
PHYSICAL REVIEW B 86, 115420 (2012)

Nonlocal effective parameters of multilayered metal-dielectric metamaterials
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We consider multilayered metal-dielectric metamaterials composed of alternating nanolayers of two types and
calculate the components of their effective dielectric permittivity tensors as functions of both frequency and wave
vector. We demonstrate that such structures can be described as strongly nonlocal uniaxial effective media, and
we analyze how the nonlocal permittivity tensor components are related to other manifestations of strong spatial
dispersion in such structures, and how the resonance of permittivity depends on the propagation direction.
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I. INTRODUCTION

Multilayered metamaterials (MLMMs), which can be
defined as one-dimensional structures of two periodically
alternating optically thin layers with sufficient optical contrast
between them, are known to have unusual electromagnetic
properties, being promising for many applications, especially
in the optical frequency range. Optical MLMMs have layer
thickness as small as a few tens of nanometers, and the
dielectric layers alternate with silver or gold layers having the
thickness of the same order. Such MLMMs can transport sub-
wavelength images,1–4 and this effect makes them promising
for nanolithography.5 Also, MLMM-based optical cloaks have
been proposed (see, e.g., Refs. 6 and 7). In a certain frequency
range, such metal-dielectric MLMMs can be modeled as
media with the hyperbolic dispersion surfaces in the space
of wave vectors. Such media are usually characterized by
an uniaxial permittivity tensor whose axial and transverse
components have different signs and therefore these media are
called indefinite materials.8 With indefinite materials used as
substrates or/and superstrates of nanoemitters such as quantum
dots or nanoantennas it is possible to obtain huge values for
the Purcell factor.9–14

The study of MLMMs was probably initiated in the classical
paper by Rytov15 who derived the dispersion equations for TM-
and TE-polarized waves and also analyzed the corresponding
eigenmodes. An attempt to interpret the refraction indices
and wave impedances of these eigenmodes in terms of
effective material parameters resulted in retrieved values of
ε and μ which were characterized by Rytov as physically
meaningless parameters since they violated the causality and
passivity limitations even in the case when both alternating
layers were dielectric and had subwavelength thickness. Rytov
concluded that the local effective medium concept can be
applied to MLMMs only with finite accuracy and only in some
special cases when the quasistatic model of MLMMs is also
applicable.

A more advanced theory of MLMMs was developed
in Ref. 16. This effective medium model generalized the
quasistatic model taking into account the retardation effects
of the first order with respect to the optical thickness of a
layer. However, this theory was concentrated mainly on the

normal propagation, and the limits of its validity remained
not well defined. Later, it was shown17,18 that the spatial
dispersion related to surface plasmon polaritons excited at
metal-dielectric interfaces of such structures plays a key role
in optical properties of MLMMs. Spatial dispersion implies
that the effective permittivity tensor components depend on
the wave vector.19,20 The existence of strong spatial dispersion
effects were revealed for different types of metamaterials, e.g.,
for arrays of split-ring resonators21 and wire metamaterials,22

and it is also inherent to MLMMs. New physics brought to
multilayered structures by nonlocality includes such effects as
emission control,13,14 single polarization beam-splitting,26 and
nonlocal transformation optics.23 Since the effective material
parameters proposed in Refs. 15 and 16 did not take into
account the effects of strong spatial dispersion which actually
present in MLMMs, in order to describe them correctly one
needs to generalize the homogenization theory taking into
account nonlocal effects.

A nonlocal homogenization theory that results in the
tensorial permittivity ε calculated for all possible values
of the wave vector k and frequency ω was suggested in
Ref. 24. Possible bianisotropic and magnetic responses of
the effective medium are comprised, respectively, in the
first- and second-order terms of the k-power expansion of
ε(k). When this ε is complemented by additional boundary
conditions, it allows solving a boundary value problem for a
half space and even for finite-thickness layers of the medium.
Unlike other homogenization models, this theory does not
imply any approximation. It is a strict approach based on the
exact knowledge of microscopic fields in an infinite regular
lattice composed of electromagnetically linear and reciprocal
dielectric or conducting inclusions. However, for a majority of
lattices this homogenization procedure is numerical. In other
words, as a rule the components of the nonlocal tensor ε cannot
be derived analytically beyond certain approximations, and
they have to be simulated numerically. To our knowledge,
only the case of MLMMs due to its geometrical simplicity
allows the exact analytical calculation of ε. This calculation
was described in our recent work25 and presented there as
an iterative set of rigorous expressions explicitly depending
on ω and k. To compute the components of the nonlocal
permittivity tensor, these expressions require performing some
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FIG. 1. (Color online) Original structure and its homogenized
representation.

matrix algebra. In this paper, we make the next step toward the
closed-form expressions. However, these expressions turned
out to be very involved, and for some components of ε it is
reasonable to keep their matrix form.

