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Abstract
A popular approach to solving multiclass learning problems is to reduce them to a set of binary
classification problems through some output code matrix: the widely used one-vs-all and all-pairs
methods, and the error-correcting output code methods of Dietterich and Bakiri (1995), can all be
viewed as special cases of this approach. In this paper, we consider the question of statistical consis-
tency of such methods. We focus on settings where the binary problems are solved by minimizing
a binary surrogate loss, and derive general conditions on the binary surrogate loss under which the
one-vs-all and all-pairs code matrices yield consistent algorithms with respect to the multiclass 0-1
loss. We then consider general multiclass learning problems defined by a general multiclass loss,
and derive conditions on the output code matrix and binary surrogates under which the resulting
algorithm is consistent with respect to the target multiclass loss. We also consider probabilistic
code matrices, where one reduces a multiclass problem to a set of class probability labeled binary
problems, and show that these can yield benefits in the sense of requiring a smaller number of bi-
nary problems to achieve overall consistency. Our analysis makes interesting connections with the
theory of proper composite losses (Buja et al., 2005; Reid and Williamson, 2010); these play a role
in constructing the right ‘decoding’ for converting the predictions on the binary problems to the
final multiclass prediction. To our knowledge, this is the first work that comprehensively studies
consistency properties of output code based methods for multiclass learning.

Keywords: Multiclass learning, output codes, consistency, one-versus-all, all-pairs, error-correcting
output codes, proper composite losses.

1. Introduction
Output code based methods are a popular approach to multiclass learning (Sejnowski and Rosen-
berg, 1987; Dietterich and Bakiri, 1995; Schapire, 1997; Schapire and Singer, 1999; Guruswami and
Sahai, 1999; Allwein et al., 2000; Crammer and Singer, 2002; Langford and Beygelzimer, 2005).
Given a multiclass problem with label space Y = {1, . . . , n} and prediction space Ŷ = {1, . . . , k},
an output code method constructs a set of some d binary classification problems via a code matrix
M ∈ {−1, 0,+1}n×d: for each j ∈ [d], the j-th binary problem is constructed by replacing multi-
class labels y ∈ Y with binary labels Myj ∈ {±1} (examples with labels y such that Myj = 0 are
ignored). A binary classifier is then trained for each of these d binary problems; assuming use of a
real-valued classification algorithm that provides confidence-rated predictions, for any new instance
x, this yields a vector of d real-valued predictions f(x) = (f1(x), . . . , fd(x)) ∈ Rd. As a final step,
this vector of d predictions on the binary problems is ‘decoded’ via a mapping decode : Rd→Ŷ into
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Figure 1: Operation of a typical output code based algorithm on a multiclass learning problem with
n labels and k possible predictions (often, k = n, but this is not always the case). The
code matrix M ∈ {−1, 0, 1}n×d is used to reduce the problem into d binary problems;
for a new instance x, the outputs of the d binary classifiers are ‘decoded’ into one of the
k possible multiclass predictions.

a multiclass prediction: h(x) = decode(f(x)) ∈ Ŷ . See Figure 1 for a summary. As an example,
for the multiclass 0-1 problem with Ŷ = Y = {1, . . . , n}, the widely-used one-vs-all method con-
structs n binary problems using an n×n code matrix M with Myy = 1 ∀y and Myj = −1 ∀j 6= y;
here one typically decodes via h(x) ∈ argmaxj∈[n]fj(x).

A fundamental question that arises is: under what conditions is such an output code based
method guaranteed to be statistically consistent for the target multiclass problem, i.e. to converge
to a Bayes optimal model in the limit of infinite data? Statistical consistency is a basic requirement
for a good learning algorithm, and there has been much interest and progress in recent years in
understanding consistency properties of various commonly used algorithms that minimize various
types of (usually convex) surrogate losses, for problems ranging from binary and multiclass 0-1
classification to subset ranking and multilabel classification, and to some extent, general multiclass
problems (Zhang, 2004a,b; Bartlett et al., 2006; Tewari and Bartlett, 2007; Steinwart, 2007; Cossock
and Zhang, 2008; Xia et al., 2008; Duchi et al., 2010; Ravikumar et al., 2011; Buffoni et al., 2011;
Gao and Zhou, 2011; Calauzènes et al., 2012; Lan et al., 2012; Ramaswamy and Agarwal, 2012). To
the best of our knowledge, however, consistency properties of output code based learning algorithms
are not yet understood, except in a few special cases such as for the one-vs-all code based method
with binary classification algorithms minimizing margin-based surrogates (Zhang, 2004b), and for
methods using Hadamard codes together with reductions to (implicitly) an uncountably infinite
number of importance-weighted binary classification problems (Langford and Beygelzimer, 2005).

In this paper, we study consistency properties of output code based methods for general multi-
class learning problems defined by a general loss matrix. We focus on settings where the induced
binary problems are solved by minimizing a binary surrogate loss. This allows us to view the overall
method as minimizing a certain multiclass surrogate loss composed of the code matrix and the bi-
nary surrogate, and to then appeal to the framework of calibrated surrogates for studying consistency
of surrogate-minimizing algorithms (Bartlett et al., 2006; Tewari and Bartlett, 2007; Ramaswamy

2



CONSISTENCY OF OUTPUT CODE BASED LEARNING ALGORITHMS

and Agarwal, 2012). The notion of proper composite losses that have been studied recently in the
context of class probability estimation Buja et al. (2005); Reid and Williamson (2010) plays an im-
portant role in our study: in particular, we show consistency of output code methods using strictly
proper composite binary surrogates. Indeed, the decoding that achieves consistency for general
multiclass losses effectively uses the link function associated with the binary proper composite sur-
rogate, allowing one to effectively estimate class probabilities for each of the binary problems; these
are then used to construct the right multiclass prediction for the target problem.

