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1 Introduction1

Prospective life tables depend on forecasting age-specific mortality. Considerable attention has2

been paid to methods for forecasting mortality in recent years. Much of this work has grown3

out of the seminal Lee-Carter method (Lee & Carter 1992). Other extrapolative approaches4

use Bayesian modelling, generalized linear modelling and state-space approaches. Methods for5

forecasting mortality have been extensively reviewed by Booth (2006) and Booth & Tickle6

(2008). This chapter covers various extrapolative methods for forecasting age-specific central7

death rates. Also covered is the derivation of stochastic life expectancy forecasts based on8

mortality forecasts.9

The main packages on CRAN for implementing life tables and mortality modelling are de-10

mography (Hyndman 2012) and MortalitySmooth (Camarda 2012) and we will concentrate11

on the methods implemented in those packages. However, mention is also made of other extrap-12

olative approaches, and related R packages where these exist.13

We will use, as a vehicle of illustration, US mortality data from 1950. This can be extracted14

from the Human Mortality Database (2013) using the demography package.15

library(demography)16

library(MortalitySmooth)17

usa <- hmd.mx("USA", "username", "password", "USA")18

usa1950 <- extract.years(usa, years=1950:2010)19

The username and password are for the Human Mortality Database. In this chapter, we will20

assume that the above R commands have been entered.21

2 Smoothing mortality data22

Suppose Dx,t is the number of deaths in calendar year t of people aged x, and Ec
x,t is the total

years of life lived between ages x and x+1 in calendar year t, which can be approximated by the
mid-year (central) population at age x in year t. Then the observed mortality rate is defined as

mx,t = Dx,t/E
c
x,t.

Typically we observe deaths at single years of age (x1 = 0, x2 = 1, . . . ) or in 5-year age groups23

(x1 = [0, 4], x2 = [5, 9], . . . ).24

In order to stabilize the high variance associated with high age-specific rates, it is necessary25

to transform the raw data by taking logarithms. Consequently, the mortality models considered26

in this chapter are all in log scale.27

Figure 1 shows an example of such data for the USA. (Age-specific mortality rates can be28

higher than one for very small populations as the number of deaths of people aged x may exceed29

the mid-year population aged x.)30
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Figure 1: Male mortality rates for single years of age in the United States, 2003.

This example shows that the mortality rates follow a smooth function with some observa-31

tional error. The observational error has higher variance at very old ages (when the populations32

are small) and at young ages (when the mortality rates are small).33

Thus, we observe {xi,mxi,t}, t = 1, . . . , n, i = 1, . . . , p where

logmxi,t = ft(x
∗
i ) + σt(x

∗
i )εt,i ,

log denotes the natural logarithm, ft(x) is a smooth function of x, x∗i is the mid-point of age34

interval xi, εt,i is an iid random variable and σt(x) allows the amount of noise to vary with x.35

Then the observational variance, σ2t (x), can be estimated assuming deaths are Poisson dis-36

tributed (Brillinger 1986). Thus, mx,t has approximate variance Dx,t/(E
c
x,t)

2, and the variance37

of logmx,t (via a Taylor approximation) is38

σ2t (x) ≈ 1/Dx,t.

Life tables constructed from the smoothed ft(x) data have lower variance than tables con-39

structed from the original mt,x data, and thus provide better estimates of life expectancy. To40

estimate f we can use a nonparametric smoothing method such as kernel smoothing, loess, or41

splines. Two smoothing methods for estimating ft(x) have been widely used, and both involve42

regression splines. We will briefly describe them here.43

2.1 Weighted constrained penalized regression splines44

Hyndman & Ullah (2007) proposed using constrained and weighted penalized regression splines45

for estimating ft(x). The weighting takes care of the heterogeneity due to σt(x) and a monotonic46

constraint for upper ages can lead to better estimates.47

Following Hyndman & Ullah (2007), we define weights equal to the approximate inverse48

variances wx,t = mx,tEx,t, and use weighted penalized regression splines (Wood 2003, He &49

Ng 1999) to estimate the curve ft(x) in each year. Weighted penalized regression splines are50
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Figure 2: Smoothed male mortality rates for single years of age in the United States, 2003. The
smooth curve, ft(x), is estimated using weighted penalized regression splines with a monotonicity
constraint for ages greater than 65.

preferred because they can be computed quickly, and allow monotonicity constraints to be51

imposed relatively easily.52

We apply a qualitative constraint to obtain better estimates of ft(x), especially when σt(x)53

is large. We assume that ft(x) is monotonically increasing for x > c for some c (say 65 years).54

