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Abstract
Loss functions are central to machine learning because they are the means by which the quality of
a prediction is evaluated. Any loss that is not proper, or can not be transformed to be proper via a
link function is inadmissible. All admissible losses for n-class problems can be obtained in terms
of a convex body in Rn. We show this explicitly and show how some existing results simplify when
viewed from this perspective. This allows the development of a rich algebra of losses induced by
binary operations on convex bodies (that return a convex body). Furthermore it allows us to define
an “inverse loss” which provides a universal “substitution function” for the Aggregating Algorithm.
In doing so we show a formal connection between proper losses and norms.
Keywords: convex bodies, support functions, gauges, polars, proper losses, distorted probabil-
ities, inverse losses, entropies, norms, Bregman divergences, aggregating algorithm, substitution
functions.

1. Introduction

Loss functions are central to machine learning because they are the means by which the quality of a
prediction is evaluated. The choice of loss matters, especially when there is modelling error, which
is of course the usual situation (Buja et al., 2005; Hummel and McAfee, 2013; Merkle and Steyvers,
2013; Hand, 1994; Hand and Vinciotti, 2003; Gneiting, 2011; Gneiting and Raftery, 2007; Gneiting
and Katzfuss, 2014).

We will restrict ourselves to finite dimensional action spaces (suitable for multiclass probability
estimation or classification). The construction of multiclass losses is complex; see the summary of
previous work in (Vernet et al., 2012; Williamson, 2013). There is a simple admissibility argument
(Vernet et al., 2012) that shows that there is no point in using losses that are neither proper nor
proper composite (the composition of a proper loss with an invertible link function). This is why
there has been a focus of work on proper losses which are losses for probability estimation that are
minimised when predicting the true underlying probability (a formal definition is provided later).

This paper presents a new way to develop proper losses. Rather than starting with a loss function
and hence defining the superprediction set (a convex body in Rn), we start with the convex body and
derive the loss. This trivial change of perspective opens up several interesting avenues. It allows
us to connect to a range of results in the theory of convex bodies (Schneider, 2014) and Minkowski
geometry (Thompson, 1996). It shows that rather than defining the Bayes risk (or entropy) on the
simplex ∆n, it is slicker to define it on the positive orthant Rn

+ but require positive one-homogeneity.
This then implies that the induced proper loss is also defined on Rn

+ but is zero-homogeneous. One
can handle the non-smooth or non-differentiable case as easily as the smooth case. It leads naturally
to the idea of an “inverse loss” which is what one needs to form a substitution function for the
Aggregating Algorithm (Vovk, 2001, 1995, 1990). We also will show, by extending known results
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• 0 < S ⊆ Rn, S convex⇒ `S = ∂̂σ̂S — the supergradient of the concave support function of S
induces a loss `S (with S being its superprediction set) and which is proper, 0-homogeneous
and defined on the entire positive orthant `S : Rn

+ → R
n
+.

• Bayes risk L = σ̂S is 1-homogeneous and so L : Rn
+ → R (rather than L : ∆n → R)

• Consequently Bregman divergences simplify: B−L(x, y) = 〈x, ∂̂L(X) − ∂̂L(y)〉.

• Inverse loss of `S is induced by the concave polar of S : `−1
S = ∂̂σ̂S T . It satisfies `S ◦ `

−1
S ◦ `S =

`S . It provides a generic substitution function for the aggregating algorithm.

• Algebra on convex bodies forms a basis for algebra of losses; generalisations of existing
binary operations on convex bodies — see (17), (18) and (19).

Figure 1: Summary of key contributions of the paper.

on generalised direct and inverse Minkowski addition of convex sets, how to induce a wide range of
binary operations on proper losses. This gives insight into how to design and construct such losses.

Since proper losses are such a foundational concept it is hardly surprising there have been several
attempts to develop a geometric understanding of them. Early attempts include (McCarthy, 1956)
who showed a scoring rule is proper if and only if it is the derivative of a positively homogeneous
convex function. Our perspective simply involves recognising that such a function must be the
support function of a convex body, and using that body as the starting point. Since then, there
have been many works studying the geometry of proper losses including (Staël von Holstein, 1970;
Murphy and Staël von Holstein, 1975; Staël von Holstein and Murphy, 1978). Further historical
references can be found in (Reid and Williamson, 2011).

