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ABSTRACT
Modelling ellipsoidal variables with known distances can lead to exact determination of the
masses of both components, even in the absence of eclipses. We present such modelling using
light and radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud
(LMC), where they are also known as sequence E stars. Stars were selected as likely eccentric
systems on the basis of light curve shape alone. We have confirmed their eccentric nature and
obtained system parameters using the Wilson–Devinney code.

Most stars in our sample exhibit unequal light maxima as well as minima, a phenomenon not
observed in sequence E variables with circular orbits. We find evidence that the shape of the
red giant changes throughout the orbit due to the high eccentricity and the varying influence
of the companion.

Brief intervals of pulsation are apparent in two of the red giants. We determine pulsation
modes and comment on their placement in the period–luminosity plane.

Defining the parameters of these systems paves the way for modelling to determine by what
mechanism eccentricity is maintained in evolved binaries.
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1 IN T RO D U C T I O N

Long period variables occupy several sequences in the period–
luminosity plane (Wood et al. 1999; Ita et al. 2004; Soszyński et al.
2004a, 2007; Fraser et al. 2005; Fraser, Hawley & Cook 2008).
Most of these sequences represent radially pulsating stars on the
red giant branch (RGB) or the asymptotic giant branch (AGB), with
different sequences corresponding to different modes of pulsation.
There are two exceptions. Sequence D, lying at the longest periods,
is occupied by AGB stars showing two concurrent forms of varia-
tion; these stars are also known as long secondary period variables,
or LSPVs (Wood et al. 1999; Hinkle et al. 2002; Wood, Olivier &
Kawaler 2004; Nicholls et al. 2009; Wood & Nicholls 2009). The
other sequence lies close to sequence D and extends to the lowest
luminosities. It was labelled by Wood et al. (1999) with the letter
E and was shown to consist of red giant binaries. Soszyński et al.
(2004b) identified the light variation as due to ellipsoidal varia-
tions, as alternate minima often have different depths. Sequence E
stars exhibit regular light variations with periods between ∼50 and
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1000 d and amplitudes ≤0.3 mag in the MACHO red band. They lie
on both the RGB and the AGB.

Ellipsoidal variability is observed in close binaries, where the
shape of a star is distorted by the gravitational influence of its
companion. When the primary star evolves and begins to fill its
Roche lobe, it takes on an increasingly elongated, or ‘ellipsoidal’,
shape. Rotation of the star’s aspherical shape causes variation in the
light curve, even in the absence of eclipses.

The hallmark of ellipsoidal variables is the relationship between
the phased light and radial velocity curves. The radial velocity of the
system is dominated by the orbital motion, but the light variability is
mainly due to the change in the apparent surface area of the distorted
primary as it orbits its companion. Light maxima occur when the
ellipsoidal star has one of its broad sides facing the observer and
minima correspond to those times when the star is ‘end-on’ from the
observer’s point of view. This orientation-induced light variability
of the ellipsoidal star means the system’s light curve displays two
maxima and minima every orbit; the phased light curve shows two
cycles for every cycle of the phased velocity curve.

Stars on sequence E were first unambiguously demonstrated to
be ellipsoidal variables by Nicholls, Wood & Cioni (2010). In that
paper we presented phased light and velocity curves of 11 sequence
E binaries in the Large Magellanic Cloud (LMC), each showing
doubling of the velocity period with respect to the light period (see
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figs 1 and 2 of that paper). It is expected that the current red giant
is the more massive star and the first to evolve, and that the less
massive companion is normally on the main sequence (MS) and
does not contribute significantly to the detected flux.

A subset of the sequence E ellipsoidal red giant binaries was
suggested by Soszyński et al. (2004b) to have eccentric orbits,
based on their unusual light curve shapes. Eccentric orbits in close
binaries with evolved components are unexpected, as tidal theory
predicts that orbits should quickly circularize once stars begin to
evolve (Zahn 1977). As an example, in Nicholls et al. (2010) we
calculated the circularization time for sequence E stars using the
formula given in Soker (2000). We found the typical circularization
time for sequence E binaries to be ∼3500 yr, much shorter than the
lifetime of the ellipsoidal phase, which is ∼0.8 Myr (Nie, Wood &
Nicholls in preparation) . Eccentric orbits in evolved close binaries
are thought to imply the presence of some mechanism that can
maintain or increase eccentricity, opposing the tidal forces.

A number of other evolved binaries are also known to have un-
expectedly eccentric orbits. These include post-AGB binaries (van
Winckel 2003) and Barium stars (Izzard, Dermine & Church 2010).
It is unclear why significantly non-zero orbital eccentricity is present
in any of these systems, but several mechanisms have been sug-
gested. These include mass transfer at periastron (Soker 2000) and
tidal interaction with a circumbinary disc (Artymowicz et al. 1991).

The evolution of close binaries like ellipsoidal variables may end
in a number of different ways, depending on the initial orbital sep-
aration and subsequent binary evolution. All observable ellipsoidal
variables are partially filling their Roche lobes. If the Roche lobe is
filled below the RGB tip, it is likely that the binary will undergo a
common envelope (CE) event and evolve slowly towards the white
dwarf cooling track, as in this case the remnant star would be un-
able to heat up to and ionize the ejected stellar envelope before it
disperses. If an ellipsoidal variable ends its evolution via the su-
perwind at the AGB tip without filling its Roche lobe, as single
AGB stars do, it will produce a planetary nebula (PN) with a wide
binary companion. Variables that fill their Roche lobes somewhere
on the AGB should undergo an CE event and become close binary
PN. Further comment on the relationship of ellipsoidal variables to
binary PN and asymmetric PN can be found in Nicholls & Wood
(2011).

In this paper we analyse a sample of LMC sequence E bina-
ries which display light curve shapes that Soszyński et al. (2004b)
linked with eccentric orbits. We aim to confirm their eccentric na-
ture and describe the components of each binary and their orbits,
including estimates of absolute masses as is possible for ellipsoidal
variables with known distances (e.g. Wilson et al. 2009). The results
provide input for future studies on the likelihood or otherwise of pro-
posed mechanisms for maintaining eccentricity. We use radial ve-
locity curves obtained from observations taken with the Australian
National University (ANU) 2.3-m telescope at Siding Spring Obser-
vatory (SSO) and OGLE II light curves (The Optical Gravitational
Lensing Experiment; Udalski, Kubiak & Szymariski 1997). Mod-
elling of the light and velocity curves is done with the 2010 version
of the Wilson–Devinney (WD) code (Wilson & Devinney 1971).

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

We selected a sample of seven sequence E stars with I-band magni-
tude brighter than 16 and light curves indicative of eccentric orbits
from the OGLE II data base. Table 1 gives the OGLE identification
and mean V and I magnitudes of each star. The stars were monitored
using the Double Beam Spectrograph (DBS; Rodgers, Conroy &

Table 1. Candidate eccentric ellipsoidal vari-
ables in the OGLE II data base. The OGLE ID
contains each star’s RA and Dec.

OGLE ID V I

OGLE052013.51−692253.2 16.62 15.17
OGLE052438.40−700028.8 15.11 13.66
OGLE052812.41−693417.9 17.33 15.78
OGLE052850.12−701211.2 15.70 13.80
OGLE053033.55−701742.0 15.34 13.87
OGLE053124.49−701927.4 16.67 14.96
OGLE053159.96−693439.5 16.01 14.29

Bloxham 1988) at the ANU 2.3-m telescope at SSO from 2006 May
to 2008 April, with the aim of obtaining radial velocities.

Our study used only the red arm of the DBS with a grating of
1200 lines mm−1, a two-pixel resolution of 0.96 Å and a grating
angle of 32◦4′, giving a wavelength range of approximately 8000–
9000 Å. This gave spectra centred on the Ca triplet, ideal for cross-
correlation and the calculation of radial velocities. A neon–argon arc
and an internal flat were taken after each exposure for calibration
and to eliminate strong fringing on the CCDs. The spectra were
taken over 15 runs throughout the monitoring period with 34 nights
total observing.