1.1. Related Work

As noted above, there has been limited work on studying consistency of output code based methods.
We summarize here some of the main studies that have looked at obtaining various types of formal
guarantees on the performance of such methods, and point out differences from our work.

Early work on analyzing output code based methods focused on bounding the training error of
the overall multiclass algorithm in terms of the training errors of the underlying binary algorithm
on the component binary problems; this was done for both error-correcting code matrices, and code
matrices effectively produced by certain boosting methods (Schapire, 1997; Guruswami and Sahai,
1999; Allwein et al., 2000). For the boosting methods, by standard VC-dimension/margin-based
arguments, these results could then also be used to bound the multiclass generalization error in
terms of binary training errors. In most of these studies, the focus was on the multiclass 0-1 loss;
here we study general multiclass losses, and consider the question of whether the corresponding
multiclass generalization error converges to the Bayes optimal.

Crammer and Singer (2002) considered a converse type of problem: given a fixed set of d binary
classifiers hj : X→{±1} (j ∈ [d]), how should one design a binary code matrix M ∈ {±1}n×d

so that the result of a Hamming decoding, given by h(x) ∈ argminy∈[n]
∑d

j=1 1(hj(x) 6= Myj),
minimizes the multiclass 0-1 training error on a given training sample? They showed this problem is
NP-hard, and then considered a continuous analogue with real-valued classifiers fj : X→R, where
the goal is to design a continuous code matrix M ∈ Rn×d such that again a Hamming-type decoding
(using an appropriate similarity measure between real vectors) minimizes the multiclass 0-1 training
error; in this case, they gave efficient algorithms for designing such a code matrix. In our case, we
do not fix the classifiers, but rather assume these are to be learned by some binary algorithm; we
also do not fix the decoding, and allow this to be selected based on the target multiclass loss (which
need not be the 0-1 loss). The question of interest to us is then the following: what types of code
matrices M, together with a suitable binary algorithm and suitable decoding, will allow us to obtain
statistical convergence guarantees with respect to the target multiclass loss?

Langford and Beygelzimer (2005) considered a very general type of multiclass problem, where
the loss vector that assigns losses for various predictions on any example is randomly drawn; this
contains the multiclass problems we consider, which are defined by a loss matrix, as a special case.
They considered the use of binary Hadamard code matrices together with a Hamming decoding
to reduce such a general multiclass problem to a set of d parameterized families of importance-
weighted binary classification problems, each family effectively containing an uncountably infinite
number of such individual problems. Their work focussed on bounding the multiclass regret of the
overall algorithm in terms of the average binary regret; their result implies in particular that if the
binary algorithms used are consistent, then the overall algorithm is consistent. The actual reduction
and analysis are quite complex; as we shall see, for the types of problems we are interested in,
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by allowing flexibility in designing the code matrix and corresponding decoding, and focusing our
attention on surrogate-minimizing binary algorithms, we get intuitive and easy-to-use reductions,
with correspondingly simple analyses that build on recent work on calibrated surrogates and proper
composite losses.

1.2. Our Contributions

We derive several new results; our main contributions are as follows:
• We give general conditions for the one-vs-all and all-pairs methods with binary surrogates to

be consistent for the multiclass 0-1 loss. The one-vs-all result generalizes a result of Zhang
(2004b), which was restricted to margin-based surrogates.
• We show that given an arbitrary target multiclass loss matrix L ∈ Rn×k+ (whose (y, t)-th

element prescribes the loss incurred on predicting t ∈ [k] when the true label is y ∈ [n]), any
code matrix M ∈ {±1}n×d such that the column space of L is contained in the column space
of
[
M, en

]
(where en is the n × 1 all-ones vector), together with suitable binary surrogates

and suitable decoding, yields an output code based algorithm that is consistent for L.
• In general, given a loss matrix L ∈ Rn×k+ , finding a binary code matrix satisfying the above

condition can require a large number of columns. We introduce the notion of probabilistic
code matrices, where one constructs class probability labeled binary problems, and show that
one can always construct a probabilistic code matrix M ∈ [0, 1]n×d for which the number of
columns (and induced binary problems) d is at most the rank of L, and which together with
suitable binary surrogates and suitable decoding, also yields a consistent algorithm for L.1

Organization. Section 2 contains preliminaries. Section 3 considers consistency of one-vs-all and
all-pairs methods for the multiclass 0-1 loss. Section 4 considers consistency of output code based
methods for general multiclass losses. Section 5 concludes with a brief discussion.

2. Preliminaries and Background

Setup. We are interested in multiclass learning problems with an instance space X , label space
Y = [n] = {1, . . . , n}, and prediction space Ŷ = [k] = {1, . . . , k}. Often, Ŷ = Y , but
this is not always the case (e.g. in some subset ranking problems, Y contains preference graphs
over a set of objects, while Ŷ contains permutations over those objects). Given a training sample
S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m, where examples (xi, yi) are drawn i.i.d. from some
underlying probability distribution D on X × Y , the goal is to learn a prediction model h : X→Ŷ .