Thus, this paper aims to analyze the dependencies of
the tensor ε on ω and k and to find a link between these
dependencies and the effects of strong spatial dispersions
observed in MLMMs; this analysis extends further the results
of our earlier publications.25,26 A study of eigenmodes of
multilayered metamaterials considered in this paper and
corresponding field distributions can be found, for example, in
the recent Ref. 27.

II. QUASISTATIC AND NONLOCAL
EFFECTIVE MEDIUM MODELS

In the static limit, an infinite multilayered structure com-
posed of two alternating layers with thicknesses d1, d2 and
permittivities ε1, ε2 can be considered as a uniaxial medium
having the following permittivity tensor:

εloc =
⎛
⎝ ε⊥ 0 0

0 ε‖ 0
0 0 ε‖

⎞
⎠ , (1)

where

ε‖ = ε1d1 + ε2d2

d1 + d2
, (2)

ε⊥ =
(

ε−1
1 d1 + ε−1

2 d2

d1 + d2

)−1

. (3)

This model is employed for the optical frequency region, and
it results in the representation of a metal-dielectric MLMM as
a local indefinite medium since the permittivity of metals is
negative in this range (more exactly, it has a negative real part).
However, in Ref. 26 it was revealed that such a description of
plasmonic MLMMs is not adequate. The first-order corrections
of the quasistatic model obtained in Ref. 16 are not helpful in
this case since the spatial dispersion in such structures is strong.
Even if the dependence ε(k) can be replaced by a power series,
the series convergence is not rapid enough to be restricted by
second- or third-order terms. Moreover, in the case of strong
spatial dispersion the dependence ε(k) can be resonant [i.e., in
the lossless case the function ε(k) can have singularities].

Similar to our previous work,25 we choose the coordinate
system in such a way that the axis x is normal to the layers, and
the Bloch wave with the wave vector k propagates in the plane
(x,y) (kz = 0). Then, a homogenized MLMM (see Fig. 1) can

be described by the permittivity tensor:25

ε(ω,k) =
⎛
⎝εxx(ω,k) εxy(ω,k) 0

εyx(ω,k) εyy(ω,k) 0
0 0 εzz(ω,k)

⎞
⎠ . (4)

From the reciprocity condition, we have εxy(ω,k) =
εyx(ω,k), so that there are four independent components of
ε. In the Appendix we present the rigorous equations for
calculating these four scalar values.

A quite unexpected result of our earlier study25 is the
presence of the nonzero value of the off-diagonal components
εxy = εyx . It means that in order to transform the permittivity
tensor to a diagonal form, one has to rotate the coordinate
system XYZ around the axes z. The tensor becomes diagonal;
i.e., the medium behaves as a uniaxial medium when the optical
axis x ′ is tilted to the normal axis x by a certain angle θ . This
angle depends on both frequency ω and propagation direction.
For any ω it vanishes for both normal ky = 0 and in-plane
kx = 0, and it is maximal for nearly bisector propagation
(ky = kx). The nonzero value of θ is an important parameter
characterizing the spatial dispersion effect.

Another feature of the spatial dispersion is the nonequiv-
alence of two components εyy �= εzz both referring to the
plane of layers. If the spatial dispersion effects are negligible
both these components would be equivalent and equal to
the transversal permittivity of an effective uniaxial medium
(whose optical axis would be then normal to the layers). In
the quasistatic limit D ≡ d1 + d2 → 0 (more exactly when
k0D → 0, where k0 = ω/c is the free space wave number),
the nonlocal permittivity tensor (4) numerically turns into
Eqs. (1)–(3). This tendency is pointwise (not uniform for all k).