Data reduction was done in IRAF. The spectra had the overscan
bias subtracted and the overscan region removed from the images,
and then the object and arc spectra were flat fielded and the spec-
tra extracted using the APEXTRACT package. The arcs were used to
wavelength calibrate the object spectra, obvious cosmic rays were
removed and stars with multiple spectra taken on a single night
were added using scombine. Each star has between 13 and 17 spec-
tra spread over the monitoring period.

Radial velocities were calculated using IRAF’s cross-correlation
task, fxcor. A single spectrum with a high signal-to-noise ratio and
narrow lines was selected from each star’s collection to act as a
template for that star’s cross-correlation. Absolute radial veloci-
ties were provided by cross-correlation of the template with the
radial velocity standard star α Cet, whose spectrum was taken on
2006 November 11 with the above observing configuration. Cross-
correlation was done in the wavelength region 8370–8920 Å, which
was mostly free of telluric lines and included the Ca triplet. Spec-
tra were then cross-correlated to a telluric spectrum in the region
8120–8370 Å (covering the bulk of the telluric lines) to check for
zero-point offsets in the reduction procedure. No zero-point errors
were found.

The OGLE I-band light curves and our new velocity curves of all
seven stars in the sample can be seen in Figs 1–7. The mean value
of Heliocentric Julian Date (HJD) for each night’s observations and
the calculated radial velocities are given in Table 2. Typical velocity
errors are of the order of 2.5 km s−1 and are represented by the error
bars in Figs 1–7.

3 A B S O L U T E SO L U T I O N S O F O R B I TA L A N D
STELLAR PARAMETERS

Analysing both the light and velocity curves of ellipsoidal variables
at known distances provides a unique opportunity to determine
complete binary solutions, even in the absence of eclipses. Imple-
mentation of this within the WD code is known as inverse distance
estimation (Wilson et al. 2009). From a conceptual perspective,
the basic method is as follows. If the distance, observed magnitude
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Figure 1. Observed OGLE I light curve and observed radial velocity curve
for OGLE052013.51 (red points) and modelled light and velocity curves
(blue lines) at an inclination of 60◦. The vertical black line marks the phase
of periastron.

Figure 2. Observed OGLE I light curve and observed radial velocity curve
for OGLE052438.40 (red points) and modelled light and velocity curves
(blue lines) at an inclination of 70◦. The vertical black line marks the phase
of periastron.

and extinction are known, the absolute luminosity of an ellipsoidal
variable can be derived. If the temperature is also known (e.g. from
spectra or colour), the stellar radius can be calculated.

If the orbital inclination of an ellipsoidal variable is known or can
be constrained, then the amplitude of the light variation measures
what fraction of its Roche lobe the ellipsoidal star fills. The previ-
ously calculated radius therefore gives the size of the Roche lobe,
Rlobe. The radial velocity curve provides the semimajor axis of the
red giant’s orbit, a1, so a solution for mass ratio q is possible, since q
is a function of Rlobe/a1. So for an assumed i, the absolute masses of
stars are produced. Therefore, we need to step only the inclination
in our solutions to find the best fit to the light and velocity curves.

Our analysis of ellipsoidal red giant binaries with undetectable
companions and known distances has been preceded by the analysis
of a similar binary by Wilson et al. (2009), who also pioneered the

Figure 3. Observed OGLE I light curve and observed radial velocity curve
for OGLE052812.41 (red points) and modelled light and velocity curves
(blue lines) at an inclination of 90◦. The vertical black line marks the phase
of periastron.

Figure 4. Observed OGLE I light curve and observed radial velocity curve
for OGLE052850.12 (red points) and modelled light and velocity curves
(blue lines) at an inclination of 50◦. The vertical black line marks the phase
of periastron.

method described above and conveniently added this capability to
the 2010 version of the WD code. The reader is referred to that
paper for a more in-depth explanation of absolute light and velocity
analysis of ellipsoidal variables.

3.1 Modelling the light and velocity curves

To describe our ellipsoidal variables and obtain their orbital parame-
ters, we used the 2010 version of the WD code (Wilson & Devinney
1971; Wilson 2008; Wilson et al. 2009). Preliminary fits to the ve-
locity curves were made with a FORTRAN program, FITALL, to obtain
starting estimates of input parameters for the WD modelling. This
allowed us to fix the system velocity vγ and gave starting estimates
for the semimajor axis a, angle of periastron ω, eccentricity e and
mass ratio q. Some of these initial parameters are shown in Table 3.
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Figure 5. Observed OGLE I light curve and observed radial velocity curve
for OGLE053033.55 (red points) and modelled light and velocity curves
(blue lines) at an inclination of 60◦. The vertical black line marks the phase
of periastron.

Figure 6. Observed OGLE I light curve and observed radial velocity curve
for OGLE053124.49 (red points) and modelled light and velocity curves
(blue lines) at an inclination of 70◦. The vertical black line marks the phase
of periastron.

The luminosity of each star was calculated using its median
OGLE V − I colour, a bolometric correction to I calculated from
the Houdashelt et al. (2000) models for K and M giants, the LMC
distance modulus 18.54 and reddening E(B − V) = 0.08 (Keller &
Wood 2006), and V and I extinction calculated using the Cardelli,
Clayton & Mathis (1989) equations. Effective temperatures Teff

were calculated from a fit to the (Teff , V − I) data of Houdashelt
et al. (2000), and stellar radii were calculated from luminosity and
Teff using the Stefan–Boltzmann law. The temperature of the ellip-
soidal red giant Teff1 , an input for both the LC and DC programs of
the WD code, was fixed from these calculations. The WD code uses
bolometric corrections and bandpass fluxes computed from Kurucz
(1993) model atmospheres. After fitting the observed curves, and
using the known distance, the code calculates the stellar luminosity.

Figure 7. Observed OGLE I light curve and observed radial velocity curve
for OGLE053159.96 (red points) and modelled light and velocity curves
(blue lines) at an inclination of 60◦. The vertical black line marks the phase
of periastron.

This agreed well with the value computed with the Houdashelt et al.
(2000) bolometric corrections, showing consistency of the model
atmospheres.

A metallicity of [M/H] = −0.3 was used for these LMC stars.
Zero-point flux calibrations for the Ic band (OGLE light curve) and
the Johnson I band (the best match to the wavelengths of the ob-
served spectra from which velocity curves were calculated) were
taken from Bessell (1979) and Johnson (1966), respectively. All
stars were assumed to have their rotation velocities periastron syn-
chronized and the rotation parameters F1 and F2 were calculated ac-
cordingly. The invisible companion star to each ellipsoidal red giant
was initially assumed to be a sun-like MS star with Teff2 = 6000 K,
and the surface potentials were set so that the companions made
no contribution to the modelled light curves. The parameters of the
companion were later adjusted as described below for each case.
The potentials of the red giants were set during initial explorations
with the LC program so the modelled luminosities and radii matched
the independently calculated values.

Solutions for all stars were performed in mode 2 for detached
binaries. We used simple reflection treatment with no spots, and no
proximity effects. Limb darkening was done via the square root law
with coefficients calculated locally from the van Hamme (1993)
tables. The stellar atmosphere formulation was used for local flux
emission calculations instead of the less accurate blackbody formu-
lation. The gravity darkening exponents were set to 0.3 for each red
giant and 1.0 for each MS companion, as appropriate for convec-
tive and radiative envelopes, respectively. Bolometric albedos were
set to 0.5 for each red giant and 1.0 for each companion, again as
expected for convective and radiative envelopes. Symmetric deriva-
tives were used in all solutions to improve convergence.