This monotonicity constraint allows us to avoid some of the noise in the estimated curves for55

high ages, and is not unreasonable for this application (after middle age, the older you are, the56

more likely you are to die). We use a modified version of the approach described in Wood (1994)57

to implement the monotonicity constraint.58

Figure 2 shows the estimated smooth curve, ft(x), for the USA male mortality data plotted59

in Figure 1. This is easily implemented in the demography package in R using the following60

code.61

smus <- smooth.demogdata(usa1950)62

plot(usa1950, years=2003, series="male", type="p", pch=1, col="gray")63

lines(smus, years=2003, series="male")64

2.2 Two-dimensional P-splines65

The above approach assumes ft(x) is a smooth function of x, but not of t. Hyndman & Ullah66

(2007) argued that the occurrence of wars and epidemics meant that ft(x) should not be assumed67

to be smooth over time. However, in the absence of wars and epidemics, it is reasonable to assume68

smoothness in both the time and age dimensions. Hence, Currie et al. (2004) proposed using69

two-dimensional splines instead. We will call this approach the Currie-Durban-Eilers or CDE70

method.71

They adopt a generalized linear modelling (GLM) framework for the Poisson deaths Dx,t72

with two-dimensional B-splines. This is implemented in the MortalitySmooth package in R73

3



(Camarda 2012) and compared with the Hyndman & Ullah (2007) approach using the following74

code.75

Ext <- usa1950$pop$male76

Dxt <- usa1950$rate$male * Ext77

fitBIC <- Mort2Dsmooth(x=usa1950$age, y=usa1950$year, Z=Dxt, offset=log(Ext))78

79

par(mfrow=c(1,2))80

plot(fitBIC$x, log(usa1950$rate$male[,"2003"]), xlab="Year", ylab="Log death rate",81

main="USA: male death rates 2003", col="gray")82

lines(fitBIC$x, log(fitBIC$fitted.values[,"2003"]/Ext[,"2003"]))83

lines(smus,year=2003, series="male", lty=2)84

legend("topleft",lty=1:2, legend=c("CDE smoothing", "HU smoothing"))85

86

plot(fitBIC$y, log(Dxt["65",]/Ext["65",]), xlab="Year", ylab="Log death rate",87

main="USA: male death rates age 65", col="gray")88

lines(fitBIC$y, log(fitBIC$fitted.values["65",]/Ext["65",]))89

lines(smus$year, log(smus$rate$male["65",]), lty=2)90

legend("bottomleft", lty=1:2, legend=c("CDE smoothing", "HU smoothing"))91

Figure 3 shows the estimated smooth curve, ft(x), for the USA male mortality data using92

the bivariate P-spline method of Currie et al. (2004) and the univariate penalized regression93

spline method of Hyndman & Ullah (2007). Note that the univariate method is not smooth94

in the time dimension (right panel), but gives a better estimate for the oldest ages due to the95

monotonic constraint.96
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Figure 3: Smoothed male mortality rates using bivariate P-splines.
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3 Lee-Carter and related forecasting methods97

The Lee-Carter (LC) method (Lee & Carter 1992) for forecasting mortality rates uses principal98

components analysis to decompose the age-time matrix of central death (or mortality) rates into99

a linear combination of age and time parameters. The time parameter is used in forecasting.100

LC has spawned numerous variants and extensions. The two main variants of LC are Lee-101

Miller (LM) (Lee & Miller 2001) and Booth-Maindonald-Smith (BMS) (Booth et al. 2002).102

Others result from different combinations of possible options. These variants are collectively103

referred to as “LC methods”. A major extension of this approach uses functional data analysis;104

first proposed by Hyndman & Ullah (2007), it was further developed by Hyndman & Booth105

(2008) and Hyndman & Shang (2009). Again, various combinations of options produce variations106

within the collectively labeled “HU methods”.107

We identify six methods by their proponents; these are listed in Table 1 where the defining108

features of the models are shown. Most authors referring to the “Lee-Carter method” actually109

refer to the generic model in which all available data are used, there is no adjustment of the time110

parameter prior to forecasting, and fitted rates are used as jump-off rates; Booth et al. (2006)111

labeled this ”LCnone”. Note that within the options listed in Table 1 there are 24 possible112

combinations (4 adjustment options × 3 data period options × 2 jump-off options) for the LC113

methods. For the HU methods, additional options have been defined by varying the data period114

option to include 1950 (Shang et al. 2011). Clearly, any date can be used for the start of the115

data period.116

Data Adjustment Jump-off
Method period Smoothing to match rates Reference

Lee–Carter Methods
LC all no Dt fitted Lee & Carter (1992)
LM 1950 no e(0) actual Lee & Miller (2001)
BMS linear no Dx,t fitted Booth et al. (2002)
LCnone all no – fitted –

Hyndman–Ullah Methods
HU all yes – fitted Hyndman & Ullah (2007)
HUrob all yes – fitted Hyndman & Ullah (2007)
HUw all yes – fitted Hyndman & Shang (2009)

Table 1: Lee-Carter and Hyndman-Ullah methods by defining features.