We have checked our calculations of ε(ω,k) in the fol-
lowing way. Eigenmodes in an arbitrary anisotropic material
described by the permittivity tensor ε are solutions of known
dispersion equations. For TE waves this dispersion equation is
known,19

k2
x + k2

y = εzz

(
ω

c

)2

. (5)

For TM waves we have the following equation:19

(
εxxεyy − ε2

xy

)(ω

c

)2

− εyyk
2
y − εxxk

2
x − 2kxkyεxy = 0. (6)

For an arbitrary MLMM, the rigorous dispersion
equations15 are the following (for TE and TM waves, respec-
tively):

�TE = sin(kx1d1) sin(kx2d2)
(
k2
x1 + k2

x2

) + 2kx1kx2[cos(kxD)

− cos(kx1d1) cos(kx2d2)] = 0, (7)

�TM = sin(kx1d1) sin(kx2d2)
(
k2
x1 + k2

x2

) + 2kx1kx2[cos(kxD)

− cos(kx1d1) cos(kx2d2)] = 0. (8)

Substituting these expressions for the components of
ε(ω,k), we find that Eqs. (5) and (6) are equivalent to Eqs. (7)
and (8), respectively. Dispersion diagrams of Ref. 26 were
obtained by using (8), and for metal-dielectric MLMMs
with permittivities ε1 = 4.6 and ε2 = 1 − λ2/λ2

p, where
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FIG. 2. (Color online) Dispersion diagram of MLMMs and
graphical solutions of the dispersion equations (10) for d1 = 1.5d2:
(a) D/λ = 0.108, (b) D/λ = 0.107, (c) D/λ = 0.1, and (d) D/λ =
0.085.

λp = 250 nm. The dispersion diagrams we discuss are cal-
culated by solving Eq. (6), and they turned out to be exactly
the same as those obtained in Ref. 26.

III. DISPERSION AND NONLOCAL PERMITTIVITY

We consider the special case of the in-plane propagation
kx = 0 when εxy = 0. Then Eq. (8) simplifies to become

εyy

[
εxx

(
ω

c

)2

− k2
y

]
= 0, (9)

and it is equivalent to the system of two dispersion equations,

εyy(ky) = 0, εxx(ky)

(
ω

c

)2

− k2
y = 0. (10)

The first equation in the system (10) corresponds to longitudi-
nal modes, and the second equation, to transverse modes.

In Fig. 2 (top) we show the dispersion curves of the structure
with the same values of ε1 and ε2 as above and thicknesses

d1 = 1.5d2 (namely, d1 = 37.5 nm and d2 = 25 nm). On the
frequency axis, we mark four example points and obtain
six values of the normalized wave number k̃y = kyD/π

corresponding to the selected frequencies. These results can
be also obtained by the graphical solutions of the system (10),
and we illustrate them with the plots in Figs. 2(a)–2(d). It is
also interesting to analyze the selected cases of the values of
εxx and εyy which correspond to these six dispersion states
(the dispersion state is a pair of ω, k).

At the normalized frequency ωa ≡ D/λ = 0.108, we have
εxx ≈ 60 and εyy ≈ 0.85. The ratio εxx/εyy ≈ 70 is high but
it turns out not to be sufficiently large for strong spatial
dispersion at this frequency. There is only one wave which
in the lossless approximation has zero group velocity (point
1). The presence of such a wave can be explained as
a competition of the forward and backward SPP modes.
At the normalized frequency ωb ≡ D/λ = 0.107, we have
εxx ≈ 40 and εyy ≈ 0.95 (point 2). Then εxx/εyy ≈ 45 and
anisotropy is again not sufficient for the spatial dispersion.
However, at point 3 we have εxx ≈ 130 and εyy ≈ 0.6. Then
εxx/εyy ≈ 220, and this amazing anisotropy turns out to be
large enough for the manifestation of spatial dispersion. Point
3 corresponds to the backward wave which exists in spite of
all positive components of the permittivity and permeability.
This wave clearly originates from the medium discreteness,
and it is the feature of strong spatial dispersion. This strong
spatial dispersion corresponds to the large ratio εxx/εyy > 200
which is hardly compatible with the concept of a continuous
medium.

