
PHYSICAL REVIEW A 85, 033804 (2012)

Slow and frozen light in optical waveguides with multiple gratings: Degenerate band edges and
stationary inflection points

Nadav Gutman* and C. Martijn de Sterke
IPOS and CUDOS, School of Physics, University of Sydney, NSW 2006, Australia

Andrey A. Sukhorukov
Nonlinear Physics Centre and CUDOS, Research School of Physics and Engineering, Australian National University,

Canberra, ACT 0200, Australia

Lindsay C. Botten
CUDOS, School of Mathematical Sciences, University of Technology, Sydney, NSW 2007, Australia

(Received 5 January 2012; published 7 March 2012)

We show that a waveguide with multiple gratings can have a modal dispersion relation which supports frozen
light. This means that light can be coupled efficiently to low group velocity modes of an optical waveguide or
can even have finite coupling to zero group velocity modes. These effects are associated with stationary points in
the dispersion of the form ω − ωo ∝ (k − ko)m, for integer order m > 1, around a center frequency ωo and wave
number ko. Stationary points of any order can be created, not only regular band edges (m = 2), but also degenerate
band edges (m > 2 and even) and stationary inflection points (m odd). Using the perturbation theory of matrices
in Jordan normal form, the modes and their properties are calculated analytically. Efficient coupling is shown to
stem from evanescent modes which must accompany the presence of high-order stationary points with m > 2.
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I. INTRODUCTION

The ability to engineer the dispersion of light has been
pursued for many years. In the last decade, photonic crystals
(PCs), including Bragg gratings, have been proposed and used
to control the propagation of light by creating stop bands and
by adjusting its group velocity vg . There is particular interest
in this structural slow light [1–4], in which the light slows
down because of the structural properties of the medium,
since the field amplitude increases proportionally to the group
index ng = c/vg [5]. This enhances linear processes such as
absorption or scattering [6,7], since the absorbed and scattered
energy scales with the field density. Cubically nonlinear effects
such as self-phase modulation, third-harmonic generation, and
four-wave mixing are strongly enhanced, since these effects
increase quadratically with ng [8,9].

The notion of low and zero group velocities derives from
the van Hove singularities [10], where the relation between
the frequency of light ω and its wave vector k is, to lowest
order, quadratic, i.e., (ω − ωo) ∝ (k − ko)2, where ωo and ko

are the center frequency and wave number, respectively. The
associated group velocity, corresponding to the first derivative
vg = ∂ω/∂k, can be small or even zero. When considering
simple periodic optical structures such as one-dimensional
(1D) dielectric PCs or fibers with a single Bragg grating, such
quadratic stationary points (SPs) occur in the center and at the
edge of the Brillouin zone (BZ). In more complex structures,
such as two- and three-dimensional (2D, 3D) PCs or photonic
crystal waveguides (PCWs), quadratic SPs can appear at other
positions in the BZ and at high-symmetry points [11]. In 1D
structures an SP can occur at any position in the BZ if the
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structure is made of nonreciprocal material [2] or if different
gratings are superimposed in optical fiber [3].

SPs can be of higher order than quadratic, for which the
dispersion relation can be written as

(ω − ωo) ∝ (k − ko)m (1)

for any integer m > 1. Three cases need to be differentiated:
regular band edges (RBEs) for which m = 2; degenerate band
edges (DBEs) for even m and m > 2; and stationary inflection
points (SIPs) for odd m’s. As mentioned, RBEs occur in
any periodic structure; in contrast, DBE and SIP need to be
specifically engineered.

The first theoretical investigation of general SPs in PCs
was reported by Figotin and Vitebskiy [2]. They showed that
cubic SIPs (k3) and a quartic DBE (k4) can be generated in
a 1D magnetic PC. In 1D PCs, birefringence materials [2]
or tilted incident angles [12,13] with nonreciprocal materials
are required to create high-order SPs, and the maximum
achievable reported by these authors was m = 4.

Slow light, including that close to an SP, is most effective
in guided-wave structures where transverse light confinement
enhances the field strength (in addition to the enhancement
from slow-light effects). Slow light in PCW was successfully
demonstrated, both for RBE [14] and more recently near a
cubic SIP [15]. A quartic DBE was found both theoretically
[16] and experimentally [17] in coupled periodic waveguides.

Unlike the 1D PCs considered by Figotin et al. [2,18,19],
where at any frequency there are four modes, in optical
waveguides the number of modes may be chosen by varying
the waveguide’s cross section. In this paper we focus on
these geometries, and our aims are threefold. First, following
preliminary work [20], we show that both SIPs and DBEs
with arbitrary m can be created in a guided structure by
coupling between the various modes using multiple gratings,
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FIG. 1. Schematic of our approach to generate SPs. For z < 0 the
multimode waveguide has s incident and s reflected modes. For z > 0
there are multiple gratings with different periods, coupling a single
forward mode to all backward modes and vice versa

as illustrated Fig. 1. The second aim is to analyze the wave
propagation for frequencies around SIPs and DBEs by using
coupled mode theory [21]. Using this theory, which applies
to shallow gratings, the entire problem can be analyzed
using the linear algebra of defective matrices. This approach
complements that of Figotin et al., who use a transfer matrix
approach. Third, even though the theory applies strictly
speaking to shallow gratings, many of our findings are generic
and apply to any SIP or DBE, for example, SIP in PCWs
[22]. Although these have been studied numerically and
experimentally [23], the complexity of these structures did
not allow for a comprehensive theoretical analysis.

The most significant difference between RBE and high-
order SPs is the existence of degenerate evanescent modes in
addition to the propagating modes [24]. Briefly, these evanes-
cent modes play a significant role at the interfaces of structures
with SPs, as they help fulfill the boundary condition. At the
interface between a fast and a slow medium, for example, the
evanescent mode(s) and the slowly propagating mode have
large and opposite amplitudes, allowing for efficient coupling
to a fast mode. Since the evanescent mode(s) decay away from
the interface, only the large-amplitude slowly propagating
mode remains. This is illustrated in Fig. 2. We investigate
the evanescent modes of SPs and show analytically how their
presence affects the coupling efficiency.

