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Abstract—This paper introduces a quadratic variational frame-
work for solving a broad class of signal design problems on the
2-sphere. The functional, to be extremized, combines energy con-
centration measures using a weighting function in the spatial do-
main, multiplicative weights in the spectral domain, and a total
energy constraint. This leads to two formulations of the signal de-
sign problem on the 2-sphere, one a Fredholm integral equation in
the spatial domain and the other an infinite matrix equation in the
spectral domain. The framework is illustrated by deriving the key
equations for the two classical spatio-spectral concentration prob-
lems on the 2-sphere, and for an isotropic filter design that max-
imizes the filtered energy. In addition, using the proposed frame-
work, we formulate a joint 3-D beamforming application which
achieves optimal directivity and spatial resolution simultaneously.

Index Terms—Directional derivative, isotropic convolution, un-
certainty principle, unit sphere.

I. INTRODUCTION

A CCORDING to Fourier transform, a signal cannot sharply
confine itself both in the time (spatial) domain and the

frequency (spectral) domain. Fraction-out-of-band (FOBE)
is a well known measure to the degree of concentration of
energy simultaneously in the time-frequency domain [1]–[3].
Paper [1] only considered the finite time interval concentration
problem for a band-limited signal and derived the optimal
functions—prolate spheroidal wave functions (PSWFs). Mean-
while [2] solved a more general concentration problem for an
arbitrary signal which is neither band-limited nor time-limited.
Later, a quadratic variational framework by jointly time-fre-
quency concentration measure was developed by Franks
in [4]. This framework not only generalizes the work by
Slepian–Landau–Pollak [1], [2], but also subsumes many other
optimization problems expressed in terms of weighted energy
functionals, such as optimal waveform design to achieve the
minimum error rate [5], [6], efficient bandwidth usage [7], [8]
and high-resolution for signal detection [9], [10].
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Compared with signal design in time-frequency domain,
signal processing on the unit sphere, , also called the
2-sphere, which relates to the spatial-spectral domain, is a rel-
atively under-explored area. Though recently, more and more
applications on the 2-sphere are developing, such as optimal
filter design for filtering and surface smoothing in computer
vision [11], [12], detection of compact objects embedded in
the stochastic background process [13]–[15], power spectrum
estimation in cosmology [16]–[19] and wireless channel mod-
eling and 3-D beamforming/sensing [20]–[22]. However, these
works only consider band-limited or spectral-limited signals.
Analogous to Slepian–Landau–Pollak concentration problem

in time-frequency domain, [23]–[34] have developed some
results on the 2-sphere by considering different energy concen-
tration measures in the spatial-spectral domain. However, most
of these published work only consider the energy concentra-
tion measure for special signals under different concentration
criteria, i.e., the spatial concentration of a spectral-limited
signal [25], [27], [28], [32], [33] and the spectral concentration
of a spatially limited signal [26], [28], [34]. These works
adopted special weighting functions in the spatial domain (e.g.,
a box-car window function) [25], [27], [28], [31] or a weighting
sequences in the spectral domain (e.g., a set of finite identity se-
quence with each element “1”) [26], [28]. Few works have been
published relating to arbitrary weighting functions or weighting
sequences [12], [32]–[36]. In these works, we note that the
choices of the concentration criteria are determined either by
the weighting functions in the spatial domain or the weighting
sequences in the spectral domain. Note that aforementioned
works only consider either the case of a spatial limited signal
or a spectral limited signal. Therefore, a discussion related to
an arbitrary spherical signal’s simultaneously concentration
measure in the spatio-spectral domain is necessary.
As we pointed out before, Franks general variational frame-

work formulated an optimization problem by minimizing the
sum of time and frequency concentration measures, which not
only generalized the truly jointly time-frequency concentration
problem of Slepian–Landau–Pollak [1], [2], [4], but also unified
other optimization problems relating to arbitrarily weighted
time-frequency energy concentration measure. However, no
common unifying framework relating to spatial-spectral do-
main using arbitrarily weighting functions both in the spatial
domain and in the spectral domain, analogous to the Franks
time-frequency quadratic framework, has been developed.
Therefore, in this paper, we aim to develop an analogous
quadratic variational framework on the 2-sphere which can
unify many relevant signal design problem expressible by a
pair of weighting functions in the spatial and spectral domains,
including truly jointly spatio-spectral concentration problem.
The main contributions of the paper are summarized as follows.
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• We develop a quadratic variation framework by extrem-
izing the sum of arbitrarily weighted spatial and spectral
energy concentration measures, which can unify most of
optimization problems relating to different energy con-
centration criteria on spatial-spectral domain. More im-
portantly, this framework not only generalizes the special
work in [28], but also provides a framework to solve the
jointly spatio-spectral optimization problem for an arbi-
trary signal.