3.1 Lee-Carter (LC) method117

The model structure proposed by Lee & Carter (1992) is given by118

log(mx,t) = ax + bxkt + εx,t, (1)

where ax is the age pattern of the log mortality rates averaged across years; bx is the first principal119

component reflecting relative change in the log mortality rate at each age; kt is the first set of120

principal component scores by year t and measures the general level of the log mortality rates;121

and εx,t is the residual at age x and year t. The model assumes homoskedastic error and is122

estimated using a singular value decomposition.123

The LC model in (1) is over-parameterized in the sense that the model structure is invariant
under the following transformations:

{ax, bx, kt} 7→ {ax, bx/c, ckt},
{ax, bx, kt} 7→ {ax − cbx, bx, kt + c}.
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In order to ensure the model’s identifiability, Lee & Carter (1992) imposed two constraints, given
as:

n∑
t=1

kt = 0,

xp∑
x=x1

bx = 1.

In addition, the LC method adjusts kt by refitting to the total number of deaths. This
adjustment gives more weight to high rates, thus roughly counterbalancing the effect of using a
log transformation of the mortality rates. The adjusted kt is then extrapolated using ARIMA
models. Lee & Carter (1992) used a random walk with drift (RWD) model, which can be
expressed as:

kt = kt−1 + d+ et,

where d is known as the drift parameter and measures the average annual change in the series,124

and et is an uncorrelated error. It is notable that the RWD model provides satisfactory results125

in many cases (Tuljapurkar, Li & Boe 2000, Lee & Miller 2001, Lazar & Denuit 2009). From126

this forecast of the principal component scores, the forecast age-specific log mortality rates are127

obtained using the estimated age effects ax and bx, and setting εx,t = 0, in (1).128

The LC method is implemented in the R demography package as follows:129

lc.female <- lca(usa, series="female",ages=0:100)130

forecast.lc.female <- forecast(lc.female, h=20)131

The data (Figure 4), model parameters (Figure 5) and forecasts can be viewed via:132

plot(usa, series="female")133

plot(lc.female)134

plot(forecast.lc.female, plot.type="component")135

plot(usa, series="female", ylim=c(-10,0), lty=2)136

lines(forecast.lc.female)137

The LC method without adjustment of kt (LCnone) is achieved by choosing the adjustment138

option ”none”.139

lcnone.female <- lca(usa, series="female", adjust="none")140

The effect of the LC adjustment of kt is seen in Figure 6 via:141

plot(lcnone.female$kt, ylab="kt",ylim=c(-70,90), xlab="")142

lines(lc.female$kt, lty=2)143

legend("topright", lty=1:2, legend=c("LCnone","LC"))144

An alternative, and more efficient, approach to estimating a Lee-Carter model was described145

by Brouhns et al. (2002), and involves embedding the method in a Poisson regression model,146

and using maximum likelihood estimation. This can be achieved in R using, for example,147

lca(usa, series="female", adjust="dxt")148

3.2 Lee-Miller (LM) method149

The LM method is a variant of the LC method. It differs from the LC method in three ways:150

1. the fitting period begins in 1950;151

2. the adjustment of kt involves fitting to the life expectancy e(0) in year t;152

3. the jump-off rates are the actual rates in the jump-off year instead of the fitted rates.153

6
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Figure 4: US female mortality rates, 1933–2010.
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In their evaluation of the LC method, Lee & Miller (2001) found that the pattern of change154

in mortality rates was not constant over time, which is a strong assumption of the LC method.155

Consequently, the adjustment of historical principal component scores resulted in a large esti-156

mation error. To overcome this, Lee & Miller (2001) adopted 1950 as the commencing year of157

the fitting period due to different age patterns of change for 1900–1949 and 1950–1995. This158

fitting period had previously been used by Tuljapurkar et al. (2000).159

In addition, the adjustment of kt was done by fitting to observed life expectancy in year t,160

rather than by fitting to total deaths in year t. This has the advantage of eliminating the need161

for population data. Further, Lee & Miller (2001) found a mismatch between fitted rates for the162

last year of the fitting period and actual rates in that year. This jump-off error was eliminated163

by using actual rates in the jump-off year.164

The LM method is implemented as follows:165

lm.female <- lca(usa, series="female", adjust="e0", years=1950:max(usa$year))166

forecast.lm.female <- forecast(lm.female, h=20, jumpchoice = "actual")167

The LM method has been found to produce more accurate forecasts than the original LC168

method (Booth et al. 2005, 2006).169

3.3 Booth-Maindonald-Smith (BMS) method170

The BMS method is another variant of the LC method. The BMS method differs from the LC171

method in three ways:172

1. the fitting period is determined on the basis of a statistical ‘goodness of fit’ criterion, under173

the assumption that the principal component score k1 is linear;174

2. the adjustment of kt involves fitting to the age distribution of deaths rather than to the175

total number of deaths;176

3. the jump-off rates are the fitted rates under this fitting regime.177

A common feature of the LC method is the linearity of the best fitting time series model of178

the first principal component score, but Booth, Maindonald & Smith (2002) found the linear179

time series to be compromised by structural change. By first assuming the linearity of the180