The paper is organized as follows: In Sec. II we formulate
a general approach to calculate the dispersion of a waveguide
with multiple gratings. Matrices in the Jordan normal forms are
used to describe SPs and the connection between the number
of modes and the achievable orders of SP. Perturbation theory
of such matrices is used to determine the dispersion and the
associated waveguide modes, close to a SP. In Sec. III, the
coupling problem to a waveguide with SPs in its dispersion
is solved for DBEs and SIPs. The relationship between the
number of evanescent modes and the coupling efficiency is
shown. In Sec. IV we discuss and conclude our findings and
point out the difference between SIP and DBE with respect to
the mode structure.

II. OPTICAL WAVEGUIDES WITH MULTIPLE
BRAGG GRATINGS

We consider an optical waveguide which supports s optical
modes at a frequency �̃. The s optical modes differ from
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FIG. 2. (Color online) (a) The total field and (b) the amplitudes of
the propagating and evanescent waves on both sides of the interface.
(b) Shows how the boundary condition between a fast incident mode
(left red) and a slow, high-amplitude mode (blue-oscillating) can
be facilitated by an evanescent mode (green-decaying). The slow
and evanescent modes have large amplitudes; at the interface they
interfere destructively, so the resulting low-amplitude field matches
the incoming mode. Far from the interface the total field (black)
consists of only the slow mode. (a) The square sum of the fields
in (b).

each other by their wave numbers K̃j , where j = 1, . . . ,s. To
manipulate the dispersion of the light inside the waveguide
and to create SPs, as in Eq. (1), a set of gratings with different
periods, amplitudes, and transverse profiles is superimposed
in some part of the waveguide. To have the largest number of
degrees of freedom, s gratings are used. As shown below, this
enables us to generate an SP with a maximum even order of
m = 2s and a maximum odd order of m = s.

Each waveguide mode j can travel forward or backward
with propagation constants ±K̃j , respectively. Gratings can
couple two different forward or two different backward-
propagating modes p and q; such long period gratings have
a period � satisfying 2π/� = |K̃p − K̃q |. Gratings can also
couple a forward-propagating mode to a backward one; such
Bragg gratings need to have a much smaller period 2π/� =
|K̃p + K̃q |. Though long-period gratings and Bragg gratings
appear to have the same coupling properties [3], in this paper
we only consider Bragg gratings. This choice is related to
the need to avoid coupling to radiative modes, as discussed
below.

The Bragg gratings are used to couple all forward-
propagating modes to a single backward mode (mode 1),
and so they also couple all backward modes to the forward
mode 1 (see Fig. 1). The Bragg gratings have a period of �j ,
2π/�j = K̃1 + K̃j + δj , where δj are small detunings from
the respective Bragg conditions. A common way to create
gratings in optical fibers is by exploiting the photorefractivity
of glass by which the material absorbs UV radiation and
changes its refractive index [25]. A refractive index difference
up to 10−3 is achievable in silica glass [26]. Superimpos-
ing s dielectric gratings thus induces a dielectric constant
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modulation of

�ε(x,y,z) =
s∑

j=1

�εj cos[(κj + δj )z] Rj (x,y), (2)

where z is the propagation direction, and �εj and Rj (x,y) are,
respectively, the strength and the transverse profile of grating
j . When coupling between modes of the same symmetry, e.g.
LP01 and LP02 of an optical fiber, then Rj (x,y) cannot be
antisymmetric since otherwise the coupling strength vanishes.
Similarly, for modes with different symmetry, e.g., LP01 and
LP11, Rj (x,y) cannot be symmetric.

To find the dispersion of the perturbed system, we assume
that the structure is much longer than the beat length between
any two modes, or L � |K̃1 + K̃j |−1,|K̃1|−1,|K̃j |−1, which
is satisfied under typical conditions. To solve the Maxwell’s
equations we write the total field as a superposition of all modes
of the uniform waveguide, each with an envelope dependent
on z and t . Therefore,

E(x,y,z,t) =
s∑

j=1

gj (x,y)[E+
j (z,t)eiK̃j z

+E−
j (z,t)e−iK̃j z]e−i�̃t + c.c., (3)

where E±
j (z,t) are the forward- and backward-propagating

envelopes of mode j , the gj (x,y) are the transverse mode
profiles, and c.c. denotes the complex conjugate. Substituting
ansatz (3) into the wave equation leads to a set of 2s equations,
one each at spatial frequency exp(±K̃j z). The other spatial
frequencies, ±3K̃1, ±2K̃1 ∓ K̃j , ±2K̃1 ± K̃j , ±2K̃j ± K̃1,
±K̃1 ± K̃j ± K̃l , and ±K̃1 ± K̃j ∓ K̃l , where j,l �= 1, are not
phase matched to the envelopes of E±

j and their contribution
is negligible for shallow gratings [3].

Radiative modes have wave numbers above the light line. To
prevent the grating from coupling light into radiative modes,
the spatial frequencies listed above must not match the wave
numbers of radiative modes. Hence, they must be at least
as large as the wave number of the smallest guided modes:
min{K̃j }. It is sufficient to require that the smallest spatial

frequencies are larger than this mode. Thus we require

|K̃1 + K̃j − K̃l|, |2K̃1 − K̃j | > min{K̃j }. (4)

To satisfy inequality (4), K̃1 can be chosen to be the largest.
This requirement can be fulfilled more easily with Bragg
gratings than with long period gratings.