More recently Dawid (2007); Dawid and Lauritzen (2006) have drawn connections between
differential geometry and proper losses (scoring rules). In particular, Dawid (2007) presented the
relationship between a proper loss and the superprediction set (defined below). However he did
not develop this idea along the lines of the present paper. Finally we merely mention the work by
Ruberry (2013) who has a variant of the normal perspective, but again does not fully exploit the
viewpoint adopted in this paper.

The rest of the paper is organised as follows. In §2 we introduce the basic mathematical ma-
chinery we will use and set notation. In §3 we introduce the notion of a gauge and the polar of
a convex body. Section 4 formally introduces proper losses and shows their connection to convex
bodies. Section 5 introduces the idea of an inverse loss and shows its relationship to the polar of the
superprediction set of the loss in question. Section 6 studies binary operations on convex bodies and
their implication for combining and designing proper losses. In doing so we present a generalisa-
tion of an earlier result by Seeger (1990) that may be of independent interest. Section 7 concludes.
Appendices A–F derive some additional properties and illustrate the general theory with examples
(lp loss, Brier loss, cost-sensitive misclassification loss, and the boosting loss which is shown to
correspond to a Cobb-Douglas style support function and is in fact self-inverse). Detailed proofs
are in Appendix G. The gist of the paper is summarised in Figure 1; however perhaps the main value
of the paper is the apparently new viewpoint.
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2. Preliminaries

We introduce some standard machinery from the theory of convex sets and functions; see (Hiriart-
Urruty and Lemaréchal, 2001; Rockafellar, 1970; Schneider, 2014). The concave cases of some of
these results are in (Pukelsheim, 1983; Barbara and Crouzeix, 1994).

Let R− := (−∞, 0], R+ := [0,∞), and let Kn denote the class of convex subsets of Rn. If
S ,T ⊂ Rn, x ∈ Rn, α > 0, then αS := {αs : s ∈ S }, S + x := {s + x : s ∈ S }, and the Minkowski sum
S + T := {s + t : s ∈ S , t ∈ T }. If V ⊂ R+, then V · S := {vs : v ∈ V, s ∈ S }.

A convex set C ⊂ Rn recedes in the direction y ∈ Rn if x + λy ∈ C, ∀λ ≥ 0, ∀x ∈ C. The
recession cone 0+C := {y ∈ Rn : C recedes in direction y}. Let Hc(s) := {y ∈ Rn : 〈s, y〉 = c} denote
the hyperplane with normal s and offset c. Given a set C ⊂ Rn, we denote the boundary bd C, the
interior int C, the closure cl C, and convex hull co C. The convex hull of a set C is equal to the
intersection of all the supporting half-spaces.

If f : Rn → R its epigraph and hypograph are

epi f := {(x, y) ∈ Rn+1 : f (x) ≤ y} and hypo f := {(x, y) ∈ Rn+1 : f (x) ≥ y}

and the below, level and above sets are lev≤α( f ) := {x ∈ dom f : f (x) ≤ α}, lev=α( f ) := {x ∈
dom f : f (x) = α}, and lev≥α( f ) := {x ∈ dom f : f (x) ≥ α}.

When working with losses, concave functions naturally arise. Many of the results we use are
developed for convex functions. Although in some cases this is merely a matter of a sign flip, in the
case of polars and gauges it is more subtle. Thus to avoid confusion via overloading the notation too
much, we will annotate those symbols using ˆ and ˇ for the concave and convex cases respectively.
Suppose φ : Rn → R is convex. Its subdifferential is

∂̌φ(x) := {x∗ : φ(x) + 〈x∗, y − x〉 ≤ φ(y) ∀y ∈ Rn}.

Suppose φ : Rn → R is concave. Its superdifferential is

∂̂φ(x) := {x∗ : φ(x) + 〈x∗, y − x〉 ≥ φ(y) ∀y ∈ Rn}.