The inclination was stepped down from 90◦, in 10◦ increments,
producing a one-dimensional family of solutions for each system.
Stepping of i stopped when either q exceeded unity or the solution
was deemed too poor. We allowed DC to iterate on a, e, ω, primary
star potential �1 and q. The sum of squares of residuals of the
light curve was noted for each solution, as a means of quantitatively
determining the best solution. The velocity curve residuals were also
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Table 2. Radial velocities in km s−1 of eccentric sequence E stars. Stars are identified by their OGLE RA.

HJD 052013.51 052438.40 052812.41 052850.12 053033.55 053124.49 053159.96

245 3872.91 254.76 296.16 – 251.91 259.75 – –
245 3981.20 253.11 283.78 – 238.42 237.13 – –
245 3982.23 – – – – – 248.22 232.90
245 3983.23 – – 261.03 – – 246.62 –
245 4050.17 244.62 262.61 – 228.23 231.69 253.12 –
245 4051.10 – – 239.52 – – 251.42 227.26
245 4109.16 – 245.09 – 221.65 244.45 – –
245 4110.04 231.78 – – – – – 232.08
245 4111.13 – – 249.70 – – 246.83 –
245 4136.22 – 245.40 – 227.83 257.28 – –
245 4137.17 228.82 – – – – 244.42 240.39
245 4137.99 – – 255.28 – – – –
245 4167.14 – 253.05 – – – – –
245 4167.98 239.62 247.33 – 232.92 268.22 – 254.69
245 4168.93 – – 266.21 – – 249.55 –
245 4206.89 243.56 265.81 263.00 241.77 271.55 250.76 –
245 4207.95 – – – – – – 255.71
245 4310.25 261.01 297.26 – 254.92 249.89 – 250.59
245 4347.23 – – – 256.96 243.51 222.24 247.46
245 4348.31 253.91 294.11 – – – – –
245 4349.10 – – – – – – –
245 4378.17 261.02 288.66 260.25 257.33 237.30 230.38 243.08
245 4409.16 261.11 276.56 – 256.44 235.05 238.04 241.15
245 4452.23 – 265.40 – 256.67 235.23 247.99 233.66
245 4453.95 – – 275.04 – – – –
245 4454.10 – – 267.86 – – – –
245 4524.07 – 243.97 – – – – –
245 4543.10 241.48 242.95 – 250.30 264.18 255.56 228.90
245 4543.94 – – 245.65 – – – –
245 4545.09 234.34 – 247.01 – – 253.69 231.90
245 4571.07 215.03 244.55 – 248.54 270.34 261.19 228.57
245 4571.87 223.48 – 236.37 – – – –
245 4573.00 221.59 245.22 – 249.44 – – –

Table 3. Initial parameters for our eccentric sequence E
sample. Stars are identified by their OGLE RA.

Star HJD0 P (d) L (L�) Teff (K)

052013.51 245 0390.0 452.47 1196.16 4221.71
052438.40 245 0315.0 410.96 4747.84 4240.74
052812.41 245 0640.0 258.70 721.33 4064.10
052850.12 244 9955.0 662.20 5441.67 3718.76
053033.55 245 0800.0 390.17 4017.29 4183.04
053124.49 245 0440.0 541.32 1671.59 3877.35
053159.96 245 0870.0 501.10 3130.32 3876.33

examined but were found to not provide useful additional constraints
on orbital inclination, as they varied randomly or without minima. In
contrast to the light curves, the velocity curves have fewer features
and are less well sampled. Any change in velocity amplitude due
to inclination can be compensated for in the models by changing
the stellar masses, so we did not include velocity residuals in our
estimation of the best solution. In general, solutions converged (so
that corrections � errors) in six to eight iterations.

The phase of the modelled light and velocity curves was calcu-
lated by LC, using the input phase zero-point, HJD0. The convention
in binary analysis is for superior conjunction to occur at or near
phase zero. To find HJD0 for each star we noted the light curve
shape at the phase of superior conjunction according to the velocity

curve, and then visually inspected the light curve plotted against
Julian Date to find the HJD of superior conjunction, choosing the
earliest value in the data. The final value of HJD0 was obtained
through tweaking of the phased plots to find a good match between
the theoretical and observed curves. We calculated the phasing of the
observed curves using the same value of HJD0 as for the theoretical
curves. The values of HJD0 for each star are shown in Table 3.

3.2 Individual star solutions

3.2.1 OGLE052013.51

The observed light and velocity curves are shown in Fig. 1. The light
curve has unequal maxima and minima, with one of the maxima
very sharp. At superior conjunction (when the red giant is behind
its companion from an observer’s point of view), the corresponding
minimum of the light curve is deeper, meaning the red giant is
dimmer on the end closest its companion. As explained in Nicholls
et al. (2010), this is likely due to gravity darkening.

The angle of periastron is ∼160◦, meaning periastron occurs
between superior conjunction and the following maximum, at a
phase of ∼0.2. This and the high orbital eccentricity (∼0.4) explain
why the brighter maximum is so sharp: in a highly eccentric orbit, a
star moves very fast at periastron and so that part of the light curve
spans a shorter time interval. This however cannot explain why the
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Table 4. Simultaneous light and velocity solutions for OGLE052013.51.

i a (R�) e ω (rad) �1 q M1 (M�) M2 (M�) R1 (R�)
∑

r2(I)

90◦ 331.596 ± 6.065 0.393 ± 0.005 2.789 ± 0.007 6.180 ± 0.165 0.573 ± 0.045 1.52 0.87 68.61 0.630 × 10−15

80◦ 331.749 ± 5.937 0.396 ± 0.005 2.791 ± 0.007 6.243 ± 0.162 0.594 ± 0.045 1.50 0.89 68.33 0.616 × 10−15

70◦ 331.820 ± 5.603 0.402 ± 0.005 2.797 ± 0.006 6.422 ± 0.158 0.655 ± 0.046 1.45 0.95 67.53 0.583 × 10−15

60◦ 336.724 ± 5.194 0.416 ± 0.005 2.809 ± 0.006 6.836 ± 0.155 0.782 ± 0.047 1.41 1.10 66.32 0.563 × 10−15

50◦ 348.620 ± 5.291 0.442 ± 0.006 2.830 ± 0.006 7.478 ± 0.166 0.949 ± 0.052 1.43 1.35 65.01 0.663 × 10−15

40◦ 372.829 ± 6.981 0.498 ± 0.009 2.859 ± 0.006 8.222 ± 0.212 1.023 ± 0.063 1.68 1.72 64.13 0.866 × 10−15

60◦a 337.312 ± 5.130 0.416 ± 0.005 2.809 ± 0.006 6.858 ± 0.154 0.789 ± 0.046 1.41 1.11 66.29 0.566 × 10−15

aFinal solution at the best inclination and with the most accurate companion properties.

star is brighter there than at its other maximum. A hypothesis to
explain this brightening is presented in Section 4.2.

The results of our modelling for various i values are shown in
Table 4, where

∑
r2(I) denotes the sum of squares of residuals of

the I-band light curve from the modelled curve. The errors shown
are the standard errors calculated by DC for each adjusted parame-
ter. Semimajor axis, e, ω, �1 and q all increase significantly with
decreasing i. The mass ratio exceeded unity at i = 40◦ so solutions
were not made at lower inclinations.

According to the sum of squares of residuals of the light curve,
the best solution for a compact secondary is at i = 60◦. This solution
was further refined by obtaining more accurate estimates of the MS
companion’s properties. At i = 60◦, the red giant has a mass of
1.4 M� and a radius of 66.3 R�. From the colour temperature of
4220 K, we calculate the luminosity as 1252 L�. Using the evolu-
tionary track data of Girardi et al. (2000), a red giant of this mass
and luminosity and of LMC metallicity should have an age of ∼3 ×
109 yr and be on the RGB. At the same age, the 1.1 M� MS com-
panion should have L = 2.4 L�, Teff = 6490 K and R = 1.2 R�.
We re-solved the system at i = 60◦ with Teff2 increased to 6490 K
and the companion’s surface potential, �2, altered so R2 = 1.2 R�.
This more accurate solution is shown in the last row of Table 4
and in Fig. 1. Increasing the accuracy of the companion parameters
caused no significant changes in the solution.