The key idea behind time-dependent coupled mode theory
(CMT) [21] is that the �εj are small, so the E±

j change slowly
with z and t . A set of 2s equations is obtained using CMT,
each of which corresponds to a field with a wave number ±K̃j

at the center frequency �̃. Each equation is multiplied by the
gj (x,y) and integrated over both x and y. This defines the
parameters

ρj = �εj�̃

2c

∫ ∞

−∞
g1(x,y)Rj (x,y)gj (x,y)dxdy, (5)

which are the coupling coefficients between the modes 1 and
j . Near �̃, the unperturbed waveguide dispersion is, to lowest
order, (� − �̃) = vj (K − K̃j ), where the vj are the group
velocities of the modes. The final set of equations is [3]

i
∂E±

1

∂t
± iv1

∂E±
1

∂z
+

s∑
j=1

ρjE
∓
j e±iδj z = 0, (6a)

i
∂E±

j

∂t
± ivj

∂E±
j

∂z
+ ρjE

∓
1 e±iδj z = 0. (6b)

To find the dispersion relation we take plane-wave solutions
for the E±

j , so

E±
1 = A±

1 ei(k±δ1/2)z−iωt , (7a)

E±
j = A±

j ei(k∓δ1/2±δj )z−iωt , (7b)

where the Aj ’s are constants and ω and k are the frequency
and wave-number difference from �̃ and K̃j , respectively. By
substituting Eqs. (7) into (6), we obtain a set of linear algebraic
equations which can be represented as a 2s × 2s matrix �,
termed the propagation matrix. This constitutes an eigenvalue
problem in k. Assuming a given frequency ω, the k’s are the
eigenvalues of

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ω/v1 − δ1) ρ1/v1 ρ2/v1 . . . ρs/v1

(ω/v2 − δ2) ρ2/v2 0 . . . 0

. . .
...

...
. . .

...

(ω/vs − δs) ρs/vs 0 . . . 0

−ρ1/v1 −ρ2/v1 . . . −ρs/v1 −(ω/v1 − δ1)

−ρ2/v2 0 . . . 0 −(ω/v2 − δ2)

...
...

. . .
...

. . .

−ρs/vs 0 . . . 0 −(ω/vs − δs)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)
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FIG. 3. (Color online) Typical dispersion curves showing fre-
quency versus (real) wave number around �̃ and K̃j for (a) one,
(b) two, (c) three, and (b) four modes and gratings.

In the corresponding eigenvectors the first s elements are the
amplitudes of the forward-propagating modes, whereas the
remaining s elements are the amplitudes of the backward-
propagating modes, i.e.,

�f (k) = k

(
f +(k)

f −(k)

)
= k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A+
1

...

A+
s

A−
1

...

A−
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

For most sets of parameters (vj , ρj , δj ) the matrix � can be
diagonalized, where the diagonal entries are the eigenvalues,
corresponding to the wave numbers. Figure 3 shows the
detuned frequency ω from the center frequency �̃ versus
the real solutions to the wave number K̃j + k. Solutions with
real k’s (“grating modes”) represent propagating modes in the
grating. These modes are not Bloch modes since they have
more than one periodicity in the direction of the waveguide. If
for a given frequency the number of solutions with real wave
numbers is less than 2s, the other solution must be complex.
Since � is real, the k’s then come in complex conjugate pairs.
As the waveguide is made of reciprocal material, if k is a
solution, then so is −k. Therefore, in the most general case the
eigenvalues come in groups of four, namely,

k,−k,k,−k. (10)

For parameters where � cannot be diagonalized and hence
is defective, it can be brought to a Jordan normal from. In the
following section we show that such parameters are associated
with an SP.

A. Stationary points and the Jordan normal form
of propagation matrix �

A matrix can always be brought to a Jordan normal form
J , where � = SJS−1. If the matrix is defective it consist of a
Jordan block of size m > 1. In this section we show that the
size of the Jordan block m is associated with an SP of order

m. The Jordan blocks corresponding to a quadratic (k2), cubic
(k3), and quartic (k4) are, respectively,

Jm =
(

ko 1

ko

)
,

⎛
⎜⎝

ko 1

ko 1

ko

⎞
⎟⎠ ,

⎛
⎜⎜⎜⎝

ko 1

ko 1

ko 1

ko

⎞
⎟⎟⎟⎠ ,

(11)

where the other elements are zero.
A Jordan block is a defective matrix, which has only a

single eigenvector and eigenvalue. This is true when two or
more eigenvalues become degenerate, say at frequency ωo. We
now consider how the eigenvalues and eigenvectors approach
each other as �ω ≡ ω − ωo → 0, which determines the order
of the SP. For simplicity we consider only a Jordan block of size
m and not a complete matrix �. At a frequency detuned from
the defective matrix condition by �ω the perturbed problem
is

(Jm + �ωB)V(k) = (ko + �k)V(k), (12)

where V(k) is the eigenvector in the Jordan normal base and B

is a matrix.
According to Lidskii’s perturbation theory of matrices in

the Jordan normal form [27,28], the perturbed eigenvalues can
be written as

�k = m
√

ξ�ω, (13)

where ξ is the bottom left element of matrix B (ξ = Bm,1). In
brief, this can be shown by expanding (Jm + �ωB)mV(k) =
(ko + �k)mV(k) and taking the leading order in �ω.
Equation (13) describes the relationship between the size of
the Jordan block and the associated order m of the SP, since
�ω ∝ �km.

Equation (13) not only gives the real wave numbers close
to the SP, but also the complex and imaginary ones. It shows
that the roots of �ω consist of |�k| multiplied by all the m

roots of unity m
√

1. For positive ξ ,

�kj/
m
√

ξ�ω =
{

χj �ω > 0

χjeiπ/m �ω < 0
, (14)

where j = 0,1, . . . ,(m − 1) and χ = exp (i2π/m). In Fig. 4
the dispersion relation close to a quadratic (k2), cubic (k3),
quartic (k4), quintic (k5), sextic (k6), and octic (k8) SPs are
illustrated.