The performance of a model h : X→Ŷ is measured via a loss function ` : Y × Ŷ→R+ (where
R+ = [0,∞)), which assigns a penalty `(y, t) for predicting t ∈ Ŷ when the true label is y ∈ Y;
or equivalently, via a loss matrix L ∈ Rn×k+ with elements `yt = `(y, t) ∀y ∈ [n], t ∈ [k]. For each
t ∈ [k], we will denote the t-th column of the loss matrix L by `t ∈ Rn+. The goal is to learn a
model h with low expected loss or `-error: er`D[h] = E(x,y)∼D[`(y, h(x))]. The best possible error
one can hope to achieve is the Bayes optimal `-error: er`,∗D = inf

h:X→Ŷ er`D[h].
An ideal learning algorithm will satisfy the property that as it receives increasingly large training

samples, the error of the prediction models it learns converges in probability to the Bayes optimal
error. Formally, let hS : X→Ŷ denote the prediction model learned by an algorithm from a training

1. Note that a probabilistic code matrix here is not a random or stochastic matrix, but simply a matrix with [0, 1] valued
entries.
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sample S ∼ Dm; then the learning algorithm is consistent w.r.t. ` and D if er`D[hS ]
P−→ er`,∗D , i.e. if

∀ε > 0, PS∼Dm

(
er`D[hS ] ≥ er`,∗D + ε

)
→ 0 as m→∞. If this holds for all distributions D, we will

say the algorithm is (universally) `-consistent. It is known that algorithms minimizing the `-error
on the training sample,

∑m
i=1 `(yi, h(xi)), over a suitable class of functions Hm, are `-consistent;

however this is typically a computationally hard optimization problem due to the discrete nature of
the loss. Consequently, one often minimizes a continuous (convex) surrogate loss instead.

Multiclass Surrogates and Calibration. Let C ⊆ Rd for some d ∈ Z+ (where R = [−∞,∞]).
Consider a multiclass surrogate loss ψ : Y × C→R+ (where R+ = [0,∞]) and a mapping decode :
C→Ŷ . Given a training sample S as above, a surrogate loss minimizing algorithm using the pair
(ψ, decode) learns a function fS : X→C by minimizing

∑m
i=1 ψ(yi, f(xi)) over some suitable class

of functions Fm, and returns a prediction model hS : X→Ŷ defined by hS(x) = decode(fS(x)).
Usually, one selects C to be a convex set and {Fm} to be a sequence of convex class of functions
to facilitate efficient minimization. Under suitable conditions on {Fm}, such an algorithm is ψ-
consistent, i.e. the ψ-errors of the models fS it learns, defined for a model f : X→C as erψD[f ] =

E(x,y)∼D[ψ(y, f(x))], converge in probability to the Bayes ψ-error erψ,∗D = inff :X→C erψD[f ]. The
notion of calibration links this property to consistency w.r.t. the target loss `.

Specifically, let ∆n denote the probability simplex in Rn, i.e. ∆n = {p ∈ Rn+ :
∑n

i=1 pi = 1},
and let Lψ : ∆n × C→R+ be defined as

Lψ(p,u) = Ey∼p
[
ψ(y,u)

]
=

n∑
y=1

py ψ(y,u) = p>ψ(u) ,

where we have denoted ψ(u) =
(
ψ(1,u), . . . , ψ(n,u)

)> ∈ Rn+. Then the pair (ψ, decode) is said
to be `-calibrated if ∀p ∈ ∆n,

inf
u∈C:decode(u)/∈argmintp>`t

Lψ(p,u) > inf
u∈C

Lψ(p,u) .

If this does not hold for any mapping decode, then we simply say the surrogate ψ is not `-calibrated.
The following result explains why calibration is a useful property:

Theorem 1 ((Tewari and Bartlett, 2007; Zhang, 2004b; Ramaswamy and Agarwal, 2012)) Let
` : Y × Ŷ→R+, ψ : Y × C→R+, and decode : C→Ŷ . Then (ψ, decode) is `-calibrated iff for all
distributions D on X × Y and all sequences of (vector) functions fm : X→C

erψD[fm]→ erψ,∗D implies er`D[decode ◦ fm]→ er`,∗D .

Thus, if (ψ, decode) is `-calibrated, then a surrogate-minimizing algorithm using (ψ, decode) as
above (with suitable function classes Fm) is also `-consistent.

Binary Surrogates and Proper Composite Losses. A binary surrogate loss operating on V ⊆ R
can be represented by its partial losses φ1 : V→R+ and φ−1 : V→R+. Given a training sample
with binary labels, S̃ = ((x1, ỹ1), . . . , ((xm, ỹm)) ∈ (X × {±1})m, a surrogate-minimizing binary
algorithm using (φ1, φ−1) learns a function f

S̃
: X→V by minimizing

∑m
i=1 φỹi(f(xi)) over a

suitable class of functions; if a binary classification is desired, one usually decodes this to a binary
classification in {±1} via the sign(·) function: h

S̃
(x) = sign(f

S̃
(x)). A binary surrogate (φ1, φ−1)

is said to be margin-based if ∃φ : V→R+ such that φ1(v) = φ(v) and φ−1(v) = φ(−v) ∀v ∈ V .
Common examples of margin-based binary surrogates include the hinge, logistic, and exponential
losses, defined over V = R via
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Loss V φ1(v) φ−1(v) λ(η) λ−1(v)

Logistic R ln(1 + e−v) ln(1 + ev) ln
(

η
1−η

)
1

1+e−v

Exponential R e−v ev 1
2 ln

(
η

1−η

)
1

1+e−2v

Least-squares [−1, 1] (v − 1)2 (v + 1)2 2η − 1 v+1
2

Table 1: Some well-known strictly proper composite binary surrogates, with their partial losses
φ1, φ−1, link functions λ and corresponding inverse links λ−1.

