2

1
r

1
q

1
3

1
4

|
|

0

A

B

Figure 4 The line segment AB and the shaded region respectively give admissible and acceptable
exponents for Strichartz estimates associated to the inhomogeneous initial value problem (43).

Proof. Fix p such that

3/2 < p < min{r ′, r̃ ′}.
For t in R define U(t) on L2(R3) by U(t) = 1[0,τ ](t)eitH Pc. If g belongs to L2(R3)∩Lp (R3),
then

∥∥U(s)U(t)∗g
∥∥

p ′ ≤ Cp |s − t|−3(1/p−1/2) ‖g‖p
by Theorem 7.3. Therefore {U(t) : t ∈ R} satisfies the dispersive estimate (7) when σ =
3(1/p − 1/2), B0 = H = L2(R3) and B1 = Lp (R3). Moreover, since each operator e−itH

on L2(R3) is unitary and Pc is an orthogonal projection, {U(t) : t ∈ R} also satisfies the
energy estimate (6). Now if u is a weak solution to (43) then

u(t) = eitH f − i
∫ t

0
ei(t−s)HF(s) ds(52)

by Duhamel’s principle and the functional calculus for self-adjoint operators. Hence uc(t) =
T f (t) − i(TT∗)RF(t). An application of Theorem 1.2 and Theorem 1.4 gives the required
spacetime estimates for uc once we observe that

Lr′ (R3) ⊆ Lr′,2(R3) = Bθ,

where 1/r ′ = (1− θ)/2 + θ/p and the inclusion is continuous.

To find a spacetime estimate for the solution u of (43), we now need only analyse the
projection of each u(t) onto the pure point spectral subspace of H . It is known (see [23,
p. 477]) that eigenfunctions of H with negative eigenvalues decay at least exponentially.
Since such eigenfunctions belong to the domain of Δ, they are necessarily continuous and
consequently also belong to Lr(R3) whenever 1 ≤ r ≤ ∞ by Sobolev embedding. However,
if 0 is an eigenvalue then a corresponding eigenfunction φ may decay as slowly as C〈x〉−2

when |x | → ∞. Hence, in general, φ is a member of Lp (R3) only when p > 3/2.
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Except in the case when the time exponent is∞, one cannot hope for a spacetime estimate
for upp which is global in time due to (45). However, one can still obtain spacetime estimates
on finite time intervals.

Lemma 7.6. Suppose that τ > 0, that q, q̃ ∈ [1,∞] and that r, r̃ ∈ (3/2, 3). Suppose also
that f ∈ L2(R3), F ∈ Lq̃′ ([0, τ ], Lr̃′ (R3)) and H is of exceptional type. If u is a (weak)
solution to problem (43) then

∥∥upp

∥∥
Lq([0,τ ],Lr(R3)) ≤ Cr,H

(∥∥Ppp f
∥∥

2 + τ 1/q+1/q̃
∥∥Ppp F

∥∥
Lq̃′ ([0,τ ],Lr̃′(R3))

)

where the positive constant Cr,H depends on r and H only. If q = q̃ =∞ then τ 1/q+1/q̃ is
interpreted as 1.

Proof. Suppose that {φj : j = 1, . . . , n} is a complete orthonormal set of eigenfunctions
for H on L2(R3) corresponding to the set {λj : j = 1, . . . , n} of eigenvalues (counting
multiplicities). Write

Ppp f =
n∑

i=1
αj φj and Ppp F(s) =

n∑
j =1

βj (s)φj ,

where each αj and βj (s) is a complex scalar. By orthogonality and the equivalence of norms
in finite dimensional normed spaces, there are positive constants C and C′ (both independent
of f , F(s), {αj } and {βj (s)}) such that

n∑
j =1
|αj | ≤ C

( n∑
j =1
|αj |2

)1/2
= C

∥∥Ppp f
∥∥

2

and
n∑

j =1
|βj (s)| ≤ C

( n∑
j =1
|βj (s)|2

)1/2
= C

∥∥Ppp F(s)
∥∥

2 ≤ C′
∥∥Ppp F(s)

∥∥
r̃′ .