• We derive the relationship between a kernel function
and its corresponding infinite matrix representation for
a bounded linear operator. This sets up the mechanism
to move back and forth between the spatial and spectral
domains for an operator operation.

• We demonstrate the strength of the proposed framework
by applying it to two practical applications found in
computer vision, geophysics and wireless communica-
tions: in Section IV-C we formulate an isotropic filter
with Gauss–Weierstrass kernel and find an orthogonal
set of optimally input functions that maximize the output
energy, and in Section IV-D we formulate a joint 3-D
beamforming design, which achieves optimal directivity
and spatial resolution simultaneously.

The rest of the paper is organized as follows. Section II
provides notation and some mathematical preliminaries for
signals defined on the 2-sphere. Section III formulates our
quadratic variational framework with three quadratic func-
tionals relating to energy concentration by a pair of spatial
and spectral weighting functions. In this section, a spherical
harmonic multiplication operator which includes the isotropic
convolution as a special case is implemented as the spectral
weighting. This section also deduces the infinite matrix repre-
sentations and the kernel functions of some special bounded
linear operators that characterize the objective functionals in
the quadratic variational framework. Using the directional
derivative of the objective function, the necessary conditions of
a stationary point to the quadratic variational problem in both
spatial domain and spectral domain are derived. In Section IV,
we demonstrate the applications of our quadratic framework
by applying it to spatio-spectral concentration work presented
in [28]. Furthermore, this section provides two examples using
our framework: 1) obtain the optimal input signal achieving the
maximum filtered energy for a parameterized linear system,
and 2) design a joint 3-D beamforming scheme. Finally, the
conclusions are given in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Notations

Let denote the unit sphere in ,
where denotes a
point on the sphere, is the co-latitude and
is the longitude.
Let be a complex Hilbert space containing all the

square-integrable functions on the sphere with inner product

where and denotes complex conjuga-
tion. The inner product induces a norm, .

B. Spherical Harmonics and Fourier Representation

The spherical harmonics are defined by
[37]

where are the associated Legendre functions, is the
angular (spectral) degree, is the angular
order and .
As form a complete, orthonormal basis in , any

finite energy signal can be represented, in the sense
of convergence in the mean with the induced norm, by

(1)

where the spherical harmonic Fourier coefficients are given
by

(2)

III. PROBLEM FORMULATION

The quadratic variational problem on the 2-sphere is to find
an optimal function that extremizes the quadratic
functional

(3)

with

(4a)

(4b)

(4c)

where defines a spatial real, positive multiplica-
tive weighting for functional is a spherical harmonicmul-
tiplication operator which provides a spectral real non-negative
spectral weighting for functional with weights for
all valid and , the functional is the signal energy, and
and are Lagrange multipliers. Note that can be a spa-
tial-limited, a spectral-limited signal or an arbitrary signal.
The above problem formulation draws direct analogy to the

framework developed by Franks to study a broad class of signal
concentration and signal design problems in time and frequency
[4, ch. 6]. In [4], the analogy of measures time domain en-
ergy concentration, the analogy of measures frequency do-
main energy concentration and is the energy content of a
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signal energy. Analogous to framework of Franks in time-fre-
quency, our primary aim is to introduce a quadratic variational
framework for solving a broad class of signal design problems
on the 2-sphere by measuring the weighted energy concentra-
tion in terms of arbitrary weighting functions both in the spatial
domain and the spectral domain, which is represented by the
spherical spectral Fourier coefficients.

A. Solutions to Quadratic Variational Framework

To solve the quadratic variational problem (3), both neces-
sary conditions and sufficient conditions to a stationary point
are required. Usually, the sufficiency conditions of a particular
stationary point relate to the specified physical considerations
that led to the formulation of the problem [4]. Therefore, after
solving the necessary conditions, one still needs to determine the
Lagrange multipliers and that simultaneously extremize
the performance functional and satisfy the constraint equations,
which is another extremization problem and often requires nu-
merical methods to obtain the final solution. In this paper, we
focus on the necessary conditions of a stationary point to the
quadratic variational problem.