A function f : Rn → R is 1-homogeneous (resp. 0-homogeneous) if for all α > 0 f (αx) = α f (x)
(resp. f (αx) = f (x)) for all x ∈ Rn. Euler’s theorem for homogeneous functions is typically stated
for differentiable functions. We will make use of the following special case for 1-homogeneous
functions which holds for subdifferentials. The proof is straight-forward and included in Ap-
pendix G. Here ∂ can stand for either ∂̂ or ∂̌.

Proposition 1 Suppose f : Rn → R is 1-homogeneous. Then ∂ f is 0-homogeneous.

A set C is of negative type (resp. positive type) if C ∈ Kn, C is closed, 0 ∈ int C and 0+C = Rn
−

(resp. 0 < int C and 0+C = Rn
+). The class of sets of negative (resp. positive type) is denoted Ǩ

(resp. K̂). The support function of a set C is a central object in convex analysis:

σ̌C(x) := sup
y∈C
〈x, y〉.

If C =
⋃

i∈I Ci, then σ̌C(x) = supi∈I σ̌Ci(x). This support function corresponds naturally to proper
gains; when working with proper losses we will use

σ̂C(x) := inf
y∈C
〈x, y〉.
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If C =
⋃

i∈I Ci, then σ̂C(x) = infi∈I σ̂Ci(x). The support functions are closed, one-homogeneous and
σ̌C is convex and σ̂C is concave.

The support plane H+
C(u) := {x ∈ Rn : 〈x, u〉 = σC(u)} and the supporting halfspace for C of

negative type ȞC := {x ∈ Rn : 〈x, u〉 ≤ σ̌C(u)} or for C of positive type ĤC := {x ∈ Rn : 〈x, u〉 ≥
σ̂C(u)}. The support set (Schneider, 2014, Section 1.7) FC(x) := ȞC(x)∩C = ∂̌σ̌C(x). It also holds
that FC(x) := ĤC(x) ∩C = ∂̂σ̂C(x).

The indicator function of negative type of a set C is the convex function ı̌C(x) = 0 for x ∈ C
and +∞ otherwise. The positive type variant is the concave function ı̂C(x) = 0 if x ∈ C and −∞
otherwise.

If f : Rn → R is convex its (convex)-conjugate is f ∗̌(x∗) := supx∈dom f 〈x, x
∗〉 − f (x). If g is

concave, its concave conjugate is g∗̂(x∗) := −(−g)∗̌(x∗).

3. Gauges and Polars

The theory of gauges (Minkowski functionals) and polars has been traditionally developed for con-
vex sets of negative type; see for example (Hiriart-Urruty and Lemaréchal, 2001; Rockafellar, 1970;
Schneider, 2014; Thompson, 1996). The theory of gauges for sets of positive type is less well
known; see (Rockafellar, 1967; Pukelsheim, 1983; Barbara and Crouzeix, 1994). Concave gauges
have been used in statistics in a manner similar to that which we will use them (Pukelsheim, 1983)
and in economics (e.g. Hasenkamp and Schrader (1978); see also the further references at the end
of section 5). We will largely follow the development (but not the notation) of Penot and Zălinescu
(2000) where proofs of the following results can be found.

A set A ⊂ Rn is star-shaped if 0 ∈ A and (0, 1] · A ⊂ A. It is shady if [1,∞) · A ⊂ A. The
convex-gauge of closed star-shaped set C ⊂ Rn is defined by

γ̌C(x) := inf{µ ≥ 0: x ∈ µC}.

The concave-gauge of C ∈ K is defined by

γ̂C(x) := sup{µ ≥ 0: x ∈ µC}.

The infimum (resp. supremum) in these definitions is attained if they are finite and C is centrally
closed (for each x ∈ Rn, (tn)→ 1, if tnx ∈ C for each n, then x ∈ C).

The convex-polar of C ∈ Kn is

CU := {x ∈ Rn : 〈x, y〉 ≤ 1 ∀y ∈ C} = {x ∈ Rn : σ̌C(x) ≤ 1}.