Following from (52),

upp (t) =
n∑

j =1
αj e

itλj φj − i
∫ t

0

n∑
j =1

βj (s)ei(t−s)λj φj ds.

By taking the Lq([0, τ ], Lr (R3)) norm and applying Hölder’s inequality,∥∥upp

∥∥
Lq([0,τ ],Lr(R3))

≤
n∑

i=j
|αj |

∥∥φj

∥∥
r +

∥∥∥∥∥
∫ t

0

n∑
j =1
|βj (s)| ∥∥φj

∥∥
r ds

∥∥∥∥∥
Lq([0,τ ])

≤ C′′ max
1≤j≤n

∥∥φj

∥∥
r

(∥∥Ppp f
∥∥

2 +
∥∥∥∥
∫ t

0

∥∥Ppp F(s)
∥∥

r̃′ ds

∥∥∥∥
Lq ([0,τ ])

)
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≤ Cr,H

(∥∥Ppp f
∥∥

2 + τ 1/q
∥∥Ppp F

∥∥
L1([0,τ ];Lr̃′(R3))

)

≤ Cr,H

(∥∥Ppp f
∥∥

2 + τ 1/q+1/q̃
∥∥Ppp F

∥∥
Lq̃′ ([0,τ ];Lr̃′(R3))

)

where Cr,H = C′′ max
1≤j≤n

∥∥φj

∥∥
r . This completes the proof.

Combining the lemma with Corollary 7.5 and the fact that u = uc +upp gives the following
result.

Corollary 7.7. Suppose that H is of exceptional type, that τ > 0 and that (q, r) and (q̃, r̃)
satisfy the admissibility conditions (47). If f ∈ L2(R3) and F ∈ Lq̃′([0, τ ], Lr̃′ (R3)) and u
is a (weak) solution to problem (43) then

‖u‖Lq
t ([0,τ ],Lr(R3)) � ‖ f ‖L2(R3) +

(
1 + τ 1/q+1/q̃

) ‖F‖
L

q̃′
t ([0,τ ],Lr̃′(R3))

.(53)

If q = q̃ =∞ then τ 1/q+1/q̃ is interpreted as 1. If f = 0 then the conditions on (q, r) and
(q̃, r̃) may be relaxed to satisfying (48), (49) and (50).

8 Application to the wave equation

In this section we consider the wave equation. Keel and Tao [13] indicated that Theorem 1.2
could be used to obtain Strichartz estimates (in Besov norms), following a similar approach
to [7], but did not show any details. We shall therefore do so here, presenting the results in
Corollary 8.3.These estimates coincide with those of [7], except that the so-called ‘endpoint’
estimate is now included (see the point Q in Figure 5 (a)). Next we apply Theorem 1.4 to the
wave equation, thus obtaining a new set of inhomogeneous Strichartz estimates for the wave
equation (see Corollary 8.7 and Remark 8.8). Finally, we indicate how a small modification
of these arguments enables one to obtain Strichartz estimates for the Klein–Gordon equation
(see Corollary 8.9).

This section assumes basic familiarity with homogeneous Sobolev and Besov spaces on
Rn , which we denote by Ḣ

ρ
r and Ḃ

ρ
r,s. For a brief but sufficient introduction, see [7] or [19,

Section 3.4]; for a treatment at greater depth, the reader is referred to [1] and [20]. We here
summarise some basic inclusion and interpolation results.

Lemma 8.1 ([20, Section 2.4]). Suppose that ρ0, ρ1 ∈ R, ρ0 �= ρ1, r0, r1 ∈ [1,∞), r0 �= r1
and θ ∈ (0, 1). Then

Ḃ
ρ
r,2 ⊆

(
Ḃ

ρ0
r0 ,2, Ḃρ1

r1 ,2

)
θ, 2

(54)

where

ρ = (1− θ)ρ0 + θρ1,
1

r
=

1− θ

r0
+

θ

r1

and the inclusion is continuous.
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Lemma 8.2 ([1, Section 6.5]). Suppose that 1 ≤ r2 ≤ r1 ≤ ∞, 1 ≤ s ≤ ∞, ρ1, ρ2 ∈ R

and ρ1 − n/r1 = ρ2 − n/r2. Then Ḃ
ρ2
r2, s ⊆ Ḃ

ρ1
r1, s and

‖u‖Ḃρ1
r1, s
≤ C ‖u‖Ḃρ2

r2, s
(55)

for some positive constant C.