B. Spherical Harmonic Multiplication Operator

In this section, we provide detailed information of the op-
erator given in (4b). It is developed as a convenient mathe-
matical tool to weight the functions of interest in the spectral do-
main, but needs careful interpretation. Putting aside the physical
requirement (non-negative weighting, or ), this operator
is very convenient for signal analysis in practical applications,
especially as it subsumes the special class of isotropic convolu-
tion operators.
The harmonic multiplication operator is defined by [38]

(5)

where the kernel function is given by

(6)

As are real, so we have . Therefore,
is a self-adjoint operator. In addition, we have non-negative,
with at least one positive.
After substituting (6) into (5), and combining (2), we

have [38]

1) Special Case—Equivalence to Isotropic Convolution:
Taking for all and , that is, is a function only
of , we have

and the kernel can be expressed by

(7)

where is the dot product between the unit vectors and
are the Legendre polynomials and the spherical harmonic

addition theorem

is used. Looking at (7), only depends on the angle
between and , whence can be also represented as

.
The isotropic convolution of with an axisym-

metric function , using the binary operand
symbol , is defined by [16], [38], [39]

(8)

where is the isotropic convolution operator and its corre-
sponding kernel function is given by

(9)

where . By substituting (9) in (8), we obtain

(10)

Comparing the kernel function (7) of the special spherical
harmonic multiplication operator with that of the isotropic con-
volution (9), if we let

we have . That is, the spherical harmonic multipli-
cation in this special case is equivalent to the isotropic convolu-
tion, or we can say that the weighting sequence can be con-
structed from an axisymmetric function defined on the 2-sphere.

C. Matrix Representation of Bounded Linear Operators

Theorem 4.2.2 in [40] states that a bounded operator on a sep-
arable infinite dimensional Hilbert space can be represented by
an infinite matrix. Hence, any bounded linear operator defined
on admits an infinite matrix representation with respect
to the spherical harmonics [38],

(11)

for all and
. In (11), we should think of the pair as a

single input/column index, and pair as a single output/row
index. Note that the coefficient represents howmuch of
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as an input gets projected along the direction of the output
under operator .
In this paper, to obtain the necessary conditions of a stationary

point to the objective function (3) in both the spatial domain and
spectral domain, we first characterize how a bounded linear op-
erator maps input to output, with respect to the spherical har-
monics , and then find the matrix representations (spec-
tral domain) and kernel functions (spatial domain) of these op-
erators.
Assume a bounded linear operator acts on a function

, i.e., . Then according to spherical harmonic
Fourier transform (2), we have

Therefore, in spatial form,

1) Relationship Between Kernel Function and Infinite Matrix
Representation: To completely characterize a bounded linear
operator, it would be convenient to find the relationship between
its kernel function and the corresponding infinite matrix repre-
sentation.
Substituting the kernel function in (11), we have

(12)

Using the inverse Fourier transform on the unit sphere (1) and
by taking the conjugate on both sides, it can be shown that

(13)

Remark 1: With (12) and (13), we have the mechanism for
moving back and forth between the spatial domain and the spec-
tral domain in characterizing the operator.
We now find thematrix representations and the corresponding

kernel functions of the operators present in the quadratic func-
tionals ( and ) composing the objective function (3).
In relation to the spherical harmonic multiplication operator
, by substituting the kernel function (6) in (12), we have the

matrix representation

(14)

where is the Kronecker delta function (equals one if
and only if , and is zero otherwise).
Let where is a bounded linear

operator. Then according to (11), we have

(15)

where , the arrays of
integers are Wigner 3-j symbols [41], and the formula for the
integral of a product of three spherical harmonics is
used [42],

Therefore, according to (13), the kernel function of operator
is given by

(16)

As is real, it can be shown that . As a
result, the operator is a self-adjoint operator.
For one special case, with , then is an

identity operator, which we denote by . The matrix repre-
sentation in this case be and is given by

(17)

where . Note that the kernel function
corresponding to the identity operator is the 2-D

Dirac delta function [42], i.e.,

(18)

Both expansions (17) and (18) are useful when considering their
truncated forms.
Using the matrix representations of operators developed

above, the weighting functions in three quadratic functionals
and in (4) can be written as

(19a)

(19b)

(19c)

where , and are the infinite matrix represen-
tations of operators , and , respectively.

D. Necessary Conditions of Quadratic Variational Framework

In this section, we aim to find the necessary condition of a sta-
tionary solution to the quadratic variational problem (3). Anal-
ogous to the time-frequency framework where necessary con-
ditions in both the time domain and frequency domain are pro-
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vided [4], we are interested in finding the necessary condition
not only expressed in the spatial domain, but also expressed by
the spherical harmonic Fourier coefficients, which can be called
the spectral domain for brevity.
In this part, for simplicity, we restrict our attention to real

spaces, where all quadratic functionals are real. That is, for a
quadratic functional with , where
is a linear bounded operator with kernel function , we

have . The directional derivative of at
a point along an arbitrary unit function is defined
in analogy to [4] as

where is the adjoint operator of with kernel
. is called the gradient of at direction

, which we denote by . Furthermore, if
is self-adjoint, i.e., , then we have
and .
As we have shown that both and are self-adjoint oper-

ators, therefore, the directional derivative of (3) can be written
as

A necessary condition for a solution to a quadratic functional
is that the gradient vanishes for all , i.e.,