φhinge(v) = max(1− v, 0) ; φlog(v) = ln(1 + e−v) ; φexp(v) = e−v ;

and the least-squares loss, which we shall define on V = [−1, 1] via

φsq(v) = (1− v)2 .

Note that non-margin-based binary surrogates allow for the possibility of asymmetric penalization
with respect to positive and negative labels.

A binary surrogate (φ1, φ−1) is said to be proper composite if there exists a strictly increasing
link function λ : [0, 1]→V such that ∀η ∈ [0, 1],

λ(η) ∈ argminv∈V η φ1(v) + (1− η)φ−1(v) ,

and strictly proper composite if in addition the above minimizer is unique for all η. As discussed in
(Buja et al., 2005; Reid and Williamson, 2010), strictly proper composite losses have the property
that their minimization yields accurate (Fisher consistent) class probability estimates; specifically, if
f
S̃

: X→V is obtained by minimizing (φ1, φ−1) as above, then accurate class probability estimates
are obtained via η̂

S̃
(x) = λ−1(f

S̃
(x)). The logistic, exponential and least-squares losses above are

all strictly proper composite and have a continuous inverse link function (see Table 1); the hinge
loss is not proper composite.

Output Codes and Code-Based Multiclass Surrogates. Given a multiclass learning problem with
label space Y = [n] and Ŷ = [k] as above, an output code based method constructs a set of d
binary problems, for some d ∈ Z+, via a code matrix M ∈ {−1, 0,+1}n×d. Specifically, given a
multiclass training sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m, one uses M to construct d
binary training samples as follows: for each j ∈ [d], S̃j = ((xi,Myi,j))i:Myi,j

6=0. Using these binary
training samples, one learns d binary classifiers; assuming use of a real-valued binary classification
algorithm that provides confidence-rated predictions, this gives d real-valued classifiers fj : X→V ,
j ∈ [d]. Given a new instance x, one then uses a mapping decode : Rd→Ŷ to decode the d real-
valued predictions on x into a multiclass prediction: h(x) = decode(f1(x), . . . , fd(x)).

Now, if the binary classification algorithm used minimizes a binary surrogate (φ1, φ−1) defined
on some space V ⊆ R, then the resulting output code based algorithm can be viewed as learning a
function fS : X→Vd by minimizing the multiclass surrogate loss ψ : Y × Vd→R+ defined as

ψ(y,u) =
d∑
j=1

(
1(Myj = 1)φ1(uj) + 1(Myj = −1)φ−1(uj)

)
(1)

on the original multiclass training sample S. Thus, given a target loss ` : Y × Ŷ→R+, the overall
output code based algorithm using code matrix M, binary surrogate (φ1, φ−1), and mapping decode
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as above (assuming suitable function classes when minimizing the binary surrogate) is `-consistent
if and only if the pair (ψ, decode) above is `-calibrated! In what follows, we will refer to the surro-
gate loss ψ in Eq. (1) as the (M, φ1, φ−1) code-based surrogate; when (φ1, φ−1) is a margin-based
surrogate defined via φ : V→R+, we will simply refer to it as the (M, φ) code-based surrogate.

3. Consistency of One-vs-All and All-Pairs Methods for Multiclass 0-1 Loss

We start by considering a setting where Ŷ = Y = [n], and the target loss of interest is the multiclass
0-1 loss `0-1 : [n]× [n]→R+ given by

`0-1(y, t) = 1(t 6= y) .

We consider consistency of the widely used one-vs-all and all-pairs code matrices in this setting.

3.1. One-vs-All Code Matrix

The one-vs-all method uses an n× n binary code matrix MOvA ∈ {±1}n×n defined as follows:

MOvA
yj =

{
1 if y = j

−1 otherwise
∀y, j ∈ [n] .

The following result establishes `0-1-consistency of the one-vs-all method with any strictly proper
composite binary surrogate with a continuous inverse link.

Theorem 2 Let (φ1, φ−1) be a strictly proper composite binary surrogate defined over an interval
V ⊆ R, with a continuous inverse link function λ−1 : V→[0, 1]. Define decode : Vn→[n] as

decode(u) ∈ argmaxj∈[n] λ
−1(uj) .

Then the (MOvA, φ1, φ−1) code-based surrogate together with the mapping decode is `0-1-calibrated.

The proof of Theorem 2 follows directly from a more general result we prove later (Theorem 6).
Intuitively, by construction of MOvA and strict properness of (φ1, φ−1), as the sample size m in-
creases, for any instance x the estimate η̂

S̃j
(x) = λ−1(f

S̃j
(x)) converges to the true probability

P(y = j |x) of the label being j; the above decoding effectively selects the most probable class,
which minimizes the 0-1 loss.

A similar result for margin-based binary surrogates was given by Zhang (2004b); Theorem 2
partly generalizes Zhang’s result to non-margin-based binary surrogates. As with Zhang’s result,
Theorem 2 applies to the logistic, exponential and least-squares losses, but not to the hinge loss.
The one-vs-all method with hinge loss is in fact not (universally) consistent for the multiclass 0-1
loss (Lee et al., 2004); we state this explicitly below (see Appendix A for a self-contained proof):

Theorem 3 The (MOvA, φhinge) code-based surrogate is not `0-1-calibrated.

3.2. All-Pairs Code Matrix

The all-pairs method uses an n×
(
n
2

)
code matrix Mall-pairs ∈ {−1, 0, 1}n×(n2) defined as follows:

M
all-pairs
y,(i,j) =


1 if y = i

−1 if y = j

0 if y 6= i and y 6= j

∀y ∈ [n], (i, j) ∈ [n]× [n] : i < j .
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The following result establishes `0-1-consistency of the all-pairs method with any strictly proper
composite binary surrogate with a continuous inverse link (and suitable decoding).