The homogeneous Sobolev spaces are related to the homogeneous Besov spaces by the
continuous embeddings

Ḃ
ρ
r, 2 ⊆ Ḣρ

r when 2 ≤ r <∞; Ḃ
ρ
r, 2 ⊇ Ḣρ

r when 1 < r ≤ 2,(56)

whenever ρ ∈ R. When r = 2 it is customary to write Ḣρ instead of Ḣ
ρ
2 . In this case (56)

reduces to Ḣρ = Ḃρ
2,2.

We are now ready to apply Theorem 1.2 to the wave equation.

Corollary 8.3. Suppose that n ≥ 1, that μ, ρ, ρ̃ ∈ R, that q, q̃ ∈ [2,∞] and that the
following conditions are satisfied:

q ≥ 2, q̃ ≥ 2,(57)

1

q
≤ n − 1

2

(
1

2
− 1

r

)
,

1

q̃
≤ n − 1

2

(
1

2
− 1

r̃

)
,

(q, r, n) �= (2,∞, 3), (q̃, r̃ , n) �= (2,∞, 3),

ρ + n

(
1

2
− 1

r

)
− 1

q
= μ = 1−

(
ρ̃ + n

(
1

2
− 1

r̃

)
− 1

q̃

)
.

Suppose also that f ∈ Ḣμ, g ∈ Ḣμ−1 and F ∈ Lq̃′(R; Ḃ−ρ̃
r̃′, 2). If u is a (weak) solution to the

initial value problem

⎧⎪⎨
⎪⎩
− u′′(t) + Δu(t) = F(t)

u(0) = f

u′(0) = g

(58)

then

‖u‖Lq(R;Ḃρ
r,2 ) � ‖ f ‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Lq̃′ (R;Ḃ−ρ̃
r̃′, 2

)
.(59)

When n > 3, the darker closed region of Figure 5 (a) represents the range of exponent pairs
(q, r) and (q̃, r̃) such that the Strichartz estimate (59) is valid.

Remark 8.4. Corollary 8.3 implies Strichartz estimates for spaces more familiar than the
Besov spaces. By Besov–Sobolev embedding, estimate (59) still holds when Ḃ

ρ
r, 2 is replaced
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everywhere by Ḣ
ρ
r under the additional assumption that r <∞ and r̃ <∞. In fact, using

Sobolev embedding, one can deduce that

‖u‖Lq(R;Lr (Rn )) � ‖ f ‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖Lq̃′ (R;Lr̃′ (Rn))

under the additional assumption that r <∞ and r̃ <∞. One may also replace the infinite
interval R by any finite time interval [0, τ ] where τ > 0. See [13, Corollary 1.3] and [7] for
these variations.

We begin with a heuristic argument to indicate how Theorem 1.2 will be applied in this
setting. For convenience, write ω for the operator (−Δ)1/2. The homogeneous problem may
be written as

v′′(t) + ω2v(t) = 0, v(0) = f, v′(0) = g,

with solution v is given by

v(t) = cos(ωt) f + ω−1 sin(ωt)g.

The inhomogeneous problem

−w′′(t) + Δw(t) = F(t), w(0) = 0, w′(0) = 0

may be solved by Duhamel’s principle to give

w(t) =
∫

s<t
ω−1 sin

(
ω(t − s)

)
F(s) ds.