. Therefore, , or

(20)

where is given by (6). This is the spatial necessary
condition for a stationary solution to the quadratic variational
problem (3).
Substituting (19a)–(19c) into the spatial necessary condition

(20), we obtain

Multiplying on both sides of the above equation and
integrating on the whole sphere , we get

where is the infinite matrix representation of the spherical
harmonic multiplication operator given by (14), is the

infinite matrix representation of the bounded linear operator
in (15) and , given by (17), is the matrix representation
of the operator when for all . Let be
the column vector containing the spherical harmonic Fourier
coefficients . Therefore, the spectral necessary condition can
be expressed in the matrix form as

(21)

where , and are matrices containing elements
, and , respectively.

IV. APPLICATIONS

In this section, we demonstrate use of our quadratic varia-
tional framework that can unify results for obtaining optimal
signals for various energy concentration measures on the
2-sphere.
The classical examples are the spatio-spectral concentration

on the 2-sphere [28]. More importantly, applying the equiv-
alence between the spherical harmonic multiplication opera-
tion and the isotropic convolution, our framework is a good
tool to design optimal waveforms, analogous to time-frequency,
to achieve maximum output energy for specified linear filter
system, or design matched filter for specified input signal to
achievemaximum signal-to-noise ratio, especially for denoising
and smoothing signal of interest. In this paper, we provide an
example using our framework to obtain the optimal input signal
achieving the maximum filtered energy for a linear system [34].
For simplicity, in the following examples, we use the same

notation for the operators and infinite matrix representations as
the spatial necessary condition equation (20) and the spectral
necessary condition equation (21). However, as we have pointed
out before, special notes should be given to the integration re-
gion and the summation region of spectral degree .

A. Spatial Concentration of a Band-Limited Signal

The first case is the spatial energy concentration
problem for a finite energy spectral-limited signal

in a spatial region .
In this case, due to the spectral limitation , all matrix
representations can be taken as finite dimensional, and this is
implicit in the notation.
Let

Using our quadratic variational framework (3), let

and

Now the problem is to find , or equivalently , which max-
imizes subject to constraints and . Note that in this case
constraints and

which is an identity matrix with dimension .
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To apply our spectral necessary condition equation (21) in
matrix form, as the signal is itself truncated at , let

where is a row vector with all elements , and
for are the submatrices containing the elements

, and , respectively. Especially, the degrees
and orders of the elements in , and are
and .
Since , and , we

only need to solve

where is a matrix whose elements
are given by (15) with . The
detailed derivation of solutions for can be found in [28].

B. Spectral Concentration of a Spatially Limited Signal

The second case is the spectral energy concentration within
bandwidth for a spatially limited signal with finite en-
ergy satisfying whenever . This varia-
tional problem is to find that maximizes with
subject to constraints and . Note that in this case constraints

. We choose the weighting functions: with
, and for all and . The

bandwidth of is infinite, therefore, only the spatial neces-
sary condition (20) can be applied,

Substituting (6) with for any and into
above equation, we get

which is a Fredholm integral equation of the second kind. The
reader is referred to [28] for detailed derivation of solutions for

.

C. Maximum Filtered Energy

In this section, applying the equivalence property of spherical
harmonic multiplication operation to the isotropic convolution,
we use our framework to find a finite energy, spatially limited
function for , which achieves the
maximum energy at the output of a specified filter, satisfying
(8) with axisymmetric, of bandwidth (i.e., ),
shown in Fig. 1.
With axisymmetric, then

(22)

Fig. 1. Isotropic convolution between input signal and isotropic filter .

where . According to the isotropic convolution
(10), we have

(23)

with . The

output energy is

where is the adjoint operator of with kernel function

Therefore,

Now the kernel function of is

(24)

Obviously, is a self-adjoint operator.
To apply our variational framework (3) to this problem, we

let with , then we have
and . Further, let for any and
, and let , where is the spherical harmonic

multiplication operator, so we have
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Due to finite energy property of , let
. The objective is to maximize the output signal energy

under the constraints and . Now this problem is completely
captured by our framework. Therefore, depending on the ex-
plicit filter , the spatial necessary condition equation (20)
of our framework can be directly used to find the spatially lim-
ited function that achieves maximum finite energy at the
output of the filter.
As an example, consider the truncated Gauss–Weierstrass

kernel [23]

(25)

where is a constant to control the diffusion variation.
Note that the above kernel has been used in [12] for surface
smoothing. Comparing (22) with (25) we can clearly see that

. In the paper [12], though the left
convolution [43] is used, the equivalence between the left con-
volution, denoted by , and the isotropic convolution (8) has
been proved when both filters are the same and axisymmetric,
or the kernel functions are univariate [38], i.e.,

(26)

where is the left convolution operator, is
an arbitrary rotation element in is the
north pole and is the Lebesgue measure
on . Comparing (26) with (9) and (6), the kernel function
of is

According to (24) and , the kernel func-
tion of the spherical harmonic multiplication operator , or

is

Substituting this into the spatial necessary condition equation
(20), we only need to solve

(27)

where . This is equivalent to the variation problem
of our former work when for all and
[34]. Note that also equals to , which is the output
energy to input energy ratio. So our problem is to find an optimal
function with maximum value of .