The strong spatial dispersion is observed also at the nor-
malized frequency ωc ≡ D/λ = 0.1 where at point 4 we have
εxx ≈ 20 and εyy ≈ 0.05. This dispersion state corresponds
to the usual (forward transverse) wave. However, at the
same frequency there appears point 5, where εxx ≈ 24 and
εyy = 0. The anisotropy in the last case is infinitely large,
and the wave corresponding to point 5 is longitudinal. The
presence of the longitudinal wave in the lattice is obviously a
feature of strong spatial dispersion.21 Finally, at the frequency
ωd ≡ D/λ = 0.085 (point 6) where εxx ≈ 14 and εyy ≈ −0.4,
we have a rather modest ratio |εxx/εyy | ≈ 35, and there are no
features of the strong spatial dispersion (only one forward
transverse wave).

The plots presented in Fig. 3 for the case d2 = 1.5d1 are
analogous of the plots in Fig. 2. Here at ωa ≡ D/λ = 0.115
(point 1) εxx ≈ −5 and εyy = 0. The wave is not only
longitudinal, it is also backward, and this is the frequency
where the spatial dispersion is strong. At ωb ≡ D/λ = 0.099
(point 2) we have εxx ≈ 120 and εyy ≈ −1. Then |εxx/εyy | ≈
120, and this ratio turns out to be not sufficient to justify
the spatial dispersion. At this frequency, there exists only one
transverse forward wave.

For the case of a thin metal (d1 = 1.5d2), we reveal
that in the vicinity of the plasmon resonance frequency
the dispersion diagram possesses a fine structure shown in
Fig. 4. The branch for which two waves coexist at the same
frequency demonstrates even more unusual behavior: Three
waves instead of one can be excited at the same frequency at
the single branch. Assuming that there exists also the second
branch, we have four waves in the region of the fine structure
of MLMM dispersion.
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FIG. 3. (Color online) Dispersion diagram of MLMMs and
graphical solutions of dispersion equations (10) for d2 = 1.5d1 and
(a) D/λ = 0.115, (b) D/λ = 0.099.

From this analysis, one can conclude that for the structure
under study there is a direct correspondence between its
anisotropy and the spatial dispersion. Of course, the existence
of the spatial dispersion effect follows from the dependence
of the permittivity tensor on the wave vector. However,
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the presence or absence of the spatial dispersion features
in the eigenwaves at a given frequency are also linked to
the anisotropy of the corresponding permittivity tensor. If
anisotropy of ε(ω,k) for a certain pair (ω,k) is sufficiently large
(for the present structure, for |εxx/εyy | > 200), one should
expect a strong spatial dispersion at the frequency ω.

IV. ANALYSIS OF SPATIALLY DISPERSIVE
PERMITTIVITY

Next, we analyze how the permittivity tensor of a metal-
dielectric MLMM depends on the wave vector at different
frequencies. In Figs. 5–8 these dependencies are shown for
MLMMs with the parameters ε1 = 4.6, ε2 = 1 − λ2/λ2

p, d1 =
37.5 nm, and d2 = 25 nm, λp = 250 nm at the wavelengths of
480 nm, 580 nm, 630 nm, and 780 nm, respectively.

As can be seen from Figs. 5(a) to 8(a), at the highest
normalized frequency D/λ = 0.1302 [see Fig. 5(a)] the
component εxx grows with k̃y . At slightly lower frequency
D/λ = 0.1078, this component becomes a resonant function
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of the wave vector [see Fig. 6(a)], and at D/λ = 0.0992
it has a maximum [see Fig. 7(a)]. At the lowest frequency
D/λ = 0.0801 [see Fig. 8(a)], this component decreases with
k̃y . Resonant behavior of the tensor components can be
described in terms of the permittivity pole,(

εxx εxy

εyx εyy

)
= 1

[ωres(k) − ω]

(
Axx(ω,k) Axy(ω,k)
Ayx(ω,k) Ayy(ω,k)

)
,

(11)

where Aαβ are analytical functions. In the theory of continuous
media this representation of the permittivity tensor (without its
dependence on k) has been obtained in the approximation of
low optical losses and ωres is the frequency of the resonant
absorption.19 Our study also neglects losses, and we can
interpret our ω̃res = D/λres as the presumable frequency of
resonant absorption if some small losses are introduced. This
resonant absorption is of course related to the collective
plasmon resonance of metal layers. However, due to the
spatial dispersion this frequency depends on k. We can
see in Figs. 6(a)–6(c) that at the wavelength 580 nm three
independent components of ε are resonant (εxx, εyy , and εxy =
εyx). Such behavior has been found in a rather wide range
around 580 nm for all these components. In Fig. 9, we show
the dispersion surface ω̃res = D/λres. A crossing of this surface
with the dispersion diagram would deliver the frequencies
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and propagation directions at which the resonant absorption
holds. Briefly, we claim that the resonant frequency in metal-
dielectric MLMMs depends on the propagation direction.