If C is of negative type, then γ̌C = σ̌CU and γ̌CU = σ̌C . Thus convex-gauges are 1-homogeneous and
convex and monotonic with respect to set inclusion: A ⊆ B ⇒ σ̌A ≤ σ̌B and since A ⊆ B ⇒ BU ⊆
AU we have A ⊆ B⇒ γ̌A ≥ γ̌B.

The concave-polar (sometimes called the anti-polar) of C ∈ Kn is

CT := {x ∈ Rn : 〈x, y〉 ≥ 1 ∀y ∈ C} = {x ∈ Rn : σ̂C(x) ≥ 1}.

If C is of positive type, then γ̂C = σ̂CT and γ̂CT = σ̂C . Thus concave-gauges are 1-homogeneous
and concave.
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Closed convex-gauges are in 1:1 correspondence with closed star-shaped sets. (We rely on
(Penot and Zălinescu, 2000, Propositions 2.2 and 2.3(d)) for this to hold using our definition of γ̌C

which corresponds to their αC .) The correspondence is given by

k(x) = γ̌C(x), C = lev≤1 k.

Closed concave gauges are in 1:1 correspondence with closed convex shady sets not containing
0. The correspondence is given by

k(x) = γ̂C(x), C = lev≥1 k.

If k is a convex-gauge (and thus a non-negative, 1-homogeneous convex function with k(0) = 0)
then the convex-polar of k is defined as

kU(y) := inf{µ ≥ 0: 〈x, y〉 ≤ µk(x) ∀x}.

If k is finite everywhere except the origin, one can instead write

kU(y) = sup
x,0

〈x, y〉
k(x)

.

The notation kU is justified since under the assumptions above, (γ̌C)U = γ̌CU .
If k is a concave-gauge (and thus non-negative, 1-homogeneous concave function with k(0) = 0)

then the concave-polar of k is defined as

kT(y) := sup{µ ≥ 0: 〈x, y〉 ≤ µk(x) ∀x}. (1)

If k is finite everywhere except the origin, one can instead write

kT(y) = inf
x,0

〈x, y〉
k(x)

. (2)

The notation kT is justified since under the assumptions above, (γ̂C)T = γ̂CT .
The following dual representation of a concave gauge will be used later. If γ̂ is a concave-gauge

which is finite everywhere and positive except at the origin, then since γ̂ is 1-homogeneous,

γ̂U(y) = sup
x,0

〈x, y〉
γ̂(x)

= sup{〈x, y〉 : γ̂(x) = 1}. (3)

The recession cones of CU or CT (assuming the latter nonempty) are

0+
(
CU

)
= C− := {y ∈ Rn : 〈x, y〉 ≤ 0 ∀x ∈ C}

0+
(
CT

)
= C+ := {y ∈ Rn : 〈x, y〉 ≥ 0 ∀x ∈ C}.

There are also relationships between polars and conjugates. For C ∈ Ǩn, (γ̌C)∗̌ = ı̌CU and
CU = ∂̌γ̌C(0); for C ∈ K̂n, γ̂∗̂C = ı̂CT and CT = ∂̂γ̂C(0).
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4. Proper Losses

In this section we will introduce proper losses; first in the traditional way, and then in terms of the
superprediction set. We will then show some of the implications of the latter approach. We will
consider loss functions as functions that map from the n-simplex to a n-vector — ` : ∆n → Rn

+. The
partial functions `1(p), . . . , `n(p) are called partial losses. The conditional risk is defined via

L : ∆n × ∆n 3 (p, q) 7→ L(p, q) = EY∼p`Y(q) = p′ · `(q) =

n∑
i=1

pi`i(q) ∈ R+.