Fig. 2. The distribution of eigenvalues of (28) for with
, where is a polar cap , bandwidth , and .

-axis is the rank of eigenvalues for fixed -axis is the eigenvalue.

For simplicity, assume the region is a polar cap . Fol-
lowing the same procedure as in our former work [34], let

where and .

After substituting the above equations into (27) and removing
the terms on both sides which have no effect in solving the
eigenvalue equation problem, we only need to solve a series
of fixed-order, one-dimensional homogeneous Fredholm equa-
tions of the second kind,

(28)

It should be noted that we can only obtain such eigenfunctions
for with nonzero eigenvalues . For those

eigenfunctions with eigenvalues , they vanish in and
have no effect in [28]. After solving the above
eigenvalue equation (28), the optimal associated spatial func-
tions with eigenvalues are obtained by

Numerical Example: We use the same numerical parameters
used in [34]. and consider two cases of
diffusion, and . By applying
the Gauss–Legendre quadrature method [44] to the homoge-
neous Fredholm equation, the distribution of the eigenvalues
for with is shown in Fig. 2.
From this figure, we can observe that the eigenvalue decreases
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Fig. 3. Optimal eigenfunctions obtained from (28) for
: (a) with , (b) with , and

with . with rank are the corresponding
eigenvalues of (28). (a) , (b) ,
(c) .

Fig. 4. A 3-D joint beamformer design. is the re-
ceived wavefield at from a direction is the
3-D beamformer directing at which is controlled by the weighting se-
quence with and for one specified integer , and

is the beamformer kernel.

as increases, and the maximum eigenvalue cor-
responds to the rank 1 of . Therefore, the optimal spatial
function is the one corresponding to . Fig. 3 shows
the optimal associated eigenfunctions for .
These figures show that the eigenvalues for fixed decrease
quickly as increases.

D. A Joint 3-D Beamforming Scheme

To further demonstrate the full power of our proposed frame-
work, in this section we formulate a joint 3-D beamforming
scheme for spherical-aperture microphone arrays. We demon-
strate that a much more flexible optimal robust beamformer can
be designed by taking different weighting function and
the operator which represent different constraints through
our framework.
Instead of maximizing the beamforming directivity only, as

done in [45]–[47], our aim is to design a beamformer (or a filter)
which also has good spatial resolution by achieving the max-
imum energy in the main lobe of the beamformer response, i.e.,
the spatial region around the direction . In the
following, for simplicity, we will assume is a cap with size

. Here, we point out that our optimization problem is dif-
ferent from the current 3D beamforming optimization problems
such as delay-and-sum (DAS) beam pattern [48] by adjusting
the weights to compensate the delay, Dolph–Chebyshev beam-
pattern [49] by exploiting the characteristics of the Chebyshev
polynomials which minimizes the null-to-null main-lobe width
for a given side-lobe level or the side-lobe level for a given
null-to-null main-lobe width, and the minimum variance distor-
tionless response (MVDR) beamformer [50].
The system diagram is shown in Fig. 4, where

is the received wave-field at from
an incidental direction with being the wave number,

with and is the 3-D
beamformer directing at and controlled by the weights

(or the Fourier coefficients of ). The beamformer kernel
is given by

Using the model introduced in [46], we write the received
wave field as
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where

with and are the spherical Bessel
functions and its derivative, and are the spherical
Hankel function and its derivative, respectively. Then according
to the kernel operation between the input
and the 3-D beamformer kernel , the output

is given by

For simplicity, we assume an omnidirectional 3-D beamformer,
i.e., for all . Therefore, the output

can be simplified to

(29)

where is the angle between and . Assume
is the north pole with and . Then the

output is totally controlled by the direction vector . That
is, can be written into a single point , and

.
We now apply the variational framework (3) to determine the

optimal choice of to achieve themaximum energy concentra-
tion in the main lobe, i.e., we maximize under the constraints
and , where

with a box-car function representing the width of the main
lobe of the 3D beamformer, and .
Here, the constraint for a robust beamformer is implemented
in by a sequence through the operator . When we
take the coefficients of the operator with ,
then represents the constraint of the weighting coefficients;
when is taken as a delta function, then is defined as the
maximum directivity. The constraint means the total energy
of the beamformer is limited.

in the spectral domain, where is the vector containing all
the coefficients of . Let be
a directional filter which is controlled by the set of weighting

sequence . From this, we can observe1 that our beamformer
is jointly controlled by both the input wavefield
through and the direction filter through .