The only nonresonant component of the permittivity tensor
is εzz. As can be seen in Figs. 5(d) to 8(d), there are no
qualitative changes in the behavior of this component in respect
to the wave vector at different frequencies: The component εzz

decreases with an increase of k̃y , but it grows with the increase
of k̃x .

Next, we calculate the variation of εxy(ω,k) when the
coordinate system rotates around z. The purpose of this
calculation is to eliminate the off-diagonal component of the
permittivity tensor transforming the latter to the form of a
tensor of a uniaxial medium. This is possible to do for any ky at
a given frequency ω (whereas the wave vector component kx is
related to ky via the dispersion equation). For the semi-infinite
interval k0 < ky < ∞ at every frequency, there exists a finite
value ky at which the needed rotation angle θ is maximal. At
the wavelength 480 nm the maximum of the function θ (ky)
for this semi-infinite interval of ky equals 8◦56′. At 630 nm
θmax = 15◦40′, and θmax = 13◦7′ at 780 nm. For a half space
of our MLMMs whose boundary is parallel to the layers, the
eigenmodes with k0 < ky < ∞ can be excited only by incident
evanescent waves. Eigenmodes with ky < k0 can be excited by
propagating plane waves, and for these eigenmodes the optical
axis rotation turned out to be much smaller. For ky < k0, the
values of θmax are equal to 46′ at the wavelength 480 nm, to
30′ at 580 nm, to 21′ at 630 nm, and to 17′ at 780 nm. We
can conclude that for incident propagating waves this effect
of spatial dispersion can be practically negligible. However,
this refers only to one special geometry of the boundary. If
the interface of the MLMM half space is orthogonal to the
layers the eigenmodes k0 < ky < ∞ can be excited by incident
plane waves kx < k0, as well. In this case the component
kx of the incident wave vector is preserved in the excited
eigenmode and eigenmodes with kx < k0 and ky > k0 exist in
the metal-dielectric MLMMs. For this geometry, the optical
axis rotation is an important effect of spatial dispersion which
holds for propagating incident waves as well.

V. LAYERED DIELECTRIC STRUCTURES

For comparison, we apply the model of the nonlocal
effective medium to the case of all-dielectric MLMMs. As
an example, we consider an all-dielectric structure created by
the layers of two dielectric materials with ε1 = 1 and ε2 = 4.6
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FIG. 10. Nonlocal permittivity tensor components: (a) εxx ,
(b) εyy , (c) εxy,εyx , (d) εzz vs the normalized wave vector components
k̃x = kxD/π and k̃y = kyD/π for all-dielectric layered structures
with ε1 = 4.6 and ε2 = 1 at the wavelength of 580 nm (d1 = 1.5d2).

at wavelength 580 nm, also taking the layers’ thicknesses as
d1 = 37.5 nm and d2 = 25 nm, respectively. The results are
based on the analysis stated above, and they are presented in
Fig. 10. From those results we observe that the components of
the permittivity tensor vary noticeably along with variations
of the wave vector even for this all-dielectric structure.
Therefore, the spatial dispersion effects are still not negligible
though they are not so strong as in the case of metal-dielectric
MLMMs.

The component εxx varies within 32% from its maximum
value, and the component εyy changes in the range of 31%.
In the case of all-dielectric multilayers, off-diagonal tensor
components are also present, but their values range from −0.15
to 0.13, depending on the wave vector. The smallest variation
(no more than 2%) is found for the component εzz.

Off-diagonal components εxy and εyx do not vanish, and
they are quite noticeable. We calculate also the value of the
angle θmax for the all-dielectric structure under consideration.
At the wavelength 580 nm we obtain θmax = 7◦10′, for k0 <

ky < ∞, and θmax = 31′ for ky < k0.