To transform matrix � to the Jordan normal form, the basis
of each Jordan block is generated from the block’s single
eigenvector f (ko)

1 . Following the Jordan chain process [29], the
other vectors are found by

�j−1f (ko)
j = f (ko)

1 , (15)

for j = 1, . . . ,(m − 1). The transformation matrix from the
waveguide modes base f (ko)

j to the Jordan base is

Sm = [
f (ko)

1 f (ko)
2 . . . f (ko)

m

]
. (16)
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FIG. 4. (Color online) Complex dispersion relation around SPs,
showing frequency versus the real and imaginary parts of the wave
number. (a) Quadratic, (b) cubic, (c) quartic, (d) quintic, (e) sextic,
and (f) octic. Black and red (gray) thick lines represent forward- and
backward-propagating modes, respectively. Blue (gray) and green
(light gray) thin lines represent forward- and backward-decaying
evanescent modes.

At the SP frequency, �(ωo) = Jm. For a frequency detuned
from this point, � is expressed as � = Sm[Jm + (�ω)B]S−1

m ,
where

B = S−1
m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/v1

. . .

1/vs

−1/v1

. . .

−1/vs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Sm.

(17)

Using B, the parameter ξ , which completely determines the
dispersion, is calculated.

The perturbation theory of the Jordan normal form also
shows that the eigenvector can be described to lowest order
as

V(kj ) = [
1 �kj . . . �km−1

j

]T
, (18)

where T stands for the transpose, associated with the wave
number ko + �kj . Using this, the set of grating modes can be
described more simply by using the Vandermonde matrix [29]

Fm = Sm

⎛
⎜⎜⎜⎜⎝

1

�k

. . .

�km−1

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

1 1 1

1 χ χm−1

...
...

. . .
...

1 χm−1 χ (m−1)(m−1)

⎞
⎟⎟⎟⎟⎠ , (19)

where the right-hand matrix is the Vandermonde matrix. Each
column of the matrix Fm is an eigenmode in the grating
waveguide (z > 0 in Fig. 1), where the column entries are
the amplitudes of the homogeneous waveguide modes (z < 0
in Fig. 1).

B. Condition for a stationary point

Here we formalize the condition on the matrix � to have a
Jordan block of size m. The characteristic polynomial of the
matrix � is

p(k) = |� − kI |. (20)

The characteristic polynomial of a Jordan block of size m is
|Jm − koIm| = (k − ko)m. Since the characteristic polynomial
of the entire matrix p(k) is the multiplication of the charac-
teristic polynomial of each of its blocks, either diagonalized
or not, p(k) can be divided by (k − ko)m. Thus all the first
m − 1 derivatives of p(k) at ko must be equal to zero. This
always holds provided that � is nonderogatory, which means
that it does not have two or more equal eigenvalues that do
not belong to the same Jordan block. Since ko also needs to be
a root of the characteristic polynomial, the total m conditions
for a Jordan block of size m are

∂jp(k)

∂kj

∣∣∣∣
k=ko

= 0, (21)

where j = 0, . . . ,m − 1.

C. Physical preconditions on the size of Jordan blocks

To preserve the symmetry of the wave number spectrum of
�, following Eq. (13), Jordan blocks with nonzero eigenvalues
must come in pairs with eigenvalues ±ko. When ko = 0, a
single Jordan block of even dimension can exist. However,
this limits the largest odd-sized Jordan block to s, for a 2s

system. The spectrum of matrix � is varied by changing the
δj ’s, and to engineer the matrix to have Jordan blocks of larger
sizes, the δj ’s can be changed to merge two or more quadratic
SPs, as illustrated in Fig. 5. We find that the conditions for
a high-order SP can easily be found by fixing ko and finding
only ω and m − 1 values of δj . The other δj can be set to zero,
if the matrix dimension (i.e., the number of gratings) is larger
than needed.
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FIG. 5. (Color online) Dispersion around k = 0 of a waveguide
with three gratings. The generic dispersion has five RBEs. (a) By
changing the δj ’s all RBEs can be merged to create a sextic DBE.
(b) Alternatively, the left and right RBEs are tuned to create a cubic
SIP, (c) with ±ko. The Jordan normal forms of (b) and (c) are given
in Eqs. (22) and (23), respectively.

To illustrate the procedure we use the particular case of a
waveguide with three modes, which is described by a 6 × 6
matrix. Such a system and matrix can support both even blocks,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1

0 1

0 1

0 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

and odd Jordan blocks,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ko 1

ko 1

ko

−ko 1

−ko 1

−ko

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

III. SEMI-INFINITE STRUCTURE

The coupling to a semi-infinite structure near an SP of
order m can be found by matching the amplitudes of the input
channels to the forward-going grating modes (19). These have
either a positive Poynting vector,

Sk =
s∑

j=1

(|A−
j |2 − |A−

j |2)vj , (24)

or decay in the forward direction Im(k) > 0. These modes are
marked in Fig. 4 as blue and green, respectively. We consider
an incident field i, in which each of the s forward-propagating
modes of the unperturbed waveguide has a complex amplitude
|ij | exp(iφj ). The grating modes are excited with amplitudes
aj , as calculated from the incident field, and the reflection in
each channel rj is then also calculated. This can be expressed
in matrix form as

i =

⎛
⎜⎜⎝

i1

...

is

⎞
⎟⎟⎠ =

s∑
j=1

(f +(kj )aj ) = M+a, (25a)

r =

⎛
⎜⎜⎝

r1

...

rs

⎞
⎟⎟⎠ =

s∑
j=1

(f −(kj )aj ) = M−a. (25b)

To find the relation between the incident and the reflection
fields, the matrix R is defined as [30]

R = M−M−1
+ . (26)

To maintain an incident field with unit intensity, the amplitude
in each channel ij is normalized to its group velocity vj as