V. CONCLUSION

In this paper, we developed a quadratic constrained varia-
tional framework on the 2-sphere. Two necessary conditions
corresponding to the spatial domain and spectral domain of a
stationary point to the quadratic variational problem were ob-
tained, respectively. We demonstrated the applicability of the
quadratic variational framework by the well known spatialspec-
tral concentration work on the 2-sphere and the optimal function
which maximized the filter energy and a joint 3-D beamforming
scheme.

REFERENCES
[1] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions,

Fourier analysis and uncertainty—I,” Bell Syst. Tech. J., vol. 40, pp.
43–63, Jan. 1961.

[2] H. J. Landau and H. O. Pollack, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty—II,” Bell Syst. Tech. J., vol. 40, no.
1, pp. 65–84, Jan. 1961.

[3] H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty—III: The dimension of the space of
essentially time- and band-limited signals,” Bell Syst. Tech. J., vol. 41,
pp. 1295–1336, Jul. 1962.

[4] L. E. Franks, Signal Theory. Englewood Cliffs, NJ: Prentice-Hall,
1969.

[5] G. Lachs, “Optimization of signal waveforms,” IEEE Trans. Inf.
Theory, vol. IT-9, pp. 95–97, Apr. 1963.

[6] A. Wyner and H. Landau, “Optimum waveform signal sets with ampli-
tude and energy constraints,” IEEE Trans. Inf. Theory, vol. IT-30, no.
4, pp. 615–622, Jul. 1984.

[7] A. Nuttall and F. Amoroso, “Minimum Gabor bandwidth of M orthog-
onal signals,” IEEE Trans. Inf. Theory, vol. 14, no. 5, pp. 440–444, Jul.
1965.

[8] A. Nuttall, “Minimum rms bandwidth of M time-limited signals with
specified code or correlation matrix,” IEEE Trans. Inf. Theory, vol.
IT-14, no. 5, pp. 699–707, Sep. 1968.

[9] A. Papoulis, “Minimum-bias windows for high-resolution spectral esti-
mates,” IEEE Trans. Inf. Theory, vol. IT-19, no. 1, pp. 9–12, Jan. 1973.

[10] L. Xu, C. Bi, X. Chen, and J. Chen, “Resolution enhancement of
nearfield acoustic holography by interpolation using band-limited
signal restoration method,” Chinese Sci. Bull., vol. 53, no. 20, pp.
3142–3150, Oct. 2008.

[11] T. Bülow, “Spherical diffusion for surface smoothing and denoising,”
Comput. Inf. Sci. Dept., Univ. of Pennsylvania , Philadelphia, PA,
Tech. Rep. (CIS), Dec. 2001.

[12] T. Bülow, “Spherical diffusion for 3D surface smoothing,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 12, pp. 1650–1654, Dec. 2004.

[13] J. D. McEwen, M. P. Hobson, and A. N. Lasenby, “Optimal filters
on the sphere,” IEEE Trans. Signal Process., vol. 56, no. 8, pp.
3813–3823, Aug. 2008.

[14] J. L. Sanz, D. Herranz, and E. M. Gonzalez, “Optimal detection of
sources on a homogeneous and isotropic background,” Astrophys. J.,
vol. 552, pp. 484–492, May 2001.

[15] D. Herranz, J. L. Sanz, R. B. Barreiro, and E. M. Gonzalez, “Scale-
adaptive filters for the detection/separation of compact sources,” As-
trophys. J., vol. 580, pp. 610–625, 2002.

[16] M. Tegmark, D. H. Hartmann, M. S. Briggs, and C. A. Meegan, “The
angular power spectrum of BASTE 3B gamma-ray bursts,” Astrophys.
J., vol. 468, p. 214, Sep. 1996.

[17] E. Hivon, K. M. Gorski, C. B. Netterfield, B. P. Crill, S. Prunet, and
F. Hansen, “Master of the CMB anisotropy power spectrum: A fast
method for statistical analysis of large and complex CMB data sets,”
Astrophys. J., vol. 567, pp. 2–17, Mar. 2002.

[18] S. Mitra, A. S. Sengupta, and T. Souradeep, “CMB power spectrum
estimation using noncircular beams,” Phys. Rev. D., vol. 70, p. 103002,
2004.

1Due to space limitations here we do not provide sufficient solutions, simu-
lation results and performance comparison of our proposed beamformer with
other beamforming strategies. We anticipate to present these results in a future
publication.