8
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first principal component score, the BMS method seeks to achieve the optimal ‘goodness of fit’181

by selecting the optimal fitting period from all possible fitting periods ending in year n. The182

optimal fitting period is determined based on the smallest ratio of the mean deviances of the fit183

of the underlying LC model to the overall linear fit.184

Instead of fitting to the total number of deaths, the BMS method uses a quasi-maximum185

likelihood approach by fitting the Poisson distribution to model age-specific deaths, and using186

deviance statistics to measure the ‘goodness of fit’ (Booth, Maindonald & Smith 2002). The187

jump-off rates are taken to be the fitted rates under this adjustment.188

The BMS method is implemented thus:189

bms.female <- bms(usa, series="female", minperiod = 20, breakmethod = "bms")190

forecast.bms.female <- forecast(bms.female, h=20)191

To view the deviances (Figure 7), chosen fitting period, kt and forecast rates (Figure 8):192

plot(bms.female$mdevs, main="Mean deviances for base and total models", xlab="")193

bms.female$year[1]194

plot(bms.female$kt)195

plot(usa, series="female", ages=0:100, years=bms.female$year[1]:max(usa$year),196

ylim=c(-10,0), lty=2, main="Actual (1979-2010) and Forecast (2011-2030)")197

lines(forecast.bms.female)198

An alternative implementation using the lca() function, which permits all possible variants199

to be produced, is:200

bms.female <- lca(usa, series="female", adjust="dxt", chooseperiod=TRUE,201

minperiod = 20, breakmethod = "bms")202

forecast.bms.female <- forecast(bms.female, h=20)203

Forecasts from the BMS method have been found to be more accurate than those from the204

original LC method and of similar accuracy as those from the LM method (Booth et al. 2005,205

2006).206

9
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Figure 8: Actual (1979–2010) and forecast (2011–2030) mortality rates using the BMS method
for US females.

3.4 Hyndman-Ullah (HU) method207

Using the functional data analysis technique of Ramsay & Silverman (2005), Hyndman & Ullah208

(2007) proposed a nonparametric method for modeling and forecasting log mortality rates. This209

approach extends the LC method in four ways:210

1. the log mortality rates are smoothed prior to modeling;211

2. functional principal components analysis is used;212

3. more than one principal component is used in forecasting;213

4. the forecasting models for the principal component scores are typically more complex than214

the RWD model.215

The log mortality rates are smoothed using penalized regression splines as described in216

Section 2. To emphasize that age, x, is now considered as a continuous variable, we write mt(x)217

to represent mortality rates for age x ∈ [x1, xp] in year t. We then define zt(x) = logmt(x) and218

write219

zt(xi) = ft(xi) + σt(xi)εt,i, i = 1, . . . , p, t = 1, . . . , n (2)

where ft(xi) denotes a smooth function of x as before, σt(xi) allows the amount of noise to vary220

with xi in year t, thus rectifying the assumption of homoskedastic error in the LC model; and221

εt,i is an independent and identically distributed standard normal random variable.222

Given continuous age, x, functional principal components analysis (FPCA) is used in the223

decomposition. The set of age-specific mortality curves is decomposed into orthogonal functional224

principal components and their uncorrelated principal component scores. That is,225

ft(x) = a(x) +

J∑
j=1

bj(x)kt,j + et(x), (3)

where a(x) is the mean function estimated by â(x) = 1
n

∑n
t=1 ft(x); {b1(x), . . . , bJ(x)} is a set226

of the first J functional principal components; {kt,1, . . . , kt,J} is a set of uncorrelated principal227

10



component scores; et(x) is the residual function with mean zero; and J < n is the number of228

principal components used. Note that we use a(x) rather than ax to emphasise that x is not229

treated as a continuous variable.230

Multiple principal components are used because the additional components capture non-231

random patterns that are not explained by the first principal component (Booth, Maindonald232

& Smith 2002, Renshaw & Haberman 2003, Koissi, Shapiro & Högnäs 2006). Hyndman &233