1 =
s∑

j=1

|ij |2vj . (27)

The total reflection and the associated energy coupling
efficiency are then

η = 1 −
s∑

j=1

|rj |2vj . (28)

Different numbers of modes can be excited by changing the
incident vector i. For example, near a quartic SP, for which
there is one propagating mode and one evanescent mode [see
Fig. 4(c)], both modes are generally excited. For singular initial
condition points, either the evanescent or the propagating mode
is excited. To calculate the coupling efficiency, it is sufficient
to find the amplitude of the propagating mode aprop, since
only it carries energy. In Secs. III A and III B we show that
the amplitudes of all modes, including the propagating mode,
scale as

aj ∝ �k−l , (29)

where l is the number of degenerate evanescent modes excited
simultaneously. The energy flux or the Poynting vector is
calculated using η = |aprop|2Sk ∝ |aprop|2vg , where Sk is the
propagating mode with unit power, found using Eq. (24). Since
vg = m�km−1/ξ , the coupling efficiency is

η ∝ |aprop|2vg ∝
(

1

�kl

)2

�km−1 = �km−2l−1 ∝ v
m−2l−1

m−1
g .

(30)

This is a key result of this paper and shows explicitly how the
coupling efficiency scales at different SPs. It shows that the
efficiency depends on the number of evanescent modes which
are excited and which help in achieving efficient coupling.
If all the evanescent modes which are degenerate with
the propagating mode are excited, the maximum achievable
coupling is η ∝ v

1/(m−1)
g for DBEs. For SIPs which occur for

odd m, such as cubic (k3) and quintic (k5) SIPs, the coupling at
zero group velocity scales as η ∝ 1 if all the evanescent modes
are excited. This frozen light occurs when energy is coupled to
light with zero group velocity [18]. Not all degenerate modes at
the SP frequency contribute to enhanced coupling. In general,
this occurs where ko �= 0 where more than one Jordan block
exists. In Eq. (29) l refers to evanescent modes only from the
same Jordan block. Now that Eq. (30) has been established,
we prove this result in the remainder of this section for both
odd (Sec. III A) and even (Sec. III B) SPs.

We stress that in interpreting these results it is important
to recall that the variations of the coupling efficiency to the
slow light waveguide depend on the amplitudes and relative
phases of the incident light (see left side of Fig. 1). However, as
discussed previously [20], the scaling refers to the maximum
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efficiency which can be achieved by optimizing the launch
conditions at fixed frequency, and also to efficiency averaged
over all these launch conditions.

A. Even stationary points

Here we prove Eq. (29) for even SPs with ko = 0, where all
forward modes are degenerate. This case is represented by a
single Jordan block as in Eq. (22) for a sextic DBEs. Even SPs
have a single forward-propagating mode and s − 1 forward
decaying evanescent modes. To solve the amplitudes of each
mode aj according to the boundary condition Eq. (25a), we
apply Cramer’s rule [29],

aj = det(M (j )
+ )

det(M+)
, (31)

where M
(j )
+ is a matrix obtained from M+ by replacing the j th

column with the incident fields i vector.

1. Coupling to all the evanescent modes

To demonstrate our approach, we first consider the case of
sextic DBE. Then, the matrix M+ can be represented using
generalized eigenvectors (15) and the eigenvalue (13).

M+ =

⎛
⎜⎝

f +(ko)T
1 + �kf +(ko)T

2 + �k2f +(ko)T
3

f +(ko)T
1 + �kχ f +(ko)T

2 + (�kχ )2f +(ko)T
3

f +(ko)T
1 + �kχ2f +(ko)T

2 + (�kχ2)2f +(ko)T
3

⎞
⎟⎠

T

+O(�k3). (32)

More simply, (32) can be represented using a Vandermonde
matrix

M+ = S+

⎛
⎜⎝

1

�k

�k2

⎞
⎟⎠

⎛
⎜⎝

1 1 1

1 χ χ2

1 χ2 χ4

⎞
⎟⎠ , (33)

where χ = ei2π/6, and S+ is a submatrix of S,

S+ = [
f +(ko)

1 f +(ko)
2 f +(ko)

3

]
. (34)

From (33) the determinant of M+ can be easily calculated
to be

det(M+) = det(S+)(�k3) det(MV M ), (35)

where MV M is the Vandermonde matrix. This shows that
det(M+) ∝ �k3.

Next, we calculate M
(j )
+ by replacing one of the columns

of M+ with the incident field i, which in general is a linear
combination of the columns of S+, i.e.,

i = b1f +(ko)
1 + b2f +(ko)

2 + b3f +(ko)
3 . (36)

To calculate a1 = aprop, the propagating mode

M
(prop)
+ =

⎛
⎜⎝

b1f +(ko)T
1 + b2f +(ko)T

2 + b3f +(ko)T
3

f +(ko)T
1 + �kχ f +(ko)T

2 + (�kχ )2f +(ko)T
3

f +(ko)T
1 + �kχ2f +(ko)T

2 + (�kχ2)2f +(ko)T
3

⎞
⎟⎠

T

+O(�k3). (37)

The determinant of M
(prop)
+ is calculated in full to the lowest

order in �k in Appendix as

det(M (prop)
+ ) = b3 det(S+)(χ2 − χ )�k ∝ �k. (38)

This illustrates that to lowest order this only depends on b3,
which is the dependence of the input field on f +(ko)

3 . Using
Eqs. (35) and (38) we find

aprop = det(M (prop)+ )

det(M+)

= b3 det(S+)(χ2 − χ )�k

det(S+)�k3 det(MV M )
∝ �k

�k3
= �k−2. (39)

This illustrates the general rule, according to which the denom-
inator in Cramer’s rule is proportional to M+ ∝ �km(m−1)/2

if all modes are excited, whereas the numerator M
(prop)
+ ∝

�km(m−1)/2−(m−1). This can be proven for each even m by
using the same arguments.