Theorem 4 Let (φ1, φ−1) be a strictly proper composite binary surrogate defined over an interval
V ⊆ R, with a continuous inverse link λ−1 : V→[0, 1]. Define win : V→{0, 1} as

win(v) = 1

(
λ−1(v) >

1

2

)
and for each i ∈ [n], define scorei : V(n2)→R+ as

scorei(u) =
∑
j:i<j

win(ui,j) +
∑
j:j<i

(1− win(uj,i)) .

Define decode : V(n2)→[n] as

decode(u) ∈ argmaxi∈[n] scorei(u) .

Then the (Mall-pairs, φ1, φ−1) code-based surrogate together with the mapping decode is `0-1-calibrated.

A proof of Theorem 4 is given in Appendix B. The result clearly yields consistency of the
all-pairs method with the logistic, exponential and least-squares losses. In this case, a similar con-
sistency result also holds for the hinge loss:

Theorem 5 Define winhinge : R→{0, 1} as

winhinge(v) = 1(v > 0) ,

and for each i ∈ [n], define scorehinge
i : R(n2)→R+ as

scorehinge
i (u) =

∑
j:i<j

winhinge(ui,j) +
∑
j:j<i

(1− winhinge(uj,i)) .

Define decode : R(n2)→[n] as

decode(u) ∈ argmaxi∈[n] scorehinge
i (u) .

Then the (Mall-pairs, φhinge) code-based surrogate together with the mapping decode is `0-1-calibrated.

The proof of Theorem 5 is similar to that of Theorem 4; details are provided in Appendix C for
completeness.

4. Consistency of Output Code Based Methods for General Multiclass Losses

We now consider consistency of output code based methods for more general multiclass problems,
defined by an arbitrary multiclass loss ` : [n] × [k]→R+, or equivalently, a loss matrix L ∈ Rn×k+

with (y, t)-th element `yt = `(y, t). Such losses can be used to describe a wide range of learning
problems in practice, ranging from multiclass 0-1 classification and ordinal regression to structured
prediction problems such as sequence prediction, multi-label classification, and subset ranking (Ra-
maswamy and Agarwal, 2012; Ramaswamy et al., 2013). We start by considering binary code
matrices in Section 4.1; we then introduce probabilistic code matrices in Section 4.2.
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4.1. Binary ({±1}-Valued) Code Matrices

The following result shows that for any target multiclass loss, with suitable binary surrogates and
suitable decoding, one can always design a binary code matrix such that the resulting output code
based method is consistent for the target loss. Recall that given a loss matrix L ∈ Rn×k+ , we denote
by `t ∈ Rn+ the t-th column of L.

Theorem 6 Let ` : [n]× [k]→R+ be any target multiclass loss, and L ∈ Rn×k+ the corresponding
loss matrix. Let d ∈ Z+, and let M ∈ {±1}n×d be any code matrix such that the column space of
L is contained in the column space of [M, en] (where en is the n×1 all-ones vector). Let (φ1, φ−1)
be a strictly proper composite binary surrogate defined over an interval V ⊆ R, with a continuous
inverse link λ−1 : V→[0, 1]. Define decode : Vd→[k] as

decode(u) ∈ argmint∈[k] (λ
−1(u))>βt + γt ,

where λ−1(u) ∈ [0, 1]d is a vector with j-th component λ−1(uj), and βt ∈ Rd, γt ∈ R are such
that 2

`t = 1
2(M + 1)βt + γt en .

Then the (M, φ1, φ−1) code-based surrogate together with the mapping decode is `-calibrated.

Proof Let M̃ = 1
2(M + 1) ∈ [0, 1]n×d. Let ψ : [n] × Vd→R+ be the (M, φ1, φ−1) code-based

surrogate:

ψ(y,u) =
d∑
j=1

(
1(Myj = 1)φ1(uj) + 1(Myj = −1)φ−1(uj)

)

=
d∑
j=1

(
M̃yj φ1(uj) + (1− M̃yj)φ−1(uj)

)
.

For each t ∈ [k], let βt ∈ Rd, γt ∈ R be such that

`t = M̃βt + γten ;

these exist since the columns of L are contained in the column space of [M, en], which is the same
as the column space of [M̃, en].

Fix any p ∈ ∆n. Then we have

p>`t = p>(M̃βt + γten) = p>M̃βt + γt .

Now, denote by c̃1, . . . , c̃d, the columns of M̃. Then we have

p>ψ(u) =

n∑
y=1

py ψ(y,u)

=

n∑
y=1

py

( d∑
j=1

M̃yj φ1(uj) + (1− M̃yj)φ−1(uj)

)

=

d∑
j=1

(
(p>c̃j)φ1(uj) + (1− p>c̃j)φ−1(uj)

)
.

2. Note that such β and γ always exist due to the column space condition on M and L.
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Because φ1, φ−1 are strictly proper composite, the minimizer of p>ψ(·) is unique. Let up ∈ Vd be
the unique minimizer of p>ψ(u) over Vd.

By strict properness of φ1, φ−1 we have for all j ∈ [d]

λ−1(upj ) = p>c̃j

Thus we have
M̃>p = λ−1(up) ,

and therefore
p>`t = (λ−1(up))>βt + γt .

In particular, this gives
decode(up) ∈ argmint∈[k] p

>`t .

Moreover, since λ−1 is a continuous function, we have ∃δ > 0 such that for any u ∈ Vd,

‖u− up‖ < δ =⇒ decode(u) ∈ argmint∈[k] p
>`t .