3.2.2 OGLE052438.40

From Fig. 2 it is clear that this variable displays equal maxima and
unequal minima. However, the most notable property of this star’s
light curve is that the deeper minimum occurs at a different place
with respect to the velocity curve than expected. Instead of being
dimmer towards the companion as gravity darkening dictates, the
red giant is dimmer at its other light minimum (inferior conjunc-
tion, or when the ‘outer end’ of the red giant is towards us). An
explanation for this is proposed in Section 4.2

The angle of periastron is ∼268◦, so periastron occurs about the
same time as inferior conjunction, or at a phase of ∼0.5.

The results of our modelling with different i values can be
found in Table 5. For most solutions, a, e and ω are not sig-
nificantly different. However �1 and q change significantly with
inclination.

According to the sum of squares of residuals of the light curve,
the best solution is at 90◦. However using the Girardi et al. (2000)
evolutionary tracks as above to find the temperature and radius of
the MS companion resulted in eclipses in the light curve at both 90◦

and 80◦ inclinations. The eclipses disappeared at i = 70◦, where the
red giant has a mass of 5.8 M� and a radius of 131 R�. From the
temperature of 4240 K, we calculate the luminosity as 4979 L�. A
red giant of this mass and luminosity and at LMC metallicity should
have an age of ∼7 × 107 yr and lie on the RGB. At the same age, the
5 M� MS companion should have L = 881 L�, T = 16 710 K and
R = 3.5 R�. We re-solved the system at i = 70◦ with Teff2 increased
to 16 710 K and �2 altered so R2 = 3.5 R�. This solution is shown
in the second last row of Table 5 and in Fig. 2. The only significant
change in parameters for an accurately sized secondary is a slightly
higher ω.

Both the stars in this system are of higher mass than the gen-
eral LMC intermediate mass population. In particular, this system
has the highest mass ratio of our sample, and the secondary has
the highest mass, temperature and luminosity and the greatest ra-
dius of the modelled companions. Therefore OGLE052438.40 is
the system most likely to show a contribution of the MS companion
to the overall flux. Using the derived luminosities, the secondary
contributes 0.07 mag to the flux at V and 0.02 mag to the flux at I,
meaning the red giant’s V − I colour should reduce by 0.05, corre-
sponding to an ∼50 K drop in the red giant’s estimated temperature.
To check whether this made a significant change to the modelled
solution, we re-solved the system at the best inclination (70◦), with
Teff1 reduced to 4190 K and the initial value of �1 altered so R1 was
increased to 134 R� (to account for the radius increase factor of

Table 5. Simultaneous light and velocity solutions for OGLE052438.40.

i a (R�) e ω (rad) �1 q M1 (M�) M2 (M�) R1 (R�)
∑

r2(I)

90◦ 515.379 ± 4.270 0.135 ± 0.006 4.640 ± 0.033 4.880 ± 0.050 0.770 ± 0.019 6.15 4.74 131.41 0.699 × 10−14

80◦ 514.782 ± 4.269 0.135 ± 0.006 4.633 ± 0.033 4.904 ± 0.050 0.791 ± 0.019 6.06 4.79 131.30 0.700 × 10−14

70◦ 513.360 ± 4.189 0.134 ± 0.006 4.635 ± 0.033 4.997 ± 0.052 0.869 ± 0.021 5.76 5.00 130.96 0.700 × 10−14

60◦ 511.935 ± 4.319 0.130 ± 0.006 4.631 ± 0.035 5.186 ± 0.058 1.025 ± 0.026 5.27 5.40 130.35 0.703 × 10−14

50◦ 511.608 ± 4.446 0.122 ± 0.005 4.624 ± 0.039 5.576 ± 0.070 1.342 ± 0.036 4.55 6.10 129.36 0.715 × 10−14

70◦a 511.549 ± 4.994 0.138 ± 0.006 4.676 ± 0.034 5.064 ± 0.074 0.899 ± 0.031 5.61 5.04 129.55 0.543 × 10−14

70◦b 521.856 ± 5.078 0.139 ± 0.006 4.677 ± 0.034 4.979 ± 0.072 0.867 ± 0.030 6.06 5.25 133.85 0.717 × 10−14

aSolution at the best inclination and with the most accurate companion properties.
bFinal solution including the light contribution from the secondary.
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1.024 associated with the temperature change). This refined solution
is shown in the last row of Table 5. The most notable differences are
in the semimajor axis and the masses, all of which have increased
significantly. However there was no discernible change in the shape
of the modelled light curve. The contribution of the secondary to
the system light and orbital solutions was insignificant in all other
systems studied here.

3.2.3 OGLE052812.41

The observed light and velocity curves of this star are depicted in
Fig. 3. Its light curve has unequal maxima and minima, and again the
deeper minimum of the light curve occurs at inferior conjunction,
instead of at superior conjunction as expected for an ellipsoidal
variable.

The angle of periastron of the red giant is ∼215◦, which means
periastron occurs just after the brighter maximum of the light curve,
before inferior conjunction, at a phase of ∼0.35. Again, proximity of
the narrower maximum to periastron is explained by the eccentricity
of the orbit.

The solutions for different inclinations are shown in Table 6. For
most i, a and e do not differ significantly. The angle of periastron
and �1 vary slightly with i while q varies more significantly. The
mass ratio exceeded unity at i = 50◦.

The best solution for a small secondary star is at 90◦, according
to the sum of squares of residuals of the light curve. This solution
was refined further by obtaining more accurate estimates of the MS
companion’s properties. At i = 90◦, the red giant has a mass of
1.4 M� and a radius of 55.7 R�. With a temperature of 4060 K, the
luminosity is 756 L�. Using the data of Girardi et al. (2000), a red
giant of this mass and luminosity at LMC metallicity should have
an age of ∼3 × 109 yr and lie on the RGB. At the same age, the
0.9 M� MS companion should have L = 0.7 L�, T = 5790 K and
R = 0.8 R�. We further refined our best solution (i = 90◦) with Teff2

decreased to 5790 K and �2 altered so R2 = 0.8 R�. This solution
is shown in the last row of Table 6 and in Fig. 3, and is almost
unchanged from the original solution with i = 90◦.

3.2.4 OGLE052850.12

The observed light and radial velocity curves are shown in Fig. 4.
The light curve shows unequal maxima and minima of almost equal
depths.

The angle of periastron is ∼188◦, so periastron occurs almost
concurrently with the brighter light maximum, at a phase of ∼0.27.
The narrower maximum is again due to the star moving quickly at
periastron during this part of its orbit.

The results are shown in Table 7. Semimajor axis, e, ω and �1

vary slowly with i, while q changes rapidly with i, particularly at
low inclinations, and exceeds unity at i = 40◦.

According to the sum of the squares of residuals of the light curve,
the best solution is at i = 50◦. This solution was further refined by
obtaining more accurate estimates of the MS companion’s proper-
ties. At i = 50◦, the red giant has a mass of 4.3 M� and a radius
of 176 R�. From the colour temperature of 3720 K, we calculate
the luminosity as 5325 L�. A red giant of this mass and luminosity
and at LMC metallicity should have an age of ∼1.5 × 108 yr and be
on the AGB. At the same age, the 3.4 M� MS companion should
have L = 242 L�, T = 13 430 K and R = 2.88 R�. We re-solved
this solution with Teff2 increased to 13 430 K and �2 altered so R2 =
2.88 R�. This solution is shown in the last row of Table 7 and in
Fig. 4.

3.2.5 OGLE053033.55

The observed light and velocity curves are depicted in Fig. 5. This
star also shows unequal maxima and minima, with the deeper min-
imum of the light curve at inferior conjunction.