A natural requirement to impose upon ` is that it is proper (Hendrickson and Buehler, 1971), which
means that L(p, p) ≤ L(p, q) for all p, q ∈ ∆n. (It is strictly proper if the inequality is strict when
p , q.) The conditional Bayes risk L : ∆n 3 p 7→ infq∈∆n L(p, q) is always concave. If ` is proper,
L(p) = L(p, p) = p′ · `(p). The full risk L(q) = EXEY|X`Y(q(X)). One can understand the effect of
choice of loss in terms of the conditional perspective (which allows one to ignore the distribution of
X which is typically unknown; see (Steinwart and Christmann, 2008; Reid and Williamson, 2011)
for a discussion of this conditional perspective. Examples of proper losses include 0-1 loss (not
strictly proper), squared loss and log loss (both strictly proper). Instead of losses, one can work
with gains, for example 1(p) = −`(p); see Appendix A for more details on the conversion between
losses and gains.

The superprediction set

S ` := {x ∈ Rn : ∃y ∈ dom `, x ≥ `(y)},

where inequality is componentwise. Similarly for gains, the infraprediction set is

I1 := {x ∈ Rn : ∃y ∈ dom 1, x ≤ 1(y)}.

Every proper loss has a superprediction set which is a convex set S with recession cone 0+S = Rn
+

(Vernet et al., 2012). This motivates the key viewpoint of the present paper: start with the set of
positive type S and derive the loss (and other quantities) from it.

Suppose then that S ∈ K̂ is of positive type and has concave support function σ̂S . Let

` := FS = ∂̂σ̂S . (4)

Note ` so defined may be set valued in which case proper means proper for each selection.

Proposition 2 If S is of positive type, then ` defined by (4) is a proper loss.

Proof Since `S (x) = FS (x) is the support set of S , it follows that for all z ∈ S , 〈z, x〉 ≥ σ̂S (x) =

〈x, y〉 ∀y ∈ F̂S (x). Hence 〈x, `S (x)〉 ≤ 〈x, `S (z)〉 for all z ∈ Rn and so `S is proper.

We see that for ` = `S , L`(x) = σ̂S (x) = 〈x, ∂̂σ̂S (x)〉. Since convex, (resp. concave) support
functions provide for a bijection between closed convex sets and 1-homogeneous proper convex
(resp. concave) functions (Hiriart-Urruty and Lemaréchal, 2001; Schneider, 2014), it is clear that
we can either start with ` and construct S `; or start with S and construct `S .

The relationship between ` and L (the concave support function of the superprediction set) is
usually credited to Savage (1971) and is intimately related to Bregman divergences. Given a convex
function on a convex set X, φ : X → R, the Bregman divergence between x, y ∈ X is defined to be

Bφ(x, y) := φ(x) − φ(y) − 〈x − y, ∂̌φ(y)〉 (5)
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∂̂L(y) − ∂̂L(x)

x
L(x)

hx

{∂̂L(x) : z ∈ Rn
+}

∂̂L(y)

∂̂L(x)

Figure 2: Geometrical intepretation of Bregman divergence 〈x, ∂̂L(y) − ∂̂L(x)〉 when the concave function L
is 1-homogeneous and thus a concave support function of some convex set of positive type (whose lower left
boundary is shown in grey).

It is known that the regret L(p, q) − L(p) is a Bregman divergence with φ = −L. Using (4) we have

LS (x, y) = 〈x, ∂̂σ̂S (y)〉

and thus the general form of the Bregman divergence simplifies:

B−L(x, y) = −L(x) + L(y) + 〈x − y, ∂̂L(y)〉

= 〈x, ∂̂L(y) − ∂̂L(x)〉, (6)

where we have used the fact that 〈y, ∂̂L(y)〉 = L(y) since L = σ̂S and ∂̂σ̂S (y) = FS (y).
The simpler form (6) provides a simpler geometrical interpretation of the Bregman divergence

as the inner product of the vectors x and (∂̂L(y) − ∂̂L(x)); see Figure 2. Obviously as y → x,
(∂̂L(y) − ∂̂L(x)) becomes orthogonal to x and thus B−L(x, y) approaches 0.

Observe that since σ̂co S = σ̂S , there is no additional flexibility obtained in starting with non-
convex S ; although it is sometimes convenient to parameterise proper losses in this manner. For
example if S 0−1 := {e1, . . . , en} then the zero-one loss `0−1 = ∂̂σ̂S 0−1 .