Ullah (2007) found J = 6 to be larger than the number of components actually required to234

produce white noise residuals, and this is the default value. The conditions for the existence235

and uniqueness of kt,j are discussed by Cardot, Ferraty & Sarda (2003).236

Although Lee & Carter (1992) did not rule out the possibility of a more complex time
series models for the kt series, in practice a RWD model has typically been employed in the
LC method. For higher order principal components, which are orthogonal by definition to
the first component, other time series models arise for the principal component scores. For
all components, the HU method selects the optimal time series model using standard model-
selection procedures (e.g. AIC). By conditioning on the observed data I = {z1(x), . . . , zn(x)}
and the set of functional principal components B = {b1(x), . . . , bJ(x)}, the h-step-ahead forecast
of zn+h(x) can be obtained by:

ẑn+h|n(x) = E[zn+h(x)|I,B] = â(x) +
J∑

j=1

bj(x)k̂n+h|n,j ,

where k̂n+h|n,j denotes the h-step-ahead forecast of kn+h,j using a univariate time series model,237

such as the optimal ARIMA model selected by the automatic algorithm of Hyndman & Khan-238

dakar (2008), or an exponential smoothing state space model (Hyndman et al. 2008).239

Because of the orthogonality of all components, it is easy to derive the forecast variance as

v̂n+h|n(x) = Var[zn+h(x)|I,B] = σ2a(x) +
J∑

j=1

b2j (x)un+h|n,j + v(x) + σ2t (x),

where σ2a is the variance of â(x), un+h,n,j is the variance of kn+h,j | k1,j , . . . , kn,j (obtained from240

the time series model), v(x) is the variance of et(x) and σt(x) is defined in (2). This expression241

is used to construct prediction intervals for future mortality rates in R.242

The HU method is implemented as below. The model and forecast are seen in Figures 9 and243

10.244

fdm.male <- fdm(smus, series="male", order=3)245

forecast.fdm.male <- forecast.fdm(fdm.male, h=30)246

plot(forecast.fdm.male, plot.type="component")247

plot(forecast.fdm.male)248

3.5 Robust Hyndman-Ullah (HUrob) method249

The presence of outliers can seriously affect the performance of modeling and forecasting. The250

HUrob method is designed to eliminate their effect. This method utilizes the reflection based251

principal component analysis (RAPCA) algorithm of Hubert, Rousseeuw & Verboven (2002) to252

obtain projection-pursuit estimates of principal components and their associated scores. The253

integrated squared error provides a measure of the accuracy of the principal component ap-254

proximation for each year (Hyndman & Ullah 2007). Outlying years would result in a larger255

integrated squared error than the critical value obtained by assuming normality of et(x) (see256

Hyndman & Ullah 2007, for details). By assigning zero weight to outliers, the HU method can257

then be used to model and forecast mortality rates without possible influence of outliers.258

The HUrob method is implemented as follows:259

11
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Figure 9: HU model and forecast, US male mortality. Fitting period = 1933-2010; forecasting
horizon = 20 years.

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Actual (1933−2010) and Forecast (2011−2030)

Age

Lo
g 

de
at

h 
ra

te

Figure 10: Actual and forecast mortality rates using the HU method for US males

fdm.male <- fdm(smus, series="male", method="rapca")260

forecast.fdm.male <- forecast.fdm(fdm.male, h=20)261

plot(forecast.fdm.male)262
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3.6 Weighted Hyndman-Ullah (HUw) method263

The HU method does not weight annual mortality curves in the functional principal components264

analysis. However, it might be argued that more recent experience has greater relevance to the265

future than more distant experience. The HUw method uses geometrically decaying weights266

in the estimation of the functional principal components, thus allowing these quantities to be267

based more on recent data than on data from the distant past.268

The weighted functional mean a∗(x) is estimated by the weighted average269

â∗(x) =
n∑

t=1

wtft(x), (4)

where {wt = β(1 − β)n−t, t = 1, . . . , n} denotes a set of weights, and 0 < β < 1 denotes the270

weight parameter. Hyndman & Shang (2009) describe how to estimate β from the data. The271

set of weighted curves {wt[ft(x)− â∗(x)]; t = 1, . . . , n} is decomposed using FPCA:272

ft(x) = â∗(x) +
J∑

j=1

b∗j (x)kt,j + et(x), (5)

where {b∗1(x), . . . , b∗J(x)} is a set of weighted functional principal components. By condition-
ing on the observed data I = {z1(x), . . . , zn(x)} and the set of weighted functional principal
components B∗, the h-step-ahead forecast of zn+h(x) can be obtained by:

ẑn+h|n(x) = E[zn+h(x)|I,B∗] = â∗(x) +
J∑

j=1

b∗j (x)k̂n+h|n,j .