Define {U(t) : t ∈ R} by U(t) = eiωt . Then the solution u to problem (58) can be written as

u(t) = v(t) + w(t)(60)

=
1

2

(
U(t) + U(−t)

)
f + ω−1 1

2i

(
U(t) −U(−t)

)
g

+
∫

s<t
ω−1 1

2i

(
U(t)U(s)∗ − U(−t)U(−s)∗

)
F(s) ds

and it is clear that if we have appropriate Strichartz estimates for the group {U(t) : t ∈ R}
then (59) will follow. Hence define the operator T by T f (t) = U(t) f , whenever f belongs
to the Hilbert space Ḃ0

2,2.
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Lemma 8.5. Suppose that n ≥ 1 and that the triples (q, r, γ) and (q̃, r̃ , γ̃) satisfy the
conditions

q ≥ 2, q̃ ≥ 2,(61)

1

q
=

n − 1

2

(
1

2
− 1

r

)
,

1

q̃
=

n − 1

2

(
1

2
− 1

r̃

)
,(62)

γ =
n + 1

2

(
1

2
− 1

r

)
, γ̃ =

n + 1

2

(
1

2
− 1

r̃

)
,(63)

(q, r, n) �= (2,∞, 3), (q̃, r̃, n) �= (2,∞, 3).(64)

Then the operator T satisfies the Strichartz estimates

‖T f ‖Lq(R;Ḃ−γ
r,2 ) � ‖ f ‖Ḃ0

2,2
∀ f ∈ Ḃ0

2,2(65)

and

∥∥(TT∗)RF
∥∥

Lq(R;Ḃ−γ
r, 2 ) � ‖F‖Lq̃′ (R;Ḃγ̃

r̃′, 2
)

∀F ∈ Lq̃′(R; Ḃγ̃
r̃′, 2).(66)

Proof. The dispersive estimate

‖U(t) f ‖
Ḃ−(n+1)/4
∞,2

� |t|−(n−1)/2 ‖ f ‖
Ḃ(n+1)/4

1,2
∀ f ∈ Ḃ

(n+1)/4
1,2

is a consequence of a stationary phase estimate (see [7, pp. 62–63] or [19, Section 4.8] for
a clear exposition). Moreover, each U(t) is an isometry on the homogeneous Sobolev space
Ḣ 0 and hence we have the energy estimate

‖U(t)f ‖Ḃ0
2,2
� ‖ f ‖Ḃ0

2,2
∀ f ∈ Ḃ0

2,2,

by (56). If H = B0 = Ḃ0
2,2 and B1 = Ḃ

(n+1)/4
1,2 then

Ḃγ
r′ ,2 ⊆ Bθ = (B0, B1)θ,2

by (54), where 1/r ′ = (1 − θ)/2 + θ and γ = (n + 1)θ/4. It is not hard to show from here
that Theorem 1.2 proves the lemma.

Proof of Corollary 8.3. It is well known that if μ ∈ R, then ωμ is an isomorphism from
Ḃ

γ
r, 2 to Ḃ

γ−μ
r, 2 . Hence replacing f with ωμf in (65) gives

‖T f ‖
Lq(R;Ḃ−γ+μ

r, 2 ) � ‖ f ‖Ḃμ
2,2

∀f ∈ Ḃ
μ
2, 2.

The same trick applied to (66) yields

∥∥(TT∗)RF
∥∥

Lq(R;Ḃ−γ+μ
r, 2 ) � ‖F‖Lq̃′ (R;Ḃγ̃+μ

r̃′, 2
)

∀F ∈ Lq̃′ (R; Ḃγ̃+μ
r̃′, 2 ).
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If ρ = −γ + μ and ρ̃ = −(γ̃ + μ − 1), then these estimates combine with (60) and the
isomorphism ω−1 to give

‖u‖Lq(R;Ḃρ
r,2) � ‖ f ‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Lq̃′ (R;Ḃ−ρ̃
r̃′, 2

)
.(67)

So far we have imposed the conditions μ ∈ R, (61), (62), (64) and

ρ +
n + 1

2

(
1

2
− 1

r

)
= μ = 1− ρ̃− n + 1

2

(
1

2
− 1

r̃

)
.

This last condition may be rewritten as

ρ + n

(
1

2
− 1

r

)
− 1

q
= μ = 1− ρ̃− n

(
1

2
− 1

r̃

)
+

1

q̃
.