The construction of proper losses from a set S allows one to translate a range of existing results
from the geometry of convex sets into the terminology of proper losses. We provide some examples
below, some of which we will use later.

Since support functions are additive under Minkowski addition (Schneider, 2014) and subdif-
ferentials of the sums of convex functions are the sums of the subdifferentials (Hiriart-Urruty and
Lemaréchal, 2001), we have

S = S 1 + S 2 ⇒ σ̂S = σ̂S 1 + σ̂S 2 and FS = FS 1 + FS 2 .

Thus `S 1+S 2 = `S 1 + `S 2 . A special case of this is where S 2 = {s} whence σ̂S 2(x) = infy∈S 2〈x, y〉 =

〈x, s〉. Note that S 1 + {s} = {t + s : t ∈ S 1} is the translaton of S 1 by s.
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Since L is a support function and thus 1-homogeneous, `S is (via Proposition 1) 0-homogeneous.
Analogously we have, for α ≥ 0, LαS = αLS , so `αS = α`S . If S 1 ⊆ S 2, then LS 1

≥ LS 2
.

We can also write
S ` = `(Rn

+) + Rn
+ and I1 = 1(Rn

+) + Rn
−.

Since ı̂S = (σ̂S )∗̂ we can also write S ` = lev≤0 L∗̂, although we do not make use of the latter in the
present paper.

We also have (Schneider, 2014, Corollary 1.7.3) that LS is differentiable at x , 0 if and only if
FS (x) contains only one element z. In this case z = grad L(x).

There is an elegant bridge between metrics on superprediction (or infraprediction) sets and their
corresponding support functions. Let

dH(S 1, S 2) := max{ sup
x1∈S 1

inf
x2∈S 2

‖x1 − x2‖2, sup
x2∈S 2

inf
x1∈S 1

‖x1 − x2‖2}

denote the Hausdorff distance between two sets S 1 and S 2. Then translating the result of (Hiriart-
Urruty and Lemaréchal, 2001, page 155) to sets of positive type, if S 1 and S 2 are super prediction
sets dH(S 1, S 2) = max‖x‖2≤1 |σ̂S 1(x) − σ̂S 2(x)|. This allows translation between convergence of a
series of superprediction sets to convergence of the corresponding concave support functions; see
(Hiriart-Urruty and Lemaréchal, 2001, page 156).

5. Polars and Inverse Losses

Suppose φ : X⇒ Y is a set-valued map (Aubin and Frankowska, 1990). Its inverse φ−1 : Y⇒ X is

φ−1(y) := {x ∈ X : y ∈ φ(x)}. (7)

A loss ` : Rn
+ → R

n
+ maps a prediction v to a loss vector x. Given the loss vector x, how can one

recover v? This problem arises naturally in finding a “substitution function” for Vovk’s Aggregating
Algorithm (Vovk, 2001). Apparently one seeks an “inverse loss” `−1 such that `−1(x)“=”v. If the
loss ` = `S = ∂̂σ̂S , for some S ∈ K̂n, then it is 0-homogeneous. Thus, an arbitrary x ∈ Rn

+ is
unlikely to be equal to `(v) for some v. However, by exploiting the 0-homogeneity of proper losses
when defined in terms of subdifferentials of support functions of convex sets of positive type, we
will see there is a very natural and geometrically satisfying way to “invert” such as loss.

We will make use of the following result of Barbara and Crouzeix (1994) which can be seen
to be analogous to the classical result (Hiriart-Urruty and Lemaréchal, 2001, Proposition 3.2.7)
regarding subdifferentials of Legendre-Fenchel conjugates: x ∈ ∂̌φ(y) ⇔ y ∈ ∂̌φ∗̌(x). We express
the result for the concave case (sets of positive type) because that is what we need for losses; an
analogous result holds for convex gauges, sets of negative type and subdifferentials.

