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Abstract. The unfavoured signature of the rotation-aligned band associated with the prolate h9/2 structure in
187Tl has been identified. The deformation-aligned 11/2−[505] band is also confirmed and extended. While the

alignment properties of the 11/2−[505] band seem to indicate that it has a similar magnitude of deformation as

the prolate 186Hg core, the signature splitting at low spin, taken together with new self-consistent calculations,

suggest that it may actually be triaxial with γ ≈ −180 near the bandhead.

1 Introduction and Experimental

Information

Neutron-deficient nuclei near the Z=82 closed shell ex-
hibit the phenomenon of shape coexistence, in which the
nucleus can take on a variety of shapes; oblate, prolate,
and even spherical, at low excitation energy [1]. Previous
studies of 187Tl deduced that coexisting prolate and oblate
shapes were present on the basis of characteristic level
structures [2,3]. These shapes were also assigned from
direct quadrupole moment measurements [4]. Long-lived
states with microsecond lifetimes were also observed in
187Tl [5], but their shape and configuration was uncertain.

A new study of 187Tl was undertaken at the Lawrence
Berkeley National Laboratory, using a heavy-ion fusion-
evaporation reaction involving a beam of 154 MeV 32S
ions incident on a 1.2 mg/cm2 159Tb target, backed with
4.5 mg/cm2 of 197Au. The beam from the 88-inch cyclotron
was pulsed at 60 ns intervals and the emitted gamma-rays
were detected by the Gammasphere array. The structure of
187Tl was studied using the techniques of gamma-ray spec-
troscopy, yielding a comprehensive level scheme.

This paper reports only on the observation of the un-
favoured signature of the prolate h9/2 band and the exten-
sions of the (now confirmed) h11/2 structure. Full results
will be presented in a later publication [6].

2 Results

Figure 1 shows a partial level scheme for 187Tl, in which a
new band was observed to feed the known [3] “h9/2” band
in 187Tl. The transitions in this band are evident in the γ-ray
coincidence spectrum shown in Figure 2. The angular dis-
tribution of the strongest interband transition at 564.1 keV
suggests a dipole character, while the in-band transitions
appear to be quadrupoles. This is consistent with its in-
terpretation as a ∆J = 2 band with M1 transitions to the
main “h9/2” band. The assignment of this structure as the

a e-mail: albert.lee@anu.edu.au

unfavoured signature of the “h9/2” band will be discussed
in section 3.1.

A regular rotational band feeding the oblate 9/2−[505]
rotational band was also identified (see Figure 3). Most of
the transitions in this band are seen in the γ-ray coinci-
dence spectrum in Figure 4.

The angular distributions of the 223.1 and 617.1 keV γ-
rays deexciting the 952 keV state were measured, and a χ2

minimisation was performed to compare with theoretical
values. Figure 5 shows the reduced χ2 values (χ2/ν) as a
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Fig. 1. Partial level scheme of 187Tl showing both signatures of

the prolate h9/2 structure decaying into the oblate 9/2−[505] rota-

tional band. (The 9/2− state is not the ground state, but β-decays

to 187Hg with a half-life of 15.6(1) s [7].)
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Fig. 2. Coincidence spectrum double-gated on the 394.3 and

831.8 keV γ-rays, showing transitions in the unfavoured signa-

ture of the prolate h9/2 structure.
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Fig. 3. Partial level scheme of 187Tl showing the 11/2−[505] band

and its decay to the 9/2−[505] band.

function of the transition mixing ratio δ, assuming spins of
11/2 (left panel) and 13/2 (right panel) for the 952 keV
state. The measured lifetime limit for the 952 keV state
from γ − γ time differences is τ < 3 ns.

For a spin of 13/2, minima at δ→ ±∞ are seen for the
617.1 keV transition. This would imply it was either a pure
M3 or E3 transition, with unphysical transition strengths
of > 5.4(4) × 105 or > 6.3(4) × 103 W. u. respectively.
Looking at the other solutions for δ gives the limits on the
transition strengths shown in Table 1. From the values for
the M2 components, the 952 keV state cannot have Jπ =

11/2+ or 13/2+.