5252 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 11, NOVEMBER 2011

[19] G. Faÿ, F. Guilloux, M. Betoule, J. F. Cardoso, J. Delabrouille, and
M. L. Jeune, “CMB power spectrum estimation using wavelets,” Phys.
Rev. D., vol. 78, no. 8, p. 20, 2008.

[20] A. S. Y. Poon, R.W. Broderson, and D. N. C. Tse, “Degrees of freedom
in multiple-antenna channels: A signal space approach,” IEEE Trans.
Inf. Theory, vol. 51, no. 2, pp. 523–536, Feb. 2005.

[21] R. A. Kennedy and T. D. Abhayapala, “Spatial concentration of wave-
fields: Towards spatial information content in arbitrary multipath scat-
tering,” in Proc. 4th Austr. Commun. Theory Workshop (AusCTW),
Melbourne, Australia, Feb. 2003, pp. 38–45.

[22] R. A. Kennedy, P. Sadeghi, T. D. Abhayapala, and H. M. Jones,
“Intrinsic limits of dimensionality and richness in random multipath
fields,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2542–2556,
Jun. 2007.

[23] W. Freeden and M. Schreiner, “Non-orthogonal expansions on the
sphere,” Math. Methods Appl. Sci., vol. 18, pp. 83–120, 1995.

[24] F. J. Narcowich and J. D. Ward, “Nonstationary wavelets on the
-sphere for scattered data,” Appl. Comput. Harmon. Anal., vol. 3,

pp. 324–336, Oct. 1996.
[25] A. Albertella, F. Sansò, and N. Sneeuw, “Band-limited functions on

a bounded spherical domain: The Slepian problem on the sphere,” J.
Geodesy, vol. 77, pp. 436–447, 1999.

[26] R. Pail, G. Plank, and W. D. Schuh, “Spatially restricted data distri-
butions on the sphere: The method of orthonormalized functions and
applications,” J. Geodesy, vol. 75, pp. 44–56, 2001.

[27] L. Miranian, “Slepian functions on the sphere, generalized Gaussian
quadrature rule,” Inverse Problems, vol. 20, pp. 877–892, 2004.

[28] F. J. Simons, F. A. Dahlen, and M. A. Wieczorek, “Spatiospectral con-
centration on a sphere,” SIAM Rev., vol. 48, pp. 504–536, 2006.

[29] N. L. Fernandez, “Optimally space-localized band-limited wavelets on
,” J. Comput. Appl. Math., vol. 199, pp. 68–79, Feb. 2007.

[30] M. A. Wieczorek and F. J. Simons, “Minimum-variance multitaper
spectral estimation on the sphere,” J. Four. Anal. Appl., vol. 13, pp.
665–692, 2007.

[31] F. Guilloux, G. Faÿ, and J. F. Cardoso, “Practical wavelet design on
the sphere,” Appl. Comput. Harmon. Anal., vol. 26, pp. 143–160, Mar.
2009.

[32] L. Wei, R. A. Kennedy, and T. A. Lamahewa, “Signal concentration
on unit sphere: An azimuthally moment weighting approach,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (IEEE ICASSP),
Dallas, TX, Mar. 14–19, 2010, pp. 3698–3701.

[33] L. Wei, R. A. Kennedy, and T. A. Lamahewa, “Signal concentration on
unit sphere: A local -th moment zenithal energy concentration mea-
sure,” in Proc. 11th Aust. Commun. Theory Workshop (AusCTW), Can-
berra, Australia, Feb. 2010, pp. 97–101.

[34] L. Wei and R. A. Kennedy, “On spectral concentration of signals on
the 2-sphere under a generalized moment weighting criterion,” in Proc.
Eur. Signal Process. Conf. (EUSIPCO), Aalborg, Denmark, Aug. 2010,
p. 4.

[35] M. K. Chung, K. M. Dalton, L. Shen, A. C. Evans, and R. J. Davidson,
“Weighted Fourier series representation and its application to quanti-
fying the amount of gray matter,” IEEE Trans. Med. Imag., vol. 26, no.
4, pp. 566–581, Apr. 2007.

[36] M. K. Chung, K.M. Dalton, and R. J. Davidson, “Tensor-based cortical
surface morphometry via weighted spherical harmoic representation,”
IEEE Trans. Med.l Imag., vol. 27, no. 8, pp. 1143–1151, Aug. 2008.

[37] E. W. Hobson, The Thoery of Spherical and Ellipsoidal Harmonics.
New York: Chelsea, 1931.

[38] R. A. Kennedy, T. A. Lamahewa, and L. Wei, “On azimuthally sym-
metric 2-sphere convolution,” in Proc. 6th U.S./Aust. Joint Workshop
on Defence Appl. Signal Process. (DASP), Sep. 26–30, 2009, p. 6.