Proposition 3 Suppose S ∈ K̂. For all s, d ∈ Rn,

d
γ̂S (d)

∈ ∂̂γ̂S T(s) ⇔
s

γ̂S T(s)
∈ ∂̂γ̂S (d) ⇔ γ̂S (d) γ̂S T(s) = 〈s, d〉. (8)

Barbara and Crouzeix (1994) provide a sketch of a proof. However since it is central to what follows
we present a complete proof in Appendix G.
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The above theorem has the following consequence. Since γ̂S (d) = σ̂S T(d) and γ̂S T(s) = σ̂S (s),
(8) implies

d
γ̂S (d)

∈ ∂̂σS (s) = `S (s) ⇔
s

γ̂S T(s)
∈ ∂̂σS T(d) = `S T(d) ⇔ 〈s, d〉 = γ̂S (d) γ̂S T(s). (9)

Since `S is 0-homogeneous, the inverse loss, in the sense of (7), satisfies y ∈ `−1
S (x) if and only if

x ∈ `S (y). From (9) we see that given d ∈ Rn
+, s = `S T(d) means that for some constant c > 0,

d
c ∈ `S (s). (Although it does not matter for what follows, the value of c can be determined from
γ̂S T(s) = sup{µ ≥ 0: s ∈ µS } and hence c is such that 〈s, d

c 〉 = γ̂S (d) γ̂S T(s) and so c =
γ̂S (d) γ̂ST (s)
〈s,d〉 ).

The constant c does not matter because `S is 0-homogeneous. Hence `S (α`S T(d)) = `(`S T(d)) for
all α > 0. It is important to realise that the inverse is only up to a positive scaling (since the losses
are 0-homogeneous). Thus while one is not guaranteed that d = `−1

S (`S (d)) for all d ∈ Rn
+, one is

guaranteed that for all d ∈ Rn
+,

`S (`−1
S (`S (d))) = `S (d).

Thus the “inverse loss” can be seen to be a special case of the Drazin inverse or pseudo-inverse
(Drazin, 1958), which is an abstraction of the notion of pseudo-inverse in linear algebra. The above
argument is illustrated in Figure 3. We have thus shown:

Corollary 4 Given a set S of positive type and hence a proper loss `S , the inverse loss `−1
S = `S T .

There are two ways the inverse loss can be computed — one can either compute the polar of S , or
the gauge of S since `−1

S = ∂̂σ̂S T = ∂̂γ̂S . We illustrate these concepts explicitly with the `p family
in Appendix D.

The inverse loss provides a substitution function for the Aggregating Algorithm (Vovk, 2001,
1995, 1990). The substitution function needs to map an arbitrary superprediction d ∈ S ` to a pre-
diction s such that x = `(s) dominates d in the sense that x ≤ d (where the inequality is meant
pointwise). Determination of a substitution function is the primary difference between the (unreal-
isable) aggregating “pseudo-algorithm” and the aggregating algorithm (Vovk, 2001). Determining
the substitution function even for simple cases can be difficult (Zhdanov, 2011).

The notion of the inverse loss and its relationship to the concave polar of the superprediction set
provides conceptual clarity. Furthermore, at least in some cases one can determine the inverse in
explicit form: see equation 21 in Appendix D, as well as the other examples in Appendices E and F.

Figure 3 should be compared with that in (Shephard, 1953, page 23) which was the inspiration
for this argument. This has become known as Shephard’s duality theorem in the economics literature
(Shephard, 1953; Jacobsen, 1972; McFadden, 1978; Hanoch, 1978; Cornes, 1992; Färe and Primont,
1994, 1995; Penot, 2005; Zălinescu, 2013) and appears in standard microeconomics texts (Varian,
1978).

6. Binary operations on superprediction sets and losses

Given superprediction sets (sets of positive type) as the starting point, it is clear that any binary op-
erations on sets of positive type that return a set of positive type will have corresponding operations
on the associated proper losses. Thus it is of interest to develop as rich a family of such binary
operations on sets of positive type.
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`log(Rn
+)

`−1
log(Rn

+)

x

y

s

hs

hd

d

S log

S Tlog

Figure 3: Illustration of polar / inverse loss using ` = `log with n = 2. Shown are the loss curves `log(Rn
+) and

the corresponding superprediction set S log which extends infinitely “north-east” (both in blue), and `−1
log(Rn

+)
and corresponding superprediction set S Tlog (the concave polar of S log), both in red. Given a point d ∈ Rn

+ it
is desired to find s ∈ Rn such that `(s) = x, where x is the point of intersection of the line segment [0, d]
with the curve `(Rn

+). Evaluating `−1(d) gives the point y; observe the hyperplane hd with normal vector d
supports `−1

log(Rn
+) at the point y because of properness. Any positive scaling s = αy, for α > 0, would also

suffice. It can be seen that hs (with normal vector s) supports `log(Rn
+) at x (again because of properness).