Now if r1 ≥ r and ρ− n/r = ρ1 − n/r1, then

‖u‖Lq(R;Ḃρ1
r1, 2) ≤ C ‖u‖Lq (R;Ḃρ

r, 2 )

by Lemma 8.2. Similarly, if r̃1 ≥ r̃ and ρ̃− n/r̃ = ρ̃1 − n/r̃1, then

‖F‖
Lq̃′ (R;Ḃ−ρ̃

r̃′, 2
)
≤ C ‖F‖

Lq̃′ (R;Ḃρ̃1
r̃′1, 2

)
.

Applying these estimates to (67) gives

‖u‖Lq(R;Ḃρ1
r1, 2) � ‖ f ‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Lq̃′ (R;Ḃ−ρ̃1
r̃′1 , 2

)
(68)

whenever the conditions

q ≥ 2, q̃ ≥ 2,

1

q
≤ n − 1

2

(
1

2
− 1

r1

)
,

1

q̃
≤ n − 1

2

(
1

2
− 1

r̃1

)
,

(q, r1, n) �= (2,∞, 3), (q̃, r̃1, n) �= (2,∞, 3),

ρ1 + n

(
1

2
− 1

r1

)
− 1

q
= μ = 1− ρ̃1 − n

(
1

2
− 1

r̃1

)
+

1

q̃

are satisfied. These conditions and the Strichartz estimate (68) coincide with those in the
statement of Corollary 8.3.

Remark 8.6. One can see from (60) that the derivative u′ can also be expressed in terms of
T , (TT∗)R and ω. Thus we have the Strichartz estimate

∥∥u′
∥∥

Lq (R;Ḃρ−1
r, 2 )
� ‖f ‖Ḣμ + ‖g‖Ḣμ−1 + ‖F‖

Lq̃′ (R;Ḃ−ρ̃
r̃′, 2

)

whenever the exponents satisfy the conditions of Corollary 8.3.
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We now consider the inhomogeneous wave equation with zero initial data. Suppose that n
is a positive integer. We say that a pair (q, r) of Lebesgue exponents are wave n-acceptable
if either

1 ≤ q <∞, 2 ≤ r ≤ ∞,
1

q
< (n − 1)

(
1

2
− 1

r

)

or (q, r) = (∞, 2). By using the same method to prove Corollary 8.3, one can show that
Theorem 1.4 (i) implies the following result.

Corollary 8.7. Suppose that n is a positive integer and that the exponent pairs (q, r1) and
(q̃, r̃1) are wave n-acceptable, satisfy the scaling condition

1

q
+

1

q̃
=

n − 1

2

(
1− 1

r1
− 1

r̃1

)

and the conditions

1

q
+

1

q̃
< 1,

n − 3

r1
≤ n − 1

r̃1
,

n − 3

r̃1
≤ n − 1

r1
.

When n = 3 we also require that r1 <∞ and r̃1 <∞. If r ≥ r1, r̃ ≥ r̃1, ρ ∈ R,

ρ + n

(
1

2
− 1

r

)
− 1

q
= 1−

(
ρ̃ + n

(
1

2
− 1

r̃

)
− 1

q̃

)
,

F ∈ Lq̃′ (R; Ḃ−ρ̃
r̃′, 2) and u is a weak solution of the inhomogeneous wave equation

−u′′(t) + Δu(t) = F(t), u(0) = 0, u′(0) = 0,(69)

then

‖u‖Lq(R;Ḃρ
r, 2 ) � ‖F‖Lq̃′ (R;Ḃ−ρ̃

r̃′, 2
)
.(70)

Figure 5 shows the range for various exponents appearing in Corollary 8.7. In the first
diagram, the dark region represents the range for the homogeneous Strichartz estimate while
the union of light and dark regions represents the range for the inhomogeneous Strichartz
estimate. In the second diagram, the coordinates of C and D are respectively given by

(
(n−3)2

2(n−2)(n−1),
n−3

2(n−2)

)
and

(
n−3

2(n−2),
(n−3)2

2(n−2)(n−1)

)
.