[39] K. Seon, “Smoothing of all-sky survey map with Fisher-von Mises
function,” J. Korean Phys. Soc., vol. 48, no. 3, pp. 331–334,Mar. 2006.

[40] L. Debnath and P. Mikusinski, Introduction to Hilbert Spaces With Ap-
plications. San Diego, CA: Academic, 1990.

[41] A. R. Edmonds, Angular Momentum in Quantum Mechanics.
Princeton, NJ: Princeton Univ. Press, 1996.

[42] F. A. Dahlen and F. J. Simons, “Spectral estimation on a sphere in
geophysics and cosmology,” Geophys. J. Int., vol. 174, pp. 774–807,
Aug. 2008.

[43] J. R. Driscoll and D. M. H. , Jr., “Computing Fourier transforms and
convolutions on the 2-sphere,” Adv. Appl. Math., vol. 15, pp. 202–250,
June 1994.

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing. New York:
Cambridge Univ. Press, 1988.

[45] B. Rafaely, “Plane-wave decomposition of the sound field on a sphere
by spherical convolution,” J. Acoust. Soc. Amer., vol. 116, no. 4, pp.
2149–2157, Oct. 2004.

[46] B. Rafaely, “Analysis and design of spherical microphone arrays,”
IEEE Trans. Speech, Audio Process., vol. 13, no. 1, pp. 135–143, Jan.
2005.

[47] M. Agmon, B. Rafaely, and J. Tabrikian, “Maximum directivity beam-
former for spherical-aperture microphones,” in Proc. IEEE Workshop
Appl. Signal Process. Audio Acoust., New Paltz, NY, Oct. 18–21, 2009,
pp. 153–156.

[48] B. Rafaely, “Phase-mode versus delay-and-sum spherical microphone
array processing,” IEEE Signal Process. Lett., vol. 12, no. 10, pp.
713–716, Oct. 2005.

[49] A. Koretz and B. Rafaely, “Dolph–Chebyshev beampattern design
for spherical arrays,” IEEE Trans. Signal Process., vol. 57, no. 6, pp.
2417–2420, Jun. 2009.

[50] S. F. Yan, H. H. Sun, U. P. Svensson, X. H. Ma, and J. M. Hovem,
“Optimal modal beamforming for spherical microphone arrays,” IEEE
Trans. Audio Speech Lang. Process., vol. 19, no. 2, pp. 361–371, Feb.
2011.

Liying Wei (S’09–M’11) received the B.E. degree
from Xidian Unversity, China, in 2002, the M.E. de-
gree from Beijing University of Posts and Telecom-
munications, Beijing, China, in 2006, and the Ph.D.
degree from the Australian National University, Aus-
tralia, in 2011.
She worked as a Research Fellow in Applied

Signal Processing Group, School of Engineering,
the Australian National University from September
2010 to March 2011. She is currently a Postdoctoral
Fellow in the Department of Electronic Engineering,

The Chinese University of Hong Kong. Her current research interest includes
signal and image processing, statistical estimation and detection, wireless
sensor networks, and wireless communications.

Rodney A. Kennedy (S’86–M’88–SM’01–F’05)
received the B.E. degree from the University of New
South Wales, Sydney, Australia, the M.E. degree
from the University of Newcastle, and the Ph.D.
degree from the Australian National University,
Canberra.
He was with the Commonwealth Scientific and In-

dustrial Research Organization (CSIRO) on the Aus-
tralia Telescope Project for three years. He is cur-
rently a Professor and was the Head of the Depart-
ment of Information Engineering, Research School

of Information Sciences and Engineering, Australian National University. His
research interests are in the fields of digital signal processing, spatial informa-
tion systems, digital and wireless communications, and acoustical signal pro-
cessing. More recently, his research has included more life science related to
medical image processing and biological ion channel modeling.

Tharaka A. Lamahewa (M’06) received the B.E.
degree from the University of Adelaide, South Aus-
tralia, in 2000 and the Ph.D. degree from the Aus-
tralian National University, Canberra, in 2007.
He worked as a Software Design Engineer for two

years at Motorola Electronics Pvt Ltd., Singapore.
From 2006 to 2007, he worked as an Algorithm
Design Engineer at Nanoradio AB, Melbourne,
Australia. He is currently with the Applied Signal
Processing Group, Research School of Information
Sciences and Engineering, the Australian National

University. He is also a Wireless Researcher with National ICT Australia
(NICTA). His research interests include information theory of time-varying
fading channels, cooperative diversity, space-time coding and space-time-fre-
quency channel modeling, body-area networks, underwater communications,
and signal processing on the unit sphere.