Thus, we have

inf
u∈Vd:pred(u)/∈argmintp>`t

p>ψ(u) ≥ inf
u∈Vd:‖u−up‖≥δ

p>ψ(u)

> inf
u∈Vd

p>ψ(u) ,

where the last inequality follows since up is the unique minimizer of p>ψ(·), and the set {u ∈ Vd :
‖u− up‖ ≥ δ} is closed.

Since the above holds for all p ∈ ∆n, we have that (ψ, decode) is `-calibrated.

It is easy to verify that the result in Theorem 2 on consistency of one-vs-all methods with respect
to the multiclass 0-1 loss follows as a direct consequence of Theorem 6. More generally, applying
Theorem 6 to the multiclass 0-1 loss immediately yields the following corollary, which shows that
for the 0-1 loss on an n-class problem, it suffices to use a binary code matrix with n− 1 columns:

Corollary 7 Let M ∈ {±1}n×(n−1) be any code matrix with n− 1 linearly independent columns
whose span does not contain the all-ones vector en. Let (φ1, φ−1) be a strictly proper composite
binary surrogate defined over an interval V ⊆ R, with a continuous inverse link λ−1 : V→[0, 1].
Define decode : Vn−1→[n] as

decode(u) ∈ argmint∈[n] (λ
−1(u))>βt + γt ,

where λ−1(u) ∈ [0, 1]n−1 is a vector with j-th component λ−1(uj), and βt ∈ Rn−1, γt ∈ R are
such that

`0-1
t = 1

2(M + 1)βt + γt en .

Then the (M, φ1, φ−1) code-based surrogate together with the mapping decode is `0-1-calibrated.

For the 0-1 loss on an n-class problem, it is known that any convex, calibrated surrogate must
operate on a space of dimension d ≥ n − 1 (Ramaswamy and Agarwal, 2012), and therefore the
above result shows that in this case, one does not lose anything in terms of the dimension d of the
multiclass surrogate when using a code-based surrogate with a binary code matrix. However, this

10
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is not always the case: for a general loss matrix L, it is known that there exist convex, calibrated
surrogates operating on a space of dimension d ≤ rank(L) (Ramaswamy and Agarwal, 2012; Ra-
maswamy et al., 2013), but it is easy to construct examples of problems where the number of binary
columns needed to span the column space of L far exceeds this number (see Example 1). To this
end, we consider using output codes defined via more flexible probabilistic code matrices below.

4.2. Probabilistic ([0, 1]-Valued) Code Matrices

Given a probabilistic code matrix M ∈ [0, 1]n×d and binary surrogate (φ1, φ−1) defined on V ⊆ R,
we define the (M, φ1, φ−1) probabilistic code-based surrogate ψ : [n]× Vd→R+ as

ψ(y,u) =
d∑
j=1

(
Myj φ1(uj) + (1−Myj)φ−1(uj)

)
.

This amounts to constructing d binary class probability labeled problems where for the j-th binary
problem, examples with multiclass label y ∈ [n] are transformed to binary examples with proba-
bility of a positive label given as Myj ∈ [0, 1]. Any binary surrogate-minimizing algorithm can be
easily adapted to incorporate such class probability labels.3

The following result shows that for any loss matrix L of rank d, it suffices to construct a proba-
bilistic code matrix with at most d columns to achieve consistency with respect to L:

Theorem 8 Let ` : [n]× [k]→R+ be any target multiclass loss, and L ∈ Rn×k+ the corresponding
loss matrix. Suppose ∃d ∈ Z+, vectors α1, . . . ,αn ∈ Rd and β1, . . . ,βk ∈ Rd, and constants
γ1, . . . , γk ∈ R such that

`(y, t) = α>y βt + γt ∀y ∈ [n], t ∈ [k] .

Define

αmin = min
y∈[n],j∈[d]

αyj ; Z =

n∑
y=1

d∑
j=1

(αyj − αmin) ;

and define M ∈ [0, 1]n×d as

Myj =
αyj − αmin

Z
∈ [0, 1] ∀y ∈ [n], j ∈ [d] .

Let (φ1, φ−1) be a strictly proper composite binary surrogate defined over an interval V ⊆ R, with
a continuous inverse link λ−1 : V→[0, 1]. Define decode : Vd→[k] as

decode(u) ∈ argmint∈[k] (λ
−1(u))>β̃t + γ̃t ,

where λ−1(u) ∈ [0, 1]d is a vector with j-th component λ−1(uj), and

β̃t = Z βt ; γ̃t = γt + αmin|βt| ,

where |βt| =
∑d

j=1 βtj . Then the (M, φ1, φ−1) probabilistic code-based surrogate together with
the mapping decode is `-calibrated.

3. We note that our use of probabilistic codes here differs from that of Dekel and Singer (2002), who considered losses
based on KL-divergence and decoding based on expected Hamming distance.
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The proof of Theorem 8 is a straightforward extension of that of Theorem 6; details are provided
in Appendix D for completeness. For many multiclass losses, the use of probabilistic code matrices
yields consistent output code based algorithms with a strictly smaller number of columns in the
code matrix (and therefore smaller number of binary component problems) than is possible using
binary code matrices. This is illustrated in the following example:

Example 1 Consider a loss matrix L ∈ R5×5
+ given by

L =


1.0 2.1 2.4 3.3 5.0
2.0 2.4 2.4 3.0 4.0
3.0 2.7 2.4 2.7 3.0
4.0 3.0 2.4 2.4 2.0
5.0 3.3 2.4 2.1 1.0

 =


0.1
0.2
0.3
0.4
0.5

 [10 3 0 −3 −10
]

+


0 1.8 2.4 3.6 6
0 1.8 2.4 3.6 6
0 1.8 2.4 3.6 6
0 1.8 2.4 3.6 6
0 1.8 2.4 3.6 6

 .
If we wish to use Theorem 6 to construct an L-calibrated binary code-based surrogate, then we must
construct a binary code matrix M ∈ {±1}n×d such that the column space of [M, en] contains the
column space of L; it can be verified that this requires d ≥ 3, which would require solving at least
3 binary problems. On the other hand, we can clearly apply Theorem 8, and get an L-calibrated
probabilistic code-based surrogate using a code matrix M ∈ [0, 1]n×d with d = 1 column, which
requires solving only 1 binary class probability labeled problem.