In order to decide between the Jπ = 11/2− and 13/2−

possibilities, expected values of the intensity ratio between
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Fig. 4. Coincidence spectrum double-gated on the 617.1 and

607.7 keV γ-rays, showing transitions in the 11/2−[505] band.
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Fig. 5. Angular distribution χ2 analysis for the 223.1 and

617.1 keV transitions.

Table 1. Transition strengths of the 223.1 and 617.1 keV γ-rays

for various spins and parities of the 952 keV state.

Jπ Eγ Xλ Iγ αT Trans. Strength

(keV) (W. u.)

11
2

−
223.1 M1 24(7)a 0.887 > 9(4) × 10−5

223.1 E2 2.0(6)a 0.282 > 6(2) × 10−2

617.1 M1 184(57)b 0.0572 > 3(1) × 10−5

617.1 E2 3(1)b 0.0173 > 6(3) × 10−4

11
2

+
223.1 E1 24(7)a 0.0581 > 10(4) × 10−7

223.1 M2 2.0(6)a 4.01 > 7(3)

617.1 E1 184(57)b 0.0060 > 4(2) × 10−7

617.1 M2 3(1)b 0.156 > 7(3) × 10−2

13
2

−
223.1 M1 26(1)c 0.887 > 1.0(1) × 10−4

617.1 E2 187(9)c 0.0173 > 3.7(2) × 10−2

13
2

+
223.1 E1 26(1)c 0.0581 > 9.6(6) × 10−7

617.1 M2 187(9)c 0.156 > 3.9(3)

a Iγ deduced using δ = −0.23(7) from the angular distribution.
b Iγ deduced using δ = 0.13(4) from the angular distribution.
c Iγ deduced using δ ≈ 0 from the angular distribution.

the 223.1 and 617.1 keV γ-rays have been calculated as-
suming that the transitions are pure M1 (11/2−) or M1 and
E2 (13/2−) with all the strengths being 1 W.u. These val-
ues are compared to the measured branching ratio (see Ta-
ble 2). The expected branching ratio for the Jπ = 11/2−

possibility agrees with the measured value, but for the Jπ =

13/2− case, the expected ratio is more than ∼ 350 times
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Table 2. Ratio of observed γ-ray intensities for the 223.1 and

617.1 keV transitions compared with the expected values for al-

ternative spin assumptions for the 952 keV state (see text for fur-

ther details).

Jπ Iγ(617.1)/Iγ(223.1) Iγ(617.1)/Iγ(223.1)

[measured] [expected]

11/2− 7.2(5) 20(13)

13/2− 7.2(5) 0.020(2)

less than the measured value. Hence, the 952 keV level
is assigned the spin of 11/2−, consistent with it being the
11/2−[505] bandhead that is expected at low excitation en-
ergy.

3 Discussion

3.1 The unfavoured signature of the h9/2 band

The alignment of the single-particle angular momentum
to the rotation axis, ix, can be obtained by subtracting the
(parametrised) rotational angular momentum of the collec-
tive core. Figure 6 plots the alignments for the h9/2 bands
in 187Tl, 183Au and 185Au as a function of the rotational fre-
quency ~ω. The reference parameters that are used, I0 =

27 MeV−1
~

2 and I1 = 190 MeV−3
~

4, are the same as
those used in Ref. [12], where they were chosen to pro-
duce ix ≈ 0 for the prolate cores of even-even mercury
nuclei around N=104 (see, for example, Fig. 2 in Ref [12]
and Fig. 7 below).

In an odd-mass nucleus, a difference of ∼ 1~ is ex-
pected between the alignments of the favoured and un-
favoured signatures of a rotational band when the Fermi
level is close to the Ω = 1/2 orbital of a high- j parti-
cle, so that the odd particle is fully aligned to the rotation
axis [8]. Hence, the rotation-aligned h9/2 proton in 187Tl,
which mainly occupies the π1/2−[541] and π3/2−[532] or-
bitals that are close to the Fermi level, should result in two
rotational sequences with ∆ix ≈ 1~.