The angle of periastron is ∼290◦, with periastron occurring be-
tween inferior conjunction and the following light maximum, at a
phase of ∼0.55.

The solutions for all modelled inclinations and a compact sec-
ondary are shown in Table 8. Semimajor axis, e, ω, �1 and q all
vary significantly with i. The mass ratio exceeded unity at i = 30◦,
and we did not make solutions at lower inclinations.

Table 6. Simultaneous light and velocity solutions for OGLE052812.41.

i a (R�) e ω (rad) �1 q M1 (M�) M2 (M�) R1 (R�)
∑

r2(I)

90◦ 225.412 ± 4.920 0.237 ± 0.007 3.758 ± 0.022 4.985 ± 0.145 0.652 ± 0.045 1.39 0.91 55.65 0.182 × 10−15

80◦ 225.634 ± 4.906 0.236 ± 0.007 3.752 ± 0.022 5.025 ± 0.147 0.675 ± 0.047 1.38 0.93 55.60 0.183 × 10−15

70◦ 226.185 ± 4.633 0.236 ± 0.007 3.741 ± 0.022 5.148 ± 0.145 0.750 ± 0.049 1.33 1.00 55.44 0.184 × 10−15

60◦ 223.762 ± 4.280 0.234 ± 0.007 3.712 ± 0.023 5.257 ± 0.141 0.849 ± 0.052 1.22 1.03 55.17 0.191 × 10−15

50◦ 221.307 ± 4.066 0.225 ± 0.008 3.663 ± 0.025 5.466 ± 0.145 1.023 ± 0.059 1.08 1.10 54.76 0.215 × 10−15

90◦a 224.800 ± 4.926 0.236 ± 0.007 3.755 ± 0.022 4.965 ± 0.144 0.644 ± 0.045 1.39 0.89 55.64 0.183 × 10−15

aFinal solution at the best inclination and with the most accurate companion properties.

Table 7. Simultaneous light and velocity solutions for OGLE052850.12.

i a (R�) e ω (rad) �1 q M1 (M�) M2 (M�) R1 (R�)
∑

r2(I)

90◦ 648.261 ± 6.646 0.241 ± 0.005 3.368 ± 0.021 4.302 ± 0.056 0.466 ± 0.016 5.69 2.65 182.79 0.201 × 10−13

80◦ 649.654 ± 5.285 0.244 ± 0.005 3.359 ± 0.020 4.352 ± 0.044 0.489 ± 0.013 5.64 2.76 182.38 0.198 × 10−13

70◦ 642.750 ± 4.315 0.249 ± 0.005 3.355 ± 0.018 4.416 ± 0.036 0.540 ± 0.011 5.28 2.85 181.26 0.185 × 10−13

60◦ 632.234 ± 6.562 0.255 ± 0.005 3.326 ± 0.016 4.526 ± 0.065 0.623 ± 0.022 4.77 2.97 179.32 0.167 × 10−13

50◦ 630.260 ± 4.228 0.254 ± 0.005 3.286 ± 0.015 4.821 ± 0.045 0.796 ± 0.018 4.27 3.40 176.43 0.155 × 10−13

40◦ 639.198 ± 5.137 0.228 ± 0.006 3.256 ± 0.019 5.350 ± 0.063 1.114 ± 0.030 3.79 4.22 172.54 0.196 × 10−13

50◦a 628.582 ± 5.807 0.252 ± 0.005 3.287 ± 0.015 4.835 ± 0.068 0.807 ± 0.027 4.21 3.40 175.93 0.155 × 10−13

aFinal solution at the best inclination and with the most accurate companion properties.
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Table 8. Simultaneous light and velocity solutions for OGLE053033.55.

i a (R�) e ω (rad) �1 q M1 (M�) M2 (M�) R1 (R�)
∑

r2(I)

90◦ 475.000 ± 3.171 0.215 ± 0.005 5.005 ± 0.022 4.462 ± 0.033 0.437 ± 0.008 6.58 2.87 124.18 0.147 × 10−14

80◦ 474.346 ± 3.290 0.215 ± 0.005 5.009 ± 0.022 4.476 ± 0.035 0.448 ± 0.009 6.50 2.92 124.06 0.146 × 10−14

70◦ 471.506 ± 2.823 0.214 ± 0.005 5.026 ± 0.022 4.512 ± 0.029 0.485 ± 0.008 6.23 3.02 123.72 0.144 × 10−14

60◦ 467.796 ± 2.655 0.210 ± 0.005 5.052 ± 0.022 4.594 ± 0.027 0.556 ± 0.009 5.80 3.23 123.14 0.142 × 10−14

50◦ 464.284 ± 2.719 0.201 ± 0.005 5.077 ± 0.023 4.758 ± 0.030 0.689 ± 0.011 5.23 3.60 122.29 0.145 × 10−14

40◦ 463.957 ± 3.208 0.170 ± 0.005 5.070 ± 0.028 5.087 ± 0.041 0.949 ± 0.019 4.52 4.29 121.09 0.169 × 10−14

30◦ 472.820 ± 3.927 0.108 ± 0.004 4.982 ± 0.037 5.878 ± 0.058 1.579 ± 0.036 3.62 5.71 119.24 0.276 × 10−14

60◦a 465.730 ± 2.482 0.212 ± 0.005 5.053 ± 0.021 4.594 ± 0.025 0.560 ± 0.008 5.72 3.20 122.76 0.141 × 10−14

aFinal solution at the best inclination and with the most accurate companion properties.

According to the sum of squares of residuals of the light curve,
the best solution is at 60◦. We further refined this solution by ob-
taining more accurate estimates of the MS companion’s properties.
At i = 60◦, the red giant has a mass of 5.8 M� and a radius of
123 R�. The colour temperature of 4180 K gives a luminosity of
4147 L�. Using the data of Girardi et al. (2000), a red giant of this
mass and luminosity and at LMC metallicity should have an age of
∼7 × 107 yr and lie on the RGB. At the same age, the 3.2 M� MS
companion should have L = 99 L�, T = 13 310 K and R = 1.9 R�.
We re-solved at i = 60◦ with Teff2 increased to 13 310 K and �2

altered so R2 = 1.9 R�. This solution is shown in the last row of
Table 8 and in Fig. 5. The masses in this system are again higher
than the typical LMC field population.

3.2.6 OGLE053124.49

The observed light and velocity curves are shown in Fig. 6, from
which it is clear that this star also shows unequal maxima and
minima in its light curve. At superior conjunction, the relevant
minimum of the light curve is deeper, i.e. the star is dimmer on the
end nearest to the companion, as expected due to gravity darkening.

The angle of periastron is ∼176◦, so periastron occurs around the
same time as the brighter maximum, at a phase of ∼0.24. Again
the narrow maximum can be attributed to the star moving fast at
periastron in a highly eccentric orbit, but this does not explain why
this maximum is brighter than the other.

The results of the WD modelling are shown in Table 9. Semimajor
axis, e and ω all vary slightly with decreasing i, while �1 and q vary
more significantly with i.

The best solution with a compact secondary is at 90◦, according to
the sum of squares of residuals of the light curve. However using the
Girardi et al. (2000) evolutionary tracks as above to find the tem-
perature and radius of the MS companion resulted in eclipses of
the light curve at 90◦ and 80◦. The eclipses disappeared at i = 70◦,

where the red giant has a mass of 2.0 M� and a radius of 92 R�.
From the colour temperature of 3880 K, the luminosity is 1722 L�.
From Girardi et al. (2000), a red giant of this mass and luminosity
and at LMC metallicity has an age of ∼1.3 × 109 yr and is an AGB
star around the time of its first thermal pulse. At the same age, the
1 M� MS companion should have L = 1.19 L�, T = 6120 K and
R = 0.97 R�. We re-ran the code at i = 70◦ with Teff2 increased to
6120 K and �2 altered so R2 = 0.97 R�. This solution is shown in
the last row of Table 9 and in Fig. 6.