The following examples illustrate how Theorem 8 can be used to design consistent probabilistic
code-based methods for specific multiclass losses:

Example 2 (Discounted Cumulative Gain (DCG) Loss for Label/Subset Ranking) The DCG loss
applies to subset ranking settings and is widely used in information retrieval. Here each instance
contains a query with r documents; a label assigns (say binary) relevances to these r documents
(n = 2r). Predictions are permutations of the r documents (k = r!). This defines a 2r×r! multiclass
loss matrix:

LDCG
y,σ = C −

r∑
i=1

2yi − 1

log(1 + σ(i))
∀y ∈ {0, 1}r, σ ∈ Πr,

where C is a constant ensuring the loss is non-negative. From the definition above, it is clear the
DCG loss has rank at most r+ 1, and it is easy to express the loss in terms of r-dimensional vectors
αy and βσ and constants γσ as in Theorem 8. Applying Theorem 8 gives a 2r×r probabilistic code
matrix M (thus r binary problems), such that solving the resulting binary problems using a suitable
binary surrogate and then decoding as in the theorem (which in this case amounts to sorting the r
documents according to certain scores obtained from the solutions to the r binary problems) yields
a consistent output code based method for the DCG loss.

Example 3 (Hamming Loss for Sequence Prediction) The Hamming loss is widely used in se-
quence prediction problems, including multi-label prediction problems where labels can be viewed
as binary vectors. Here each label as well as prediction is a sequence of (say binary) tags of some
length r (n = k = 2r). This defines a 2r × 2r loss matrix:

LHam
y,t =

r∑
i=1

1(yi 6= ti) =
r∑
i=1

yi(1− 2ti) +
r∑
i=1

ti ∀y ∈ {0, 1}r, t ∈ {0, 1}r.
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From the definition above, it is clear the DCG loss has rank at most r + 1, and it is easy to express
the loss in terms of r-dimensional vectors αy and βt and constants γt as in Theorem 8. Applying
Theorem 8 gives us a 2r × r probabilistic code matrix M (thus only r binary problems), such that
solving the resulting binary problems using a suitable binary surrogate and then decoding as in the
theorem (which in this case amounts to thresholding the r tags according to certain scores obtained
from the solutions to the r binary problems) yields a consistent output code based method for the
Hamming loss.

5. Conclusion and Future Directions

Output code based methods are a widely used approach to solving multiclass learning problems.
One of the primary reasons for their appeal is that they reduce a complex multiclass problem into a
set of simple binary classification problems, which can be solved easily in practice using a variety of
standard learning algorithms. However, it is important to ask what types of performance guarantees
such an approach provides for the target multiclass problem, since this is ultimately the problem
one wants to perform well on. In particular, an ideal learning algorithm should be consistent for the
target multiclass loss, i.e. should converge to the Bayes optimal error in the limit of infinite data.
Surprisingly, there has been relatively little work on understanding consistency properties of output
code based methods as a general methodology for solving general multiclass learning problems.

In this paper, we have considered consistency properties of output code based methods that
solve the binary component problems by minimizing a binary surrogate loss. This allows us to view
the overall code based method as minimizing a certain multiclass surrogate loss, and to appeal to
the framework of calibrated surrogates for studying consistency. One of the main insights from
our work is that if the binary surrogate minimized by the binary algorithm is a proper composite
loss (and satisfies a few other conditions), then one can leverage the fact that minimizing such a
surrogate yields not only accurate binary predictions, but also accurate class probability estimates;
this insight plays a critical role in designing the right ‘decoding’ to achieve consistency with respect
to the target loss. To our knowledge, the importance of selecting a good ‘decoding’ step for output
code based methods has not received much attention previously. Additionally, we show that one
can gain significant benefits in terms of the number of binary problems that need to be created by
providing the binary algorithm with class probability labels in [0, 1] rather than just binary labels.

A natural direction to further build on the results in the current work would be to obtain quanti-
tative regret transfer bounds, using for example tools of Steinwart (2007) and Pires et al. (2013).
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Appendix A. Proof of Theorem 3

Proof Let n = 3, and let ψ : [3]× R3→R+ denote the (MOvA, φhinge) code-based surrogate:

ψ(y,u) = (1− uy)+ +
∑
y′ 6=y

(1 + uy′)+ .
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Then for any p ∈ ∆3 and u ∈ R3, we have

p>ψ(u) =

3∑
y=1

py(1− uy)+ + (1− py)(1 + uy)+ .

Consider the two probability vectors

p1 =
(
1
3 + ε, 13 −

ε
2 ,

1
3 −

ε
2

)>
p2 =

(
1
3 −

ε
2 ,

1
3 + ε, 13 −

ε
2

)>
For small enough ε > 0, we have that the unique values u1 and u2 minimizing p1>ψ(u) and
p2>ψ(u) are both equal to u′ = (−1,−1,−1)>. It is also clear that

argmint p
1>`0-1

t = {1} and argmint p
2>`0-1

t = {2} .