We now confirm these results by numerical calculating
the coupling efficiency η for different values of m. First, the
condition on δj for a DBE was found for a given set of group
velocities vj and coupling coefficients ρj . For a DBE of order
m, a system with m/2 = s modes was chosen as it is the
smallest system that supports it (see Sec. II C). We consider
a DBE on the upper side of the band gap, without loss of
generality. The exact set of eigenmodes and eigenvalues was
calculated directly from the operator � for frequencies close to
the DBE. The complex dispersion is plotted from the calculated
eigenvalues in Figs. 4(a), 4(c), 4(e), and 4(f) for quadratic,
quartic, sextic, and octic DBEs, respectively.

Following Eq. (26), the minimum reflectivity, i.e., the
highest coupling, was found for an incident field satisfying (27)
and thus carrying unit power. In Fig. 6(a) we show the result
of the numerically calculated coupling efficiency η versus
the group velocity vg , where vg = ∂ω/∂k. Figure 6(a) shows
that the higher the order of the DBE, the higher the coupling
efficiency for small group velocities. Figure 6(b) that shows
the same information on a logarithmic scale. These results are
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FIG. 6. (Color online) Maximum coupling efficiency versus
group velocity close to DBEs of different orders: (a) linear scale
and (b) logarithmic scale calculated numerically. All DBEs are
for ko = 0 and δ1 = 0. Quadratic: dashed red, v1 = 1, ρ1 = 1.
Quartic: blue (plus symbol), v1 = 1, v2 = 0.95, ρ1 =, ρ2 = 0.5, and
δ2 = −1.765. Sextic: dotted green, v1 = 1, v2 = 0.95, v3 = 0.92,
ρ1 = 1, ρ2 = 0.57, ρ3 = 0.67, δ2 = 0.03731, and δ3 = 1.991. Octic:
black, v1 = 1, v2 = 0.96, v3 = 0.92, v4 = 0.9, ρ1 = 1, ρ2 = 0.57,
ρ3 = 0.67, ρ4 = 0.4, δ2 = 0.1222, δ3 = 2.178, and δ4 = 0.9964.
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consistent with analytic Eq. (30), confirming that the scaling
of the maximum coupling follows v

1/(m−1)
g .

2. Coupling to some evanescent modes

When only some of the evanescent modes are excited with
the propagating mode, an additional condition exists on the
input field. Continuing with the sextic case, in order to excite
only one evanescent mode, a condition on the third input
channel i3 is given. This can be represented as

⎛
⎜⎝

i1

i2

0

⎞
⎟⎠ =

⎛
⎜⎝

f +(ko)T
1 + �kf +(ko)T

2 + �kf +(ko)T
3

f +(ko)T
1 + �kχ f +(ko)T

2 + (�kχ )2f +(ko)T
3

c1f +(ko)T
1 + c2f +(ko)T

2 + c3f +(ko)T
3

⎞
⎟⎠

T

×
⎛
⎝ a1

a2

i3

⎞
⎠ + O(�k3), (40)

in which we express [0 0 − 1]T as a linear combina-
tion c1f +(ko)

1 + c2f +(ko)
2 + c3f +(ko)

3 . Following the procedure
in Appendix, the determinant of the matrix in Eq. (40) is
found to the lowest order of �k. By replacing the first
column by the other input fields [i1 i2 0]T expressed as
a linear combination of [b1f +(ko)

1 + b2f +(ko)
2 + b3f +(ko)

3 ] and
calculating the determinant of it, we find the scaling of the
amplitude of the propagating mode:

aprop = − det(S+)(b2c3 − b3c2)

b3 det(S+)�k
∝ �k−1. (41)

When exciting only the propagating mode, with no evanes-
cent, we also impose a condition on i2 by replacing the
second column with [d1f +(ko)T

1 + d2f +(ko)T
2 + d3f +(ko)T

3 ] =
[0 − 1 0]. We find

aprop = det(S+)(det[Vb Vd Vc])

det(S+)(d2c3 − d3c2)
∝ 1, (42)

where Vb, Vd , and Vc are the vectors containing the coefficient
bj , dj , and cj , respectively.

Equations (41) and (42) show how the amplitude of the
propagating mode scales with the wave vector close to even
SPs when one or two evanescent modes are excited. The results
are consistent with Eq. (29).

For the cases considered in this section the matrices
in Eqs. (25a) and (25b) are not square. A singular value
decomposition (SVD) of M+ was used to find the reflection
matrix R. For each possible number of evanescent modes
excited, the highest coupling efficiency was found. Figure 7(a)
shows the coupling efficiency versus group velocity close to
a sextic DBE. When only evanescent modes are excited the
coupling must be zero (dotted black curve). When exciting
only the propagating mode the coupling depends linearly on
the group velocity (red,grey curve), as in the quadratic case
(red dashed curve in Fig. 6). When evanescent modes are
excited with the propagating mode the coupling is enhanced.
For comparison with the analytical results of Eq. (30), Fig. 7(b)
shows the same results but on a logarithmic scale.
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FIG. 7. (Color online) Coupling efficiency versus group velocity
for different sets of modes close to a sextic DBE. The parameters
are given in the caption to Fig. 6: (a) linear scale and (b) logarithmic
scale. Dotted green: propagating mode and both evanescent modes.
Dashed blue: propagating and one evanescent mode. Red (gray): only
propagating modes. Black: only evanescent modes.