3.2.7 OGLE053159.96

The observed light and velocity curves are shown in Fig. 7. This
star has a light curve with unequal maxima and minima, and again
its deeper light minimum occurs at inferior conjunction.

The angle of periastron is ∼280◦, so periastron occurs between
inferior conjunction and the subsequent light maximum, at a phase
of ∼0.53. In this case, periastron has squeezed the deeper minimum
in phase, rather than one of the maxima.

The solutions are shown in Table 10. Semimajor axis, e and ω all
vary slowly with i. Primary potential and q vary significantly with i.
The stepping down of i for successive solutions was halted before q
exceeded unity, as at i = 40◦ DC was unable to fit the full amplitude
of the light curve.

According to the sum of squares of residuals of the light curve,
the best solution is at i = 80◦. However using a more accurate
temperature and radius for the MS companion results in eclipses at
80◦ and 70◦, due to the increased radius of the MS star. The eclipses
disappeared at i = 60◦, where the red giant has a mass of 4.8 M�
and a radius of 125 R�. With a colour temperature of 3880 K,
the red giant’s luminosity is 3179 L�. Using the data of Girardi
et al. (2000), a red giant of this mass and luminosity and LMC
metallicity should have an age of ∼1.05 × 108 yr and be at or near the
RGB tip. At the same age, the 2.1 M� MS companion should have

Table 9. Simultaneous light and velocity solutions for OGLE053124.49.

i a (R�) e ω (rad) �1 q M1 (M�) M2 (M�) R1 (R�)
∑

r2(I)

90◦ 407.136 ± 6.991 0.286 ± 0.006 3.071 ± 0.019 5.188 ± 0.113 0.467 ± 0.029 2.11 0.99 93.00 0.352 × 10−15

80◦ 405.453 ± 5.977 0.288 ± 0.006 3.071 ± 0.019 5.193 ± 0.097 0.476 ± 0.025 2.07 0.99 92.86 0.353 × 10−15

70◦ 403.084 ± 5.348 0.294 ± 0.006 3.072 ± 0.019 5.258 ± 0.087 0.518 ± 0.023 1.98 1.02 92.40 0.356 × 10−15

60◦ 399.950 ± 5.083 0.302 ± 0.007 3.079 ± 0.019 5.389 ± 0.085 0.595 ± 0.025 1.84 1.09 91.64 0.379 × 10−15

50◦ 399.535 ± 5.523 0.306 ± 0.008 3.107 ± 0.020 5.653 ± 0.098 0.733 ± 0.032 1.69 1.24 90.59 0.465 × 10−15

40◦ 408.102 ± 7.726 0.295 ± 0.012 3.194 ± 0.027 6.144 ± 0.153 0.972 ± 0.059 1.58 1.54 89.37 0.699 × 10−15

30◦ 377.018 ± 8.088 0.083 ± 0.014 4.184 ± 0.087 6.516 ± 0.161 1.700 ± 0.086 0.91 1.55 86.47 1.150 × 10−15

70◦a 402.608 ± 6.848 0.292 ± 0.006 3.076 ± 0.018 5.254 ± 0.116 0.519 ± 0.032 1.97 1.02 92.40 0.356 × 10−15

aFinal solution at the best inclination and with the most accurate companion properties.
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Table 10. Simultaneous light and velocity solutions for OGLE053159.96.

i a (R�) e ω (rad) �1 q M1 (M�) M2 (M�) R1 (R�)
∑

r2(I)

90◦ 525.077 ± 4.739 0.405 ± 0.008 4.874 ± 0.012 4.859 ± 0.044 0.336 ± 0.088 5.80 1.95 126.84 0.19 × 10−14

80◦ 522.302 ± 7.409 0.405 ± 0.008 4.866 ± 0.012 4.856 ± 0.081 0.342 ± 0.016 5.68 1.94 126.65 0.19 × 10−14

70◦ 516.514 ± 5.895 0.400 ± 0.007 4.872 ± 0.012 4.886 ± 0.062 0.375 ± 0.013 5.36 2.01 126.05 0.19 × 10−14

60◦ 505.586 ± 5.025 0.390 ± 0.007 4.881 ± 0.013 4.937 ± 0.052 0.436 ± 0.013 4.81 2.10 125.03 0.19 × 10−14

50◦ 492.890 ± 4.874 0.367 ± 0.007 4.898 ± 0.016 5.062 ± 0.050 0.550 ± 0.015 4.13 2.27 123.48 0.21 × 10−14

40◦ 489.737 ± 7.847 0.305 ± 0.009 4.946 ± 0.028 5.380 ± 0.103 0.778 ± 0.038 3.53 2.75 121.42 0.27 × 10−14

60◦a 505.150 ± 6.698 0.391 ± 0.007 4.877 ± 0.013 4.948 ± 0.079 0.439 ± 0.020 4.79 2.10 124.72 0.19 × 10−14

aFinal solution at the best inclination and with the most accurate companion properties.

L = 35 L�, T = 10 590 K and R = 1.76 R�. We further refined
our best solution (i = 60◦) with Teff2 increased to 10 590 K and �2

altered so R2 = 1.76 R�. This solution is shown in the last row of
Table 10 and in Fig. 7. This star also has higher mass than expected
for the general LMC field population.

4 D I SCUSSION

All the stars in our sample clearly show the doubling of the light
curve with respect to the velocity curve that is the hallmark of el-
lipsoidal variation. All the light curves display minima of unequal
depths, another common property of ellipsoidal variables. In vari-
ables with circular orbits, the deeper minimum is caused by gravity
darkening on the inner end of the ellipsoidal red giant. In that case
the deeper minimum should be found at superior conjunction; how-
ever, for most of our eccentric sample the opposite is true.

The majority of stars in our sample also show maxima of unequal
heights in their light curves, a phenomenon that was not seen in el-
lipsoidal variables with small or zero eccentricity (Nicholls et al.
2010). A possible explanation for the unequal maxima and the un-
expected placement of the deeper minimum in eccentric ellipsoidal
variables is presented in Section 4.2.

Many stars in our sample are more massive and more luminous
than the average LMC red giant. According to the evolutionary
tracks of Girardi et al. (2000), two are AGB stars. This is likely to
be mostly due to a luminosity selection effect, as we selected the
brightest eccentric candidates from the OGLE data base to obtain
targets suitable for our observing facilities. Selecting variables with
high eccentricity is also likely to mean longer average orbital periods
and hence higher luminosities, since Soszyński et al. (2004b) noted
that the eccentric ellipsoidal variables in their sample generally had
longer periods than the low-eccentricity variables. We note that it is
unclear why higher eccentricity and longer periods should be linked
in the case of ellipsoidal variables, since tidal circularization time
depends not on orbital separation (i.e. period) but very sensitively
on fractional lobe filling (a/R).

Fig. 8 shows sequence E variables in the OGLE II data base in
the (I0, (V − I)0) plane. The majority of the sequence E stars are
on the low-mass RGB, but there are significant numbers of more
massive stars around (V − I, I) = (1.2, 14), where the more massive
members of our sample lie. These may be useful for future studies
of intermediate mass stars on the early AGB.