VI. CONCLUSIONS

We have studied the effects of spatial dispersion on the
properties of nanostructured metal-dielectric metamaterials.
We have verified the general concepts of the nonlocal ho-
mogenization theory earlier developed for such structures25,26

and also analyzed some novel effects associated with the
manifestation of the nonlocal response. In particular, we
have revealed that in nanostructured media the optical axis
becomes tilted with respect to its position in the homogeneous
dielectric medium, and this tilt depends on both frequency and
propagation direction. We have shown numerically that this
effect is significant not only for metal-dielectric metamaterials
but also for all-dielectric nanostructured materials. We have
also pointed out the correspondence between the extreme
anisotropy in the nonlocal permittivity tensor and the spatial
dispersion. Multilayered metamaterials provide a remarkable
example of nanostructured materials for which the nonlocal
homogenization theory can be developed and implemented
analytically.
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APPENDIX

After some algebra, we rewrite the relations of the ap-
pendices of Ref. 25 in a more explicit form. The component
orthogonal to the propagation plane can be written as follows:

εzz(ω,k) = [(
ε1d1

(
ε2k

2
0 − k2

) + ε2d2
(
ε1k

2
0 − k2

))(
ε1k

2
0 − k2

)(
ε2k

2
0 − k2

)
�TE − 2α(ε1 − ε2)2k2

0k
2
]

× [(
d1

(
ε2k

2
0 − k2

) + d2
(
ε1k

2
0 − k2

)(
ε1k

2
0 − k2

))(
ε2k

2
0 − k2

)
�TE − 2α(ε1 − ε2)2k4

0

]−1
,

α = 2A + B
(
k2
x1 + k2

x

) + C
(
k2
x2 + k2

x

)
,

A = kx1kx2kx [cos(kx2d2) sin(kxd1) + cos(kx1d1) sin(kxd2) − sin(kxD)] , (A1)

B = kx2 sin(kx1d1) [cos(kx2d2) − cos(kxd2)] ,

C = kx1 sin(kx2d2) [cos(kx1d1) − cos(kxd1)] ,

�TE = sin(kx1d1) sin(kx2d2)
(
k2
x1 + k2

x2

) + 2kx1kx2 [cos(kxD) − cos(kx1d1) cos(kx2d2)] ,

where k is the wave vector in the metamaterial, kx1 =
√

ε1k
2
0 − k2

y , kx2 =
√

ε2k
2
0 − k2

y .
The relations for other components look more compact in the matrix form:(

εxx(ω,k) εxy(ω,k)

εyx(ω,k) εyy(ω,k)

)
= 〈E〉−1〈D〉. (A2)
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Components of the matrices 〈E〉 and 〈D〉 can be written in the following form:

〈E〉xx = [
k2
x

(
k2

0

(
ε2

1d2 + ε2
2d1

) − k2(ε1d2 + ε2d1)
) + ε1ε2k

2
0

(
k2D − k2

0(ε1d2 + ε2d1)
)]

(ε1ε2)−1

+ Pk2
y

ε1ε2

{
2Aε1ε2k

2
0

[
k2

0(ε1 + ε2) − k2
] − Bε1

[
ε2

2k
4
0

(
ε1k

2
0 − k2

y

) + k2
x

(
k2 − k2

0(ε1 + ε2)
)2]

−Cε2
[
ε2

1k
4
0

(
ε2k

2
0 − k2

y

) + k2
x

(
k2 − k2

0(ε1 + ε2)
)2]}

,

〈E〉xy = 〈E〉yx = −kxky

[
k2(ε2d1 + ε1d2) − k2

0

(
ε2

2d1 + ε2
1d2

)]
(ε1ε2)−1

− Pky

ε1ε2

{
A

ε1ε2k
2
0

kx

[
ε1ε2k

4
0 + (

k2
y − k2

x

)(
k2 − (ε1 + ε2)k2

0

)] − Bε1kx

[
ε2

2k
4
0

(
ε1k

2
0 − k2

y

)
+ [

ε1ε2k
4
0 + k2

y

(
k2 − (ε1 + ε2)k2

0

)][(
ε1 + ε2)k2

0 − k2
)]] − Cε2kx

[
ε2

1k
4
0

(
ε2k

2
0 − k2

y

) + (
(ε1 + ε2)k2

0 − k2
)