This implies that for any decode : R3→{1, 2, 3}, one of the following two statements must fail:

inf
u∈R3,decode(u)6=1

p1>ψ(u) > p1>ψ(u′) = inf
u

p1>ψ(u) ;

inf
u∈R3,decode(u)6=2

p2>ψ(u) > p2>ψ(u′) = inf
u

p2>ψ(u) .

Thus the (MOvA, φhinge) code-based surrogate is not `0-1-calibrated.

Appendix B. Proof of Theorem 4

Proof Let ψ : [n]× V(n2)→R+ denote the (Mall-pairs, φ1, φ−1) code based surrogate:

ψ(y,u) =
∑
i<j

1(y = i)φ1(ui,j) + 1(y = j)φ−1(ui,j)

Fix any p ∈ ∆n. Then
p>ψ(u) =

∑
i<j

piφ1(ui,j) + pjφ−1(ui,j)

Let up ∈ V(n2) be any minimizer of p>ψ(·) over V(n2).
Note that for i < j such that pi + pj > 0, we have that upi,j is uniquely determined by the strict
proper composite property as follows:

λ−1(upi,j) =
pi

pi + pj

which gives

pi ≥ pj ⇐⇒ λ−1(upi,j) ≥
1

2
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Now, clearly,

decode(up) = i ⇒ scorei(up) ≥ scorej(up) ∀j ∈ [n]

⇒ pi ≥ pj ∀j ∈ [n]

⇒ i ∈ argmint∈[n]p
>`0-1

t .

Thus
decode(up) ∈ argmint∈[n]p

>`0-1
t .

Also for any sequence um such that p>ψ(um) converges to infu p
>ψ(u), and any i, j such that

that pi + pj > 0, we have that um,(i,j) converges to upi,j . The previous statement follows due to the
strict proper compositeness and continuity of (φ1, φ−1) . Now, using the continuity of λ−1 we have
∀p ∈ ∆n

p>ψ(um)→ inf
u
p>ψ(u) =⇒ decode(um) ∈ argmint∈[n]p

>`0-1
t for large enough m

It can easily be seen that the above statement is equivalent to (ψ, decode) being `0-1-calibrated.

Appendix C. Proof of Theorem 5

Proof Let ψ : [n]× R(n2)→R+ denote the (Mall-pairs, φhinge) code based surrogate:

ψ(y,u) =
∑
i<j

1(y = i)(1− ui,j)+ + 1(y = j)(1 + ui,j)+

Fix any p ∈ ∆n. Then

p>ψ(u) =
∑
i<j

pi(1− ui,j)+ + pj(1 + ui,j)+

Let up be a minimizer of p>ψ(·). Let upi,j = −upi,j if i > j. It is clear that upi,j = 1 if pi > pj , and
upi,j = −1 if pi < pj . In the case that pi = pj , u

p
i,j can be any element in [−1, 1]. Thus ∀i, j ∈ [n],

pi > pj =⇒ scorehinge
i (up) > scorehinge

j (up) .

Hence
decode(up) ∈ argmaxy py = argmint p

>`0-1
t .

For any sequence {um} such that p>ψ(um)→ infu p
>ψ(u) and for all indices (i, j) such that

pi 6= pj , we have that um,(i,j) converges to upi,j . Thus we have decode(um) ∈ argmintp
>`0-1

t for
large enough m. Since this holds for all p ∈ ∆n, we have that the (φhinge,Mall-pairs) code-based
surrogate is `0-1-calibrated.
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Appendix D. Proof of Theorem 8

Proof Let ψ : [n]× Vd→R+ denote the (M, φ1, φ−1) probabilistic code-based surrogate:

ψ(y,u) =

d∑
j=1

Myj φ1(uj) + (1−Myj)φ−1(uj) .

Fix any p ∈ ∆n. Then we have

p>`t = p>(Mβ̃t + γ̃ten) = p>Mβ̃t + γ̃t .

Now, denote by c1, . . . , cd the columns of M. Then we have

p>ψ(u) =
n∑
y=1

py

( d∑
j=1

Myj φ1(uj) + (1−Myj)φ−1(uj)

)

=
d∑
j=1

(
(p>cj)φ1(uj) + (1− p>cj)φ−1(uj)

)
.

Because φ1, φ−1 are strictly proper composite, the minimizer of p>ψ(·) is unique. Let up ∈ Vd be
the unique minimizer of p>ψ(·) over Vd.

By strict properness of φ1, φ−1 we have for all j ∈ [d]

λ−1(upj ) = p>cj

Thus we have
M>p = λ−1(up) ,

and therefore
p>`t = (λ−1(up))>β̃t + γ̃t .

In particular, this gives
decode(up) ∈ argmint∈[k] p

>`t .

Moreover, since λ−1 is a continuous function, we have ∃δ > 0 such that for any u ∈ Vd,

‖u− up‖ < δ =⇒ decode(u) ∈ argmint∈[k] p
>`t .

Thus, we have

inf
u∈Vd:pred(u)/∈argmintp>`t

p>ψ(u) ≥ inf
u∈Vd:‖u−up‖≥δ

p>ψ(u)

> inf
u∈Vd

p>ψ(u) ,

where the last inequality follows since up is the unique minimizer of p>ψ(·), and the set {u ∈ Vd :
‖u− up‖ ≥ δ} is closed.

Since the above holds for all p ∈ ∆n, we have that (ψ, decode) is `-calibrated.
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