The inclinations of our sample are between 50◦ and 90◦, with
a mean inclination of 66◦. A bias towards high inclinations is ex-
pected for ellipsoidal variation, which should not be detectable at
very low inclinations, although ellipsoids with a large fractional
lobe filling may be visible as low-amplitude variables at inclina-
tions as low as 30◦. It is interesting to note that although ellipsoidal
variation would certainly be visible in edge-on orbits, in our sam-

Figure 8. The sequence E variables from Soszyński et al. (2004b) in the
(I0, (V − I)0) plane (small dots). The stars studied in this paper are shown as
blue triangles when M < 2 M� and as large red dots when M > 4 M�. Also
shown are evolutionary tracks from Bertelli et al. (2008, 2009). The RGB
(i.e. up to He core ignition) is shown by thick lines. The distance modulus
and reddening are as described in Section 3.1. The Bertelli et al. tracks have
been shifted 0.1 mag bluer in V − I to match the observed V − I.

ple of variables without eclipses, inclinations this high are unlikely
unless the companion is particularly small. However in many of
our systems, both components are intermediate mass stars (M ≥
1.85 M�), meaning that the radius ratio of the red giant to the MS
star is not very large (as it is for low-mass stars, M ≤ 1.85 M�). In
this situation, the companions will cause easily detected eclipses,
so by selecting non-eclipsing variables we have unwittingly se-
lected fewer edge-on orbits. In a more representative sample of
non-eclipsing ellipsoidal variables with lower average mass (closer
to the LMC average), and with relatively smaller companion radii
that do not cause observable eclipses even in edge-on orbits, we
suspect the mean orbital inclination would be higher.

We have confirmed the hypothesis of Soszyński et al. (2004b),
that ellipsoidal light curves with strange shapes represent eccentric
orbits. The eccentricities of all stars in our sample are significantly
non-zero and generally high, ranging from 0.14 to 0.42. The mean
eccentricity of the sample is 0.28. Fig. 9 shows the location of these
eccentric ellipsoidal variables in the (e, log P) plane compared to
other evolved binaries. At short periods, eccentricities are lower as
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Figure 9. Eccentricity versus period for the current sample of eccentric
ellipsoidal variables (red triangles); the low-e ellipsoidal sample of Nicholls
et al. (2010) (blue circles); post-AGB stars from Waters et al. (1993), Van
Winckel, Waelkens & Waters (1995), Van Winckel et al. (1998, 1999),
Pollard & Cottrell (1995) and Gonzalez & Wallerstein (1996) (green pluses)
and M giant binaries from Famaey et al. (2009) (black crosses).

Figure 10. Full velocity amplitude versus period for the current sample of
eccentric ellipsoidal variables (magenta pluses), the mostly circular ellip-
soidal sample of Nicholls et al. (2010) (blue circles) and the LSPV sample
of Nicholls et al. (2009) (red crosses).

expected from tidal theory. This graph is a vivid demonstration of
the surprisingly high eccentricities found amongst many evolved
binaries. According to Izzard et al. (2010), population synthesis
studies of Ba stars predict that all orbits <4000 d should be circular,
a result that is at complete odds with observations. The diverse range
of periods, masses and evolutionary states of binaries that seem to
have somehow escaped the circularizing effect of tidal forces serves
to reinforce the need for an understanding of the mechanism that
maintains or increases eccentricity.

The full velocity amplitudes of our sample lie between 25 and
56 km s−1, with a mean of 35.8 km s−1. Fig. 10 shows that the current
sample of ellipsoidal variables with high eccentricities falls within
the velocity amplitude distribution of the ellipsoidal variables with

mostly circular orbits presented in Nicholls et al. (2010). However,
the eccentric variables generally lie at longer periods. Also shown
in Fig. 10 are a sample of LSPVs from Nicholls et al. (2009), once
again demonstrating the marked difference between stars with long
secondary periods and ellipsoidal variables.

Two individual stars are worthy of comment. OGLE052850.12
is the brightest and coolest star in our sample, with the largest
light amplitude, meaning it is nearly filling its Roche lobe. It is of
relatively high mass (∼4.2 M�) but not the highest in our sample.
According to the evolutionary tracks of Girardi et al. (2000) it is an
AGB star which explains the obvious pulsations in its light curve.
There is a very real possibility that this object will fill its Roche
lobe before it reaches the AGB tip and become a PN, possibly of
asymmetric shape, with a close binary central star.

OGLE053124.49 is the most evolved star in our sample and, ac-
cording to the evolutionary tracks, is an AGB star near the time of
its first thermal pulse. It has one of the smallest light amplitudes
in our sample, suggesting a low fractional lobe filling (as its incli-
nation is similar to that of OGLE052850.12). Given its advanced
evolutionary state and low fractional lobe filling, it is possible that
this star may not fill its Roche lobe before it reaches the AGB tip
and may lose its envelope via the superwind as single AGB stars
do, leaving a remnant PN with a wide binary companion.

4.1 Pulsation of the ellipsoidal red giant

The two AGB stars in our sample show brief intervals of pulsation
in their light curves. OGLE052850.12 has two separate pulsation
episodes at a phase near 0.1 when the pulsation period is 29.5 d, and
a phase near 0.8 when the pulsation period is 26.4 d. These periods
were determined using the task pdm in IRAF. OGLE053124.49 shows
evidence for pulsation at one interval near phase 0.3 when the period
is 19.0 d.

Because L, Teff and M have all been reliably determined for these
red giants, they provide a unique opportunity to find the modes of
oscillation involved, assuming these modes are radial. As mentioned
above, OGLE052850.12 is a star on the early AGB with essentially
all its luminosity coming from the helium burning shell (Bertelli
et al. 2009). It is currently undergoing second dredge-up. Similarly,
the evolutionary tracks of Bertelli et al. (2008) confirm that the
1.97 M� star OGLE053124.49 does not develop a degenerate core
on the first ascent of the giant branch and only reaches the observed
luminosity of 1722 L� when in the thermally pulsing AGB stage.

The linear pulsation code described in Fox & Wood (1982) with
updated opacities was used to calculate the periods of the first
four modes of radial pulsation in these stars, and they are given in
Table 11. It is clear that OGLE052850.12 is pulsating in the second
overtone while OGLE053124.49 could be pulsating in the first or
second overtone.

The two stars are shown in the K– log P diagram in Fig. 11
along with the population of variable red giants in the LMC from
Fraser et al. (2008). In this figure, sequence C corresponds to the
fundamental mode of radial pulsation and sequences C′, B and A
correspond to successively higher order modes (Wood et al. 1999).
Pulsation models predict unambiguously that sequence C′ is the first
overtone but sequences B and A may be the third and fifth overtone,
respectively, rather than the second and third overtone (Wood &
Arnett 2011). In any case, one would expect OGLE052850.12 and
OGLE053124.49 to lie between sequences C and C′ since these two
stars pulsate in the second overtone, or possibly the first overtone in
the case of OGLE053124.49. They clearly do not lie in this position.
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Table 11. Periods of the first four radial pulsation modes for stars with evidence of pulsation.

Star P (d) M (M�) L (L�) Teff P0 P1 P2 P3

OGLE052850.12 29.5, 26.4 4.21 5325 3720 74.3 41.5 29.7 22.0
OGLE053124.49 19.0 1.97 1722 3880 36.8 22.6 16.2 12.5

Figure 11. The position of OGLE052850.12 and OGLE053124.49 in the
K– log P diagram for variable red giant stars in the LMC, using data from
Fraser et al. (2008). The sequences are labelled according to the scheme of
Ita et al. (2004).

In fact, their periods indicate that if they are similar to typical LMC
red giants, they should be pulsating in high overtones.

The reason for such short periods in these stars is that their
masses are larger than the typical field stars in the LMC which
make up the bulk of the stars in Fig. 11. For overtone periods, the
period varies to good approximation as P ∝ R1.5M−0.5 (e.g. Fox &
Wood 1982). If this is combined with the variation of Teff with
mass given by equation 6 in Wood (1990) and the definition of
effective temperature L = 4πσR2T 4

eff , we find that P ∝ M−1.01.
Assuming that the LMC field population has a mean mass of 1.5 M�
(e.g. Bertelli et al. 1992), the 29 d second overtone pulsation of the
4.21 M� star OGLE052850.12 would become an 82.2 d (log P =
1.91) overtone pulsation in a 1.5 M� LMC field star. This period lies
between sequences C′ and B and would correspond to the second
overtone, according to Wood & Arnett (2011). Thus for this star, the
large mass can explain the position in the K–log P diagram relative
to other LMC red giants.