Remark 8.8. An application of Theorem 1.4 (ii) to the inhomogeneous wave equation (69)
cannot be simply integrated into the results of Corollary 8.7. Instead, one obtains Strichartz
estimates of the form

‖u‖Lq(R;Ḃρ
r, 2∨q ) � ‖F‖Lq̃′ (R;Ḃ−ρ̃

r̃′, 2∧q
)
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|

0 n−3
2(n−1)

1
2

1
r

1

1
q

1

1
2

�

Q

1
2

0 n−3
2(n−1)

n−3
2(n−1)

1
2

1
r1

1
r̃1

C

D

Figure 5 Range of exponents for Corollary 8.7 when n > 3.

where a∨ b and a∧ b to denote max{a, b} and min{a, b} respectively. See [19, Section 5.8]
for details.

As a final application of Theorem 1.4 (i), we consider the inhomogeneous Klein–Gordon
equation

−u′′(t) + Δu(t) − u = F(t), u(0) = u′′(0) = 0, t ≥ 0.(71)

In a manner analogous to the wave equation, one can show that the weak solution u of (71)
is given by

u(t) =
1

2i

∫ t

0
ω−1(U(t)U(s)∗ −U(−t)U(−s)∗

)
F(s) ds,

where ω = (1 − Δ)1/2 and U(t) = eitω. Estimates for U(t) are naturally expressed using
norms of the inhomogeneous Besov spaces B

ρ
r,s. The dispersive estimate

‖U(t)f ‖
B−λ/2
∞,2
� |t|−σ ‖f ‖

Bλ/2
1,2

∀f ∈ B
λ/2
1,2 ,

whereλ and σ satisfy condition (72) given below, is derived from the method of the stationary
phase (see [16, pp. 261–262]). A corresponding energy estimate follows from the unitarity
of U(t) on the Hilbert space B0

2,2. By using the fact that the operator ωμ is an isomorphism

from B
ρ
r,2 to B

ρ−μ
r,2 whenever μ ∈ R, one obtains the following corollary. This improves the

range of inhomogeneous Strichartz estimates of Nakamura and Ozawa [16, Proposition 2.1]
by relaxing their requirement of strict inequalities in (73).
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Corollary 8.9 (Nakamura–Ozawa). Suppose that n is a positive integer, 0 ≤ η ≤ 1 and the
real numbers λ and σ satisfy

2λ = n + 1 + η, n − 1− η ≤ 2σ ≤ n − 1 + η, σ > 0.(72)

Suppose also that the exponent pairs (q, r1) and (q̃, r̃1) satisfy the acceptability condition

1 ≤ q <∞, 2 ≤ r1 ≤ ∞,
1

q
< 2σ

(
1

2
− 1

r1

)
; or (q, r1) = (∞, 2);

1 ≤ q̃ <∞, 2 ≤ r̃1 ≤ ∞,
1

q̃
< 2σ

(
1

2
− 1

r̃1

)
; or (q̃, r̃1) = (∞, 2);

the scaling condition

1

q
+

1

q̃
= σ

(
1− 1

r1
− 1

r̃1

)
,

and the conditions
1

q
+

1

q̃
<1,

σ − 1

r1
≤ σ

r̃1
,

σ − 1

r̃1
≤ σ

r1
.(73)

When σ = 1 we also require that r1 <∞ and r̃1 <∞. If r ≥ r1, r̃ ≥ r̃1, ρ ∈ R,

ρ + n

(
1

2
− 1

r

)
− λ− n

σq
= 1−

(
ρ̃ + n

(
1

2
− 1

r̃

)
− λ − n

σq̃

)
,

F ∈ Lq̃′ (R; B−ρ̃
r̃′, 2) and u is a weak solution of the inhomogeneous Klein–Gordon equation

(71) then

‖u‖Lq(R;Bρ
r, 2 ) � ‖F‖Lq̃′ (R;B−ρ̃

r̃′, 2
)
.
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