The HUw method is implemented as follows:273

fdm.male <- fdm(smus, series="male", method="classical", weight=TRUE, beta=0.1)274

forecast.fdm.male <- forecast.fdm(fdm.male, h=20)275

plot(forecast.fdm.male)276

4 Other mortality forecasting methods277

Other extrapolative mortality forecasting methods are included here for completeness, but are278

not considered in detail as the methods are not fully implemented in packages available on279

CRAN.280

A number of methods have been developed to account for the significant impact of cohort281

(year of birth) in some countries. In the U.K., males born around 1931 have experienced higher282

rates of mortality improvement than earlier or later cohorts (Willets 2004); less marked effects283

have also been observed elsewhere (Cairns et al. 2009).284

The Renshaw and Haberman (RH) (2006) extension to Lee-Carter to include cohort effects285

can be written as1286

log(mx,t) = ax + b1xkt + b2xγt−x + εx,t, (6)

where ax is the age pattern of the log mortality rates averaged across years, kt represents the287

general level of mortality in year t, γt−x represents the general level of mortality for the cohort288

born in year (t− x), b1x and b2x measure the relative response at age x to changes in kt and γt−x289

1For clarity, models have been written in a standardised format which may in some cases differ from the
form used by the authors originally. ax and bx terms are used for age-related effects, kt terms for period-related
effects, and γt−x terms for cohort-related effects. Models originally expressed in terms of the force of mortality
are expressed in terms of the central mortality rate; these are equivalent under the assumption of a constant force
of mortality over each year of age.
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respectively, and εx,t is the residual at age x. The fitted kt and γt−x parameters are forecast290

using univariate time series models. The model can be implemented using the ilc functions291

(Butt & Haberman 2009). The subsequent model292

log(mx,t) = ax + bxkt + γt−x + εx,t (7)

(Haberman & Renshaw 2011), a special case of RH, was found to resolve some forecasting issues293

associated with the original. The Age-Period-Cohort (APC) model (Currie 2006), a special case294

of the revised model, incorporates age-, time- and cohort-effects that are independent in their295

effects on mortality.296

log(mx,t) = ax + kt + γt−x + εx,t (8)

The two-dimensional P-spline method of Currie et al. (2004) has already been described in297

Section 2. Forecast rates are estimated simultaneously with fitting the mortality surface. Im-298

plementation of the two-dimensional P-spline method to produce mortality forecasts use the299

MortalitySmooth package. Forecasts of USA male mortality rates and plots of age 65 and age300

85 forecast rates with prediction intervals can be produced as follows, following the commands301

already shown in Section 2:302

forecastyears <- 2011:2031303

forecastdata <- list(x=usa1950$age, y=forecastyears)304

CDEpredict <- predict(fitBIC, newdata=forecastdata, se.fit=TRUE)305

whiA <- c(66,86)306

plot(usa1950, series="male", age=whiA-1, plot.type="time",307

xlim=c(1950,2031), ylim=c(-6.2,-1), xlab="years",308

main="USA: male projected death rates using 2-dim CDE", col=c(1,2))309

matlines(forecastyears, t(CDEpredict$fit[whiA,]), lty=1, lwd=2)310

matlines(forecastyears, t(CDEpredict$fit[whiA,]+2*CDEpredict$se.fit[whiA,]), lty=2)311

matlines(forecastyears, t(CDEpredict$fit[whiA,]-2*CDEpredict$se.fit[whiA,]), lty=2)312

legend("bottomleft", lty=1, col=1:2, legend=c("Age65", "Age85"))313

In addition to being applied in the age and period dimensions, two-dimensional P-spline method314

can incorporate cohort effects by instead being applied to age-cohort data.315

Cairns et al. (2006) have forecast mortality at older ages using a number of models for316

logit(qx,t) = log[qx,t/(1− qx,t)], where qx,t is the probability that an individual aged x at time t317

will die before time t+ 1. The original CBD model (Cairns et al. 2006) is318

logit(qx,t) = k1t + (x− x̄)k2t + εx,t (9)

where x̄ is the mean age in the sample range. Later models (Cairns et al. 2009) incorporate a
combination of cohort effects and a quadratic term for age:

logit(qx,t) = k1t + (x− x̄)k2t + γt−x + εx,t (10)

logit(qx,t) = k1t + (x− x̄)k2t + ((x− x̄)2 − σ̂2x) + γt−x + εx,t (11)

logit(qx,t) = k1t + (x− x̄)k2t + (xc − x)γt−x + εx,t (12)

where the constant parameter xc is to be estimated and the constant σ̂2x is the mean of (x− x̄)2.319