× (
k4

0ε1ε2 + k2
y

(
k2 − (ε1 + ε2)k2

0

))]}
,

〈E〉yy = [
k2
y

(
k2

0

(
ε2

1d2 + ε2
2d1

) − k2(ε1d2 + ε2d1)
) + ε1ε2k

2
0

(
k2D − k2

0(ε1d2 + ε2d1)
)]

(ε1ε2)−1

− P

ε1ε2

{
2Aε1ε2k

2
0

[
k2
y

(
(ε1 + ε2)k2

0 − k2
) − k4

0ε1ε2
] + Bε1

[(
ε1ε2k

4
0 + k2

y

(
k2 − (ε1 + ε2)k2

0

))2

+ ε2
2k

4
0k

2
x

(
ε1k

2
0 − k2

y

)] + Cε2
[
ε2

1k
4
0k

2
x

(
ε2k

2
0 − k2

y

) + (
ε1ε2k

4
0 + k2

y

(
k2 − (ε1 + ε2)k2

0

))2]}
,

〈D〉xx = k2
0

[
k2
x(ε2d1 + ε1d2) + k2(ε1d1 + ε2d2)

] − D
(
k4

0ε1ε2 + k2
xk

2) − Pk2
y

{
A

[ − ε1ε2k
4
0 + (ε1 + ε2)k4 − k2k2

0

]
+Bk2

0

[
ε1k

2
x

(
ε1k

2
0 − k2

) + ε2
(
ε1k

2
0

(
2k2

x + k2
y

) − k2
yk

2
)] + Ck2

0

[
ε2k

2
x

(
ε2k

2
0 − k2

) + ε1
(
ε2k

2
0

(
2k2

x + k2
y

) − k2
yk

2
)]}

,

〈D〉xy = kxky

(
k2

0(ε2d1 + ε1d2) − k2D
) − Pky

{
A

kx

[
k2
yk

2
(
k2 − ε2k

2
0

) + ε1
(
ε2k

4
0

(
k2 + k2

x

) − k2k2
0k

2
y

)]
−Bk2

0kx

[
ε1k

2
y

(
k2 − ε1k

2
0

) + ε2
(
ε1k

2
0

(
k2
x + ε1k

2
0

) − k2
yk

2)] − Ck2
0kx

[
ε2k

2
y

(
k2 − ε2k

2
0

)
+ ε1

(
ε2k

2
0

(
k2
x + ε2k

2
0

) − k2
yk

2
)]}

,

〈D〉yx = kxky

(
k2

0(ε2d1 + ε1d2) − k2D
) + Pkxky

{
A

[−ε1ε2k
4
0 + (ε1 + ε2)k4 − k2k2

0

]
+Bk2

0

[
ε1k

2
x

(
ε1k

2
0 − k2

) + ε2
(
ε1k

2
0

(
2k2

x + k2
y

) − k2
yk

2
)] + Ck2

0

[
ε2k

2
x

(
ε2k

2
0 − k2

)
+ ε1

(
ε2k

2
0

(
2k2

x + k2
y

) − k2
yk

2
)]}

,

〈D〉yy = k2
0

[
k2
y(ε2d1 + ε1d2) + k2(ε1d1 + ε2d2)

] − D
(
ε1ε2k

4
0 + k2

yk
2
)

+Pkx

{
A

kx

[
k2
yk

2
(
k2 − ε2k

2
0

) + ε1
(
ε2k

4
0

(
k2 + k2

x

) − k2k2
0k

2
y

)] − Bk2
0kx

[
ε1k

2
y

(
k2 − ε1k

2
0

)
+ ε2

(
ε1k

2
0

(
k2
x + ε1k

2
0

) − k2
yk

2
)] − Ck2

0kx

[
ε2k

2
y

(
k2 − ε2k

2
0

) + ε1
(
ε2k

2
0

(
k2
x + ε2k

2
0

) − k2
yk

2
)]}

,

where

P = 2(ε1 − ε2)2�−1
TM(

k2 − ε1k
2
0

)(
k2 − ε2k

2
0

) . (A3)

The physcial meaning of 〈E〉 and 〈D〉 is the following: These two matrices describe, respectively, the components of the
electric field and electric displacement field, normalized by the factor i[ωε0(k2 − ε1k

2
0)(k2 − ε2k

2
0)]−1 and averaged over the

period of the structure, D = d1 + d2.
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