For OGLE053124.49, the mass of 1.97 M� and the arguments
above would only move the star on to sequence A if it were a 1.5 M�
field star, corresponding to the third to fifth overtone. To shift to the
first or second overtone would require the LMC field population
at the luminosity of OGLE053124.49 to have a mass of ∼1 M�.
This suggests that as the luminosity increases along each of the
period–luminosity sequences in Fig. 11, the mass increases. This
is consistent with theoretical models which show that higher mass
tends to stabilize red giant pulsation and hence higher luminosities
are required to make higher mass red giants unstable. It is also

consistent with studies which show that Mira variables of longer
periods have higher masses (e.g. Feast 1963; Wood & Sebo 1996).

The K– log P relations for LMC red giants by Soszyński et al.
(2007) show a weak sequence of stars on the short-period side of
sequence A, just where OGLE052850.12 and OGLE053124.49 lie.
Our results show that this sequence could be made up of interme-
diate mass stars that do not ascend the RGB. These stars would be
pulsating in the first or second overtone rather than in an overtone
higher than that corresponding to sequence A.

4.2 Increased distortion in high-eccentricity orbits

It has been noted above that many of the eccentric ellipsoidal vari-
ables in our sample show unequal maxima as well as unequal min-
ima in their light curves. As Nicholls et al. (2010) showed, in normal
circumstances the deeper minimum is caused by gravity darkening
of the red giant on the side nearest its companion and should there-
fore occur at superior conjunction. In this regime there is also no
reason why the light maxima should be unequal.

From a glance at the phased light and velocity curves of the
current sample, it is clear that for many stars, the deeper light
minimum occurs at inferior, not superior, conjunction. This suggests
that when the ‘outer end’ of the ellipsoidal red giant is facing us,
the star appears dimmer due to some effect outweighing the gravity
darkening of the ‘inner end’.

A related phenomenon occurs with maxima. For six of the seven
stars, one of the light maxima is narrower and brighter than the
other. The narrowness of this maximum – its shorter span in time –
can be explained by its proximity to periastron and the eccentricity
of the orbit. At periastron in a highly eccentric orbit, the star moves
significantly faster than at apastron, so that part of the light curve
appears ‘squashed’ in phase. But what causes a maximum to be
brighter as well as narrower when it lies close to periastron?

The results of our modelling show that the deeper light minimum
and the brighter maximum are always close to periastron. Given the
high eccentricity of these orbits, here we suggest that the cause of
these unequal maxima and minima, and the effect that can outweigh
gravity darkening of the inner end of the ellipsoid, is increased
distortion of the red giant at periastron.

Due to small periastron separations resulting from highly ec-
centric orbits, at periastron the greater influence of the companion
causes the red giant to become more distorted and its ellipsoidal
shape more pronounced. As the major axis of the ellipsoid length-
ens and the minor axes contract, the apparent surface area of the
ellipsoid seen ‘side-on’ increases, and its apparent surface area seen
‘end-on’ decreases. Since the light maxima of ellipsoidal variables
correspond to observing the star side-on, the increased apparent
surface area means higher observed flux, so the maximum closest
to periastron is brighter. Similarly, light minima are seen when the
ellipsoid is end-on, and a decreased apparent surface area means
lower observed flux, so the minimum nearest periastron is dimmer
than the alternate minimum.

This distortion effect would naturally become more pronounced
with eccentricity and be less apparent for low-eccentricity orbits
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and non-existent for circular orbits. It would also depend on the
fractional lobe filling of the red giant and where in the orbit pe-
riastron occurs, i.e. the angle of periastron. For example greater
fractional lobe filling could produce high distortion in an only
moderately eccentric system, and higher distortion could also be
observed if periastron was coincident with a light maximum or
minimum. This complex dependence is hinted at in the light curves
of OGLE052013.51 and OGLE052850.12 (Figs 1 and 4, respec-
tively). Although OGLE052850.12 has a lower eccentricity than
OGLE052013.51, their light curves show a similar magnitude dif-
ference between the brighter and dimmer maxima, due to the fact
that OGLE052850.12 has a greater fractional lobe filling. Further,
although OGLE052438.40 has the lowest eccentricity of the current
sample, periastron is almost coincident with the inferior conjunction
light minimum, causing the distortion effect to result in a deeper
minimum at inferior conjunction than at superior. However, for the
nearly circular orbits of the ellipsoidal variables in the Nicholls
et al. (2010) sample, the maxima are equal and the deeper mini-
mum is purely due to gravity darkening and is found, as expected,
at superior conjunction.

We used the WD code to quantitatively evaluate our hypothe-
sis that the unequal maxima and asymmetric shapes of these light
curves are caused by apparent surface area variations resulting from
increased distortion at periastron. Using each star’s calculated final
solution parameters and running LC in image mode allowed us to
obtain the apparent surface area at each calculated orbital phase
point. In the absence of any variation of Teff or limb darkening, we
would expect the apparent surface area variation to closely mimic
the light curve. As expected, the apparent surface area variation was
generally remarkably similar to the light variation, with only slight
differences in phase and amplitude. We assume these differences are
due to the differing contribution of limb darkening as the star rotates
throughout its orbit. Therefore it seems that increased distortion at
periastron is indeed responsible for the variety of asymmetric light
curve shapes observed in eccentric ellipsoidal variables.

4.3 Maintaining eccentricity in evolved close binaries

The high eccentricities of our current sample serve to reiterate the
fact that current tidal theory cannot accurately explain orbital evo-
lution. The tidal circularization time for our close red giant binaries
is orders of magnitude smaller than the average lifetime of the
ellipsoidal phase, yet eccentric orbits are not uncommon. This sug-
gests that orbital eccentricity is maintained or increased in evolved
binaries by some unknown mechanism.

As we noted in Section 1, two of the proposed mechanisms are
mass transfer at periastron (Soker 2000) and interaction with a cir-
cumbinary disc (Artymowicz et al. 1991). Both of these may be
tested observationally by searching for the signatures of circum-
stellar matter or accretion. We showed in Nicholls et al. (2010) that
sequence E binaries show no evidence of a mid-infrared excess that
would indicate enhanced circumstellar or circumbinary dust. Thus,
there is no observed evidence for mass loss or discs in these binary
systems. However, mass transfer between the components cannot
be ruled out.

By modelling eccentric ellipsoidal red giant binaries, we have
determined complete orbital solutions for these poorly understood
stars. Our results can serve as input for future hydrodynamic
modelling to determine how eccentricity is maintained in these
stars, and in other evolved eccentric binaries, possibly by mass
transfer.

5 C O N C L U S I O N S

We have confirmed that ellipsoidal red giant binaries with unusual
light curve shapes are in eccentric orbits, and we have used the WD
code to model the orbits and obtain orbital and stellar parameters, in-
cluding masses of the stars. We find ellipsoidal variables that do not
display eclipses are generally at high orbital inclinations, although
edge-on orbits amongst intermediate-mass non-eclipsing ellipsoidal
variables are rare. Unlike their counterparts in circular orbits, ec-
centric ellipsoidal variables generally have unequal maxima as well
as minima in their light curves, often with one maximum spanning
a significantly narrower phase and the deeper minimum occurring
at inferior conjunction, instead of at superior conjunction as grav-
ity darkening would dictate. We inferred that these phenomena are
due to greater distortion of the ellipsoidal red giant at periastron
due to the high eccentricities, a hypothesis that is supported by the
modelled apparent surface area. By determining the properties of
eccentric sequence E stars we have laid the groundwork for future
hydrodynamic modelling to determine how the eccentricity is main-
tained in these stars. Finally, we showed that the pulsation found
in two of the red giants corresponds to the first or second overtone.
In the K– log P diagram for pulsating red giants, these stars have
periods shorter than sequence A because their masses are higher
than those of the typical LMC field population.
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