Other authors (e.g., Plat 2009) have proposed related models.320

The LifeMetrics R software package implements the Lee-Carter method (using maximum321

likelihood estimation and a Poisson distribution for deaths) along with RH, APC, p-splines322

and the four CBD methods. The software, which is not part of CRAN, is available from www.323

jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/software. The software324

and the methods it implements is described in detail in Coughlan et al. (2007).325
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De Jong & Tickle (2006) (DJT) tailor the state space framework to create a method that326

integrates model estimation and forecasting, while using B-splines to reduce dimensionality and327

build in the expected smooth behaviour of mortality over age. Compared with Lee-Carter,328

the method uses fewer parameters, produces smooth forecast rates and offers the advantages329

of integrated estimation and forecasting. A multi-country evaluation of out-of-sample forecast330

performance found that LM, BMS, HU and DJT gave significantly more accurately forecast log331

mortality rates relative to the original LC, with no one method significantly more accurate than332

the others (Booth et al. 2006).333

5 Coherent mortality forecasting334

In modeling mortality for two or more sub-populations of a larger population simultaneously, it is335

usually desirable that the forecasts are non-divergent or “coherent”. The Product-Ratio method336

(Hyndman et al. 2013) achieves coherence through the convergence to a set of appropriate337

constants of forecast age-specific ratios of death rates for any two sub-populations. The method338

is an extension of functional forecasting (HU methods).339

The method is presented here in terms of forecasting male and female age-specific death340

rates; extension to more than two sub-populations is straightforward (Hyndman et al. 2013). Let341

st,F (x) = exp[ft,F (x)] denote the smoothed female death rate for age x and year t, t = 1, . . . , n.342

Similar notation applies for males.343

Let the square roots of the products and ratios of the smoothed rates for each sex be344

pt(x) =
√
st,M (x)st,F (x) and rt(x) =

√
st,M (x)/st,F (x),

These are modeled by functional time series models:345

log[pt(x)] = µp(x) +

K∑
k=1

βt,kφk(x) + et(x) (13a)

log[rt(x)] = µr(x) +
L∑

`=1

γt,`ψ`(x) + wt(x), (13b)

where the functions {φk(x)} and {ψ`(x)} are the principal components obtained from decompos-346

ing {pt(x)} and {rt(x)} respectively, and βt,k and γt,` are the corresponding principal component347

scores. The function µp(x) is the mean of the set of curves {pt(x)}, and µr(x) is the mean of348

{rt(x)}. The error terms, given by et(x) and wt(x), have zero mean and are serially uncorrelated.349

The coefficients, {βt,1, . . . , βt,K} and {γt,1, . . . , γt,L}, are forecast using time series models as350

detailed in Section 3.4. To ensure the forecasts are coherent, the coefficients {γt,`} are constrained351

to be stationary processes. The forecast coefficients are then multiplied by the basis functions,352

resulting in forecasts of the curves pt(x) and rt(x) for future t. If pn+h|n(x) and rn+h|n(x)353

are h-step forecasts of the product and ratio functions respectively, then forecasts of the sex-354

specific death rates are obtained using sn+h|n,M (x) = pn+h|n(x)rn+h|n(x) and sn+h|n,F (x) =355

pn+h|n(x)/rn+h|n(x).356

The method makes use of the fact that the product and ratio behave roughly independently357

of each other provided the sub-populations have approximately equal variances. (If there are358

substantial differences in the variances, the forecasts remain unbiased but less efficient.)359

The Product-Ratio method is illustrated in Figures 11, 12 and 13 and implemented as follows:360

usa.pr <- coherentfdm(smus, weight=TRUE, beta=0.05)361

usa.pr.f <- forecast(usa.pr, h=20)362

363

plot(usa.pr.f$product, plot.type="component", components=3)364
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Figure 11: Ratio function decomposition with forecast

plot(usa.pr.f$ratio$male, plot.type="component", components=3)365

366

par(mfrow=c(1,2))367

plot(usa.pr$product$y, ylab="Log of geometric mean death rate", font.lab=2,368

lty=2,las=1, ylim=c(-10,-1), main="Product function")369

lines(usa.pr.f$product)370

plot(sex.ratio(smus), ylab="Sex ratio of rates: M/F", ylim=c(0.7,3.5), lty=2,371

las=1, font.lab=2, main="Ratio function")372

lines(sex.ratio(usa.pr.f))373

374

plot(smus, series="male", lty=2, ylim=c(-11,-1), main="Males")375

lines(usa.pr.f$male)376

plot(smus, series="female", lty=2, ylim=c(-11,-1), main="Females")377

lines(usa.pr.f$female)378

6 Life table forecasting379

The methods described in this chapter generate forecast mx rates, which can then be used to
produce forecast life table functions using standard methods (e.g., Chiang 1984). Assuming
that mx rates are available for ages 0, 1, . . . , ω−1, ω+, the lifetable function in demography
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Figure 12: Actual(1933–2010) and forecast(2011–2030) product and ratio functions, USA.
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Figure 13: Actual(1933–2010) and forecast(2011–2030) male and female mortality rates using
the product-ratio method with the FDM model, USA.
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generates life table functions from a radix of l0 = 1 as follows for single years of age to ω − 1:

qx = mx/(1 + (1− ax)mx) (14)

dx = lxqx (15)

lx+1 = lx − dx (16)