B. Odd stationary points

At SIPs and DBEs with ko �= 0, the matrix M+ represents
modes that are not all degenerate at the SP frequency. For
example, close to a cubic SIP in a three-mode system, there
is one mode in the matrix M+ which is not degenerate with
+ko as it has a wave number similar to −ko. Nevertheless,
when calculating the boundary condition the matrix M+ must
contain every physically possible forward mode

M+ =

⎛
⎜⎝

f +(ko)T
1 + �kf +(ko)T

2 + �k2f +(ko)T
3

f +(ko)T
1 + �kχ f +(ko)T

2 + (�kχ )2f +(ko)T
3

f +(−ko)T
1 + �kχ2f +(−ko)T

2 + �kχ4f +(−ko)T
3

⎞
⎟⎠

T

+O(�k3), (43)

where χ = ei2π/3.
Since f +(−ko)

1 is not linearly dependent on f +(ko)
1 and f +(ko)

2 ,
this determinant to the lowest order in �k is

det(M+) = �k(1 − χ ) det(S+), (44)

where S+ = [f +(ko)
1 f +(ko)

2 f +(−ko)
1 ]. The denominator in

Cramer’s rule is det(M (prop)
+ ) = b2 det(S+), and we find the

amplitude of the propagating mode close to an SIP is

aprop = det(M (prop)
+ )

det(M+)
= b2 det(S+)

�k(1 − χ ) det(S+)
= b2

�k(1 − χ )
.

(45)

This occurs when the single degenerate evanescent mode of the
cubic SIP is excited, in agreement with Eq. (29) for l = 1. In
higher-ordered SIPs, a larger number of degenerate evanescent
modes exist, i.e., two for quintic (k5) and four for septic (k7).
Using the process shown here, for all the degenerate evanescent
modes, and in Sec. III A 2 for part of them, Eq. (29) can be
shown for each case.

The difference between SIPs and DBEs is that although
in both cases the amplitudes of the modes diverges the same
(1/�kl), in SIPs the group velocity vanishes slower, which
serves to couple to modes with zero group velocity—hence
the term “frozen light” [24]. In the cubic case,

η ∝ |aprop|2vg ∝ (�k−1)2�k2 ∝ 1. (46)
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FIG. 8. (Color online) Slow light coupling efficiency close to
cubic and quintic SIPs versus group velocity: (a) linear scale and
(b) logarithmic scale. Dash red: coupling only to the propagating
mode. Black: coupling to the propagating and a single evanescent
mode in the quintic case. Dotted blue: coupling to both propagating
and the single evanescent mode in the cubic case. Dash-dot green:
coupling to the propagating and the two evanescent modes in the
quintic case. Cubic: v1 = 1, v2 = 0.95, v3 = 0.92, ρ1 = 1, ρ2 = 0.57,
ρ3 = 0.67, δ2 = 1.488, δ3 = 2.214, and ko = 0.7. Quintic: v1 = 1,
v2 = 0.95, v3 = 0.93, v4 = 0.82, v5 = 0.77, ρ1 = 1, ρ2 = 0.35, ρ3 =
0.8, ρ4 = 0.8, ρ5 = 0.31, δ2 = −0.8689, δ3 = 0.2101, δ4 = −2.817,
δ5 = −1.227, and ko = 0.7.

As for the DBEs, we now confirm these results by numerical
calculating the coupling efficiency, η for m = 3 and m = 5.
First the δj ’s which lead to cubic (k3) and quintic (k5) SIPs were
found. Their values are given in the caption to Fig. 8. The center
wave number is required to be ko �= 0, as discussed in Sec. II C.
Figure 8 shows the numerically calculated coupling efficiency
close to and at the cubic and quintic SIPs. When all evanescent
modes are excited (one for the cubic SIP, two for quintic SIP),
the coupling remains finite at the SIP frequency in contrast to
the behavior at even SIPs. When fewer evanescent modes are
excited, the efficiency vanishes when vg → 0, consistent with
Eq. (30).

C. Imperfect stationary points

In cases where the conditions (21) for an SP are not exactly
fulfilled, the modes are not completely degenerate at the SP
point. The complex dispersion maintains their structure except
very close to the SP where the dispersion lines do not all
connect. Figure 9(b) shows the complex dispersion close to
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F
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q 
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)

Re(k)Im(k)
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FIG. 9. (Color online) Complex dispersions of (a) perfect and
(b) imperfect sextic DBEs.

an imperfect sextic DBE for which only some of the modes
are perfectly degenerate. Further from the degeneracy point
the complex dispersion and as such the spatial structure of the
grating modes are not largely effected. This similarity enables
the large amplitudes of the propagating modes, and hence the
large coupling. At an imperfect SP the amplitude is large but
does not diverge.

IV. DISCUSSION AND CONCLUSIONS

We have shown that evanescent modes can be very
important when considering the field at the boundary between
two different waveguides. This is the reason why a simple ar-
gument, based on the mismatch of impedance, which suggests
that the coupling efficiency into a slow mode is necessarily
poor, is incorrect. The mechanism is illustrated in Fig. 2.
The evanescent modes, which must be present near DBEs and
SIPs, help match the slowly propagating mode to a fast mode
across the interface. Both propagating and evanescent modes
have large amplitudes, which diverge as the DBE or SIP is
approached, but interfere destructively at the interface so the
total field strength is low, allowing coupling to the fast mode.
Away from the interface, the evanescent modes decay away
and only the propagating mode is left. The energy carried by
the propagating mode is not only related to its amplitude, but
also to its group velocity. As the frequency is varied so that an
SP is approached, the group velocity decreases, reducing the
energy flow. The advantage of DBEs and SIPs is the increased
amplitude and hence an enhanced energy flow.

The difference between SPs, and specially between SIPs
and DBEs, is the interplay between the diverging amplitude
of the propagating mode and the decreasing group velocity. In
Table I we summarize these for each SP, where the total energy
flow and the coupling efficiency are given. Note in particular
that cubic and quartic points (m = 3,4, respectively) have
the same number of evanescent modes, but that the different

TABLE I. Summary of the coupling efficiency for odd and even
SPs, of order m versus the number of excited modes evanescent l.
Column s gives the number of modes in the homogeneous waveguide
which is needed to generate the SP; column vg gives the scaling of
the group velocity with the wave number �k; aprop gives the scaling
of the amplitude of the propagating modes; and η the scaling of the
coupling efficiency with group velocity.