The alignments of the two negative-parity bands in
187Tl in Figure 1, one of them being the known “h9/2” band,
are in the top panel, and they display a similar behaviour
to the h9/2 bands in 183Au and 185Au that are shown in
the lower panels. Therefore, the new structure feeding the
known “h9/2” band is deduced to be the unfavoured signa-
ture.

3.2 Deformation of the prolate h11/2 structure

Ref. [12] discusses how differences in the slopes and mag-
nitude of alignments can be used to investigate relative de-
formations. For example, 188Pb appears to have a slightly
lower deformation compared to 180,182,184Hg based upon its
lower alignment (see Figure 2 in Ref. [12] and Figure 7
here). Similarly, the alignment of 186Hg is less than 184Hg
at low spin. Also plotted is the alignment of the 11/2−[505]
band in 187Tl, which seems to have a similar deformation
to the prolate 186Hg core (bottom panel), despite the previ-
ous calculation that predicted the 11/2−[505] state in 187Tl
should have a lower deformation [3].
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Fig. 6. Comparison of alignments for the prolate h9/2 bands in
187Tl, 183Au [9,10], and 185Au [11]. Solid triangles correspond to

the favoured signature, while open triangles are used for the un-

favoured signature. The moment-of-inertia parameters are I0 =

27 MeV−1
~

2 and I1 = 190 MeV−3
~

4.

Upon closer examination, signature splitting can be
seen in the 11/2−[505] band at low spin, with the mag-
nitude of the splitting decreasing at higher spin. Ref. [16]
describes triaxial 11/2−[505] bands in N = 88 − 90 nuclei
that display such behaviour with γ ∼ −200 (Lund conven-
tion [17]). The loss of signature splitting at high spin can be
explained as a change towards axial prolate shape caused
by the alignment of a pair of i13/2 neutrons. We have per-
formed potential energy surface calculations for this work
(see Ref. [18] for the methodology) that predict a similar
value of γ ≈ −180 for the 11/2−[505] state in 187Tl.

An example of a calculation assuming a coupling be-
tween the 11/2−[505] proton and a triaxial even-even core
can be found in early studies on odd-mass Ir nuclei [19–
21]. Their calculations approximately reproduce the exper-
imentally observed states, providing strong evidence for
the triaxiality of the 11/2−[505] state in 185,187,189,191Ir. Cal-
culations for the present case of 187Tl are in progress.

The presence of signature splitting in the oblate
9/2−[505] and 13/2+[606] states has been interpreted in
Ref. [3] as possibly being due to triaxiality, although the
present potential energy surface calculations predict both
of these states arise from oblate, axially symmetric shapes
with γ = −600.
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Fig. 7. Top panel: Alignment for the lowest prolate bands in the

isotones of 187Tl, 186Hg [13] and 188Pb [14], compared with their

counterpart in the lighter even-even neighbour 184Hg [15]. Bot-

tom panel: Alignment for the lowest prolate band in 186Hg com-

pared with the alignment of the prolate 11
2

−
[505] band in 187Tl.

The moment-of-inertia parameters are the same as those used in

Ref. [12], I0 = 27 MeV−1
~

2 and I1 = 190 MeV−3
~

4.

4 Conclusion

This paper reports on selected results from a study of 187Tl,
in particular, new information obtained for rotational struc-
tures built upon the h9/2 and h11/2 proton states. Evidence
for the unfavoured signature of the prolate h9/2 band is pre-
sented, based on alignment comparisons with h9/2 bands in
183Au and 185Au where both signatures are known. In addi-
tion, the presence of the 11/2−[505] band was confirmed,
with the previously known states [3] being rearranged and
the band greatly extended. The 11/2−[505] state appears
to have a larger deformation than was predicted by ear-
lier calculations, and new self-consistent calculations per-
formed for this work predict that the 11/2−[505] state has
γ = −180, consistent with the observation of signature
splitting at low spin.
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