Lx = lx − dx(1− ax) (17)

Tx = Lx + Lx+1 + · · ·+ Lω (18)

ex = Tx/Lx (19)

where ax = 0.5 for x = 1, . . . , ω − 1, and a0 values (which allow for the fact that deaths in380

this age group occur earlier than midway through the year of age on average) are from Coale381

et al. (1983). For the final age group qω+ = 1, Lω+ = lx/mx, and Tω+ = Lω+. For life tables382

commencing at an age other than zero, the same formulae apply, generated from a radix of 1383

at the earliest age. The mx rates on which the lifetable is based can be the rates applying in a384

future forecast year t, in which case a period or cross-sectional life table is generated, or can be385

rates that are forecast to apply to a certain cohort, in which case a cohort life table is generated.386

The demography package produces life tables using lifetable, and life expectancies using387

the functions e0, life.expectancy and flife.expectancy. flife.expectancy is specifically388

designed for forecast life expectancies and will produce prediction intervals, and e0 is a shorthand389

wrapper for flife.expectancy with age=0. All functions use the cohort argument to give390

cohort rather than period life tables and life expectancies.391

To obtain prediction intervals for future life expectancies, we simulate the forecast log mor-392

tality rates as described in Hyndman & Booth (2008). In short, the simulated forecasts of log393

mortality rates are obtained by adding disturbances to the forecast basis function coefficients394

βt,k and γt,` which are then multiplied by the fixed basis functions, φk(x) and ψ`(x), respec-395

tively. Then, we calculate the life expectancy for each set of simulated log mortality rates.396

Prediction intervals are constructed from percentiles of the simulated life expectancies. This is397

all implemented in the demography package.398

Using the coherent FDM model obtained in the previous section, we can forecast period life399

expectancies (Figure 14) as follows:400

e0.fcast.m <- e0(usa.pr.f, PI=TRUE, series="male")401

e0.fcast.f <- e0(usa.pr.f, PI=TRUE, series="female")402

plot(e0.fcast.m, ylim=c(65,85), col="blue", fcol="blue")403

par(new=TRUE)404

plot(e0.fcast.f, ylim=c(65,85), col="red", fcol="red")405

legend("topleft", lty=c(1,1),col=c("red", "blue"), legend=c("female","male"))406

An alternative approach to life expectancy forecasting is direct modeling, rather than via407

mortality forecasts. This is the approach taken by Raftery et al. (2013) who use a Bayesian408

hierarchical model for life expectancy, and pool information across countries in order to improve409

estimates. Their model is implemented in the bayesLife package, available on CRAN.410

7 Exercises411

1. Download the Human Mortality Database (HMD) mortality data for Denmark and plot412

male mortality rates at single ages 0 to 95+ for the 20th century.413

2. Using data from 1950 for Danish females aged 0-100+, smooth the data by the Currie-414

Durban-Eilers and Hyndman-Ullah methods. Plot the two smoothed curves and the actual415

data for 1950 and 2000.416
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Figure 14: Period life expectancy forecasts for the United States calculated using the product-
ratio method with the FDM model. Blue: males; red: females.

3. Download HMD data for Canada. Using data for the total population, compare forecast417

life expectancy for the next 20 years from the Lee-Carter and Lee-Miller methods.418

4. Apply the Booth-Maindonald-Smith method to total mortality data for Canada. What is419

the fitting period? How does this forecast compare with the Lee-Miller forecast in terms420

of life expectancy after 20 years?421

5. Using female data for Japan (from HMD), apply the Hyndman-Ullah method, and plot422

the first three components. Plot forecast mortality rates for the next 20 years. How does423

the forecast differ from a forecast of the same data using the Lee-carter method without424

adjustment?425

6. Using male data for Japan, apply the Hyndman-Ullah method to forecast 20 years ahead,426

and plot male and female observed and forecast life expectancies on the same graph.427

7. Apply the product-ratio method of coherent forecasting to data by sex for Japan. Plot428

past and future product and ratio functions. Add coherent male and female forecast life429

expectancies to the previous life expectancy graph.430

8. Plot the sex difference over time in observed life expectancy, in independently forecast life431

expectancy and in coherently forecast life expectancy.432
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