SP m s l vg aprop η

Quadratic 2 1 0 �k 1 vg

Cubic 3 3 0 �k2 1 vg

1 �k−1 1
Quartic 4 2 0 �k3 1 vg

1 �k3 �k−1 v1/3
g

Quintic 5 5 0 �k4 1 vg

1 �k−1 v2/4
g

2 �k−2 1

Sextic 6 3 0 �k5 1 vg

1 �k−1 v3/5
g

2 �k−2 v1/5
g
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behavior stems from the different group velocities. Similar
arguments apply to quintic and sextic points, etc.

A key finding is that for SIPs the coupling efficiency does
not vanish as vg → 0, corresponding to frozen light [24]. This
is only so if all degenerate modes are coupled: one for cubic
SIPs, two for quintic SIPs, etc. On the other hand, at DBEs
the amplitude of the propagating mode diverges but the group
velocity decreases faster. Nonetheless, even though true frozen
light only occurs at SIPs for which all evanescent modes are
excited, the coupling efficiency for DBEs can be significantly
larger than for quadratic stationary points. Therefore the use
of DBEs may still be preferable since the required complexity
of the structure is lower, i.e., the number of modes s = 2
for a quartic DBE versus an s = 3 waveguide for a cubic
SIP (see Table I). The difference occurs because DBEs can
be generated at the BZ center or edge, whereas SIPs can
only occur in pairs at ±ko. The generic incident field to a
waveguide, featuring an SP, will excite the maximum number
of degenerate evanescent modes l, as it is necessary to have a
specific field profile to prevent a mode from being excited. We
emphasize that although different decaying evanescent modes
can be excited at the interface, the number l stand for modes
that are degenerate with the propagating mode, for example,
associated with ko at the SP (corresponding to the same Jordan
block, Sec. III A 2).

As mentioned in Sec. I, one of the aims in exploring
the coupled wave-guiding system in this paper is to help
understand the more complicated PC-based structures with
large refractive index contrasts [31]. Although it is hard to
treat such geometries analytically, numerical [22,32,33] and
experimental [15] results agree with our main findings. This
includes the number of modes required to generate a particular
dispersion relation feature (parameter s in Table I), as well
as the scaling of the efficiency with group velocity when the
maximum number of degenerate evanescent modes l is excited.

We surmise that the scaling of the efficiency for other values
of s, l, and m also carries over to high-index materials.
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APPENDIX: THE DETERMINANTS OF M+ AND M (prop)
+

We present an example of how the dependence on �k, to
the lowest order, was found for the denominator M

(prop)
+ and

the numerator M+ in Cramer’s rule. The case of the sextic
DBE when all the evanescent modes are excited is given.

The determinant of M+ is easily found as it is a multiplica-
tion of three matrices [Eq. (33)]. We calculate M

(prop)
+ , which

is M+ when replacing the first column by the incident field,
also given as Eq. (37):

M
(prop)
+ =

⎛
⎜⎝

b1f +(ko)T
1 + b2f +(ko)T

2 + b3f +(ko)T
3

f +(ko)T
1 + �kχ f +(ko)T

2 + (�kχ )2f +(ko)T
3

f +(ko)T
1 + �kχ2f +(ko)T

2 + (�kχ2)2f +(ko)T
3

⎞
⎟⎠

T

+O(�k3). (A1)

The determinant does not change when permutating the rows:

det(Mprop
+ ) =

∣∣∣∣∣∣∣
f +(ko)T

1 + �kχ f +(ko)T
2 + (�kχ )2f +(ko)T

3

f +(ko)T
1 + �kχ2f +(ko)T

2 + (�kχ2)2f +(ko)T
3

b1f +(ko)T
1 + b2f +(ko)T

2 + b3f +(ko)T
3

∣∣∣∣∣∣∣ .
(A2)

Next, we eliminate the dependence of the second and third
rows on f1 and factorize k(χ2 − χ ) from the second row,
followed by eliminating f2 from the third row:

det(Mprop
+ ) =

∣∣∣∣∣∣∣∣
f +(ko)T

1 + �kχ f +(ko)T
2 + (�kχ )2f +(ko)T

3

�k(χ2 − χ )f +(ko)T
2 + �k2(χ4 − χ2)f +(ko)T

3

(b2 − b1�kχ )f +(ko)T
2 + [b3 − b1(�kχ )2]f +(ko)T

3

∣∣∣∣∣∣∣∣
(A3a)

= �k(χ2 − χ )

∣∣∣∣∣∣∣∣
f +(ko)T

1 + �kχ f +(ko)T
2 + (�kχ )2f +(ko)T

3

f +(ko)T
2 + �k(χ2 + χ )f +(ko)T

3

(b2 − b1�kχ )f +(ko)T
2 + [b3 − b1(�kχ )2]f +(ko)T

3

∣∣∣∣∣∣∣∣
(A3b)

= �k(χ2 − χ )

∣∣∣∣∣∣∣∣
f +(ko)T

1 + �kχ f +(ko)T
2 + (�kχ )2f +(ko)T

3

f +(ko)T
2 + �k(χ2 − χ )f +(ko)T

3

{[b3 − b1(�kχ )2] − [b2 − b1(�kχ )]�k(χ2 + χ )}f +(ko)T
3

∣∣∣∣∣∣∣∣
. (A3c)

Taking the lowest order of the matrix determinant,

det(M (prop)
+ ) = b3�k(χ2 − χ ) det(f +(ko) f +(ko)

2 f +(ko)
3 ) = b3�k(χ2 − χ ) det(S+) + O(�k2). (A4)

This shows that, to the lowest order, the determinant of Mprop ∝ �k and it is only dependent on c3 of the incident field.
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