As argued in the text, by construction we are guaranteed that `log(s) = x. This justifies calling the polar loss
∂̂σ̂S Tlog

the “inverse loss” `−1
log. The curves were drawn by plotting `log(x) = ∂̂σ̂S log (x) for x ∈ ∆2 (exploiting

zero-homogeneity) and the level set {z ∈ R2
+ : σ̂S log (x) = 1}, relying on the definition of the concave polar of

the set S log.

We will now consider a class of binary operations on superprediction sets that seem particularly
useful for this purpose. They generalise the simple operations of Minkowski sum or intersection.
There are explicit formulas for the support functions of the results of these operations in terms of the
support functions of the sets. Furthermore there are expressions for the polars of binary operations
of sets in terms of the polars of the sets. Since support functions and polars are central to the
relationship with proper losses, these operations seem very appropriate for developing an algebra of
losses.

We generalise the results of Seeger (1990). Rather than a family parameterised by p ∈ [1,∞]
corresponding to the classical lp norms), we work with arbitrary norms (gauges) on R2 which we

10
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parameterise by the convex set C which corresponds to the unit ball with respect to the correspond-
ing norm (every convex gauge induces a norm). This has the additional benefit of simplifying some
of the proofs. Seeger’s results are for convex sets of negative type. In order to make the present
results directly comparable to his we stick with this convention. They can be directly applied to
gains. We present the results for subsets of Rn since that is all we need, but they would actually hold
(like Seeger’s results) for subsets of arbitrary locally convex topological vector spaces.

Let A, B ⊂ Rn be sets of negative type (closed, convex, and containing the origin). Let C ⊂ R2
+

also be of negative type. By analogy with the operation of epimultiplication of functions, for a set
S and α ≥ 0 define

α ? S :=
{
αS , α > 0
0+S , α = 0

. (10)

Following Seeger (1990) we define

A �̌C B :=
⋃

λ∈CU∩R2
+

λ1A + λ2B (11)

A ˇ̄�C B :=
⋃

λ∈CU∩R2
+

λ1 ? A + λ2 ? B (12)

A �̌C B :=
⋃

λ∈CU∩R2
+

λ1A ∩ λ2B (13)

A ˇ̄�C B :=
⋃

λ∈CU∩R2
+

λ1 ? A ∩ λ2 ? B. (14)

Seeger (1990) studied the special cases where C = Cp = {x : ‖x‖p ≤ 1} and p ∈ [1,∞]. We will
write �̌Cp as �̌p and �̌Cp as �̌p. Special cases pointed out by Seeger include

A �̌1 B = A + B Minkowski sum
A �̌∞ B = co(A ∪ B) convex hull of union
A �̌1 B = A ∩ B intersection
A �̌∞ B = A ] B inverse sum.

The history of the inverse sum operation is summarised by Seeger (1990). He expresses the opera-
tions somewhat differently, but they are seen to be the same as follows (we present the argument for
�̌C; the same argument holds with the obvious variation for �̌C). We can write C = lev≤1 γ̌C , thus

A �̌C B =
⋃
{λ1A + λ2B : λ ≥ 0, γ̌CU(λ) ≤ 1} =

⋃
{λ1A + λ2B : λ ≥ 0, γ̌CU(λ) = 1},

which corresponds to Seeger’s definition when C = Cp, recalling the standard result that BUp = Bq

where 1
p + 1

q = 1. The operations �̌C and �̌C are of interest because of the following closure result.
Seeger (1990, Theorem 2.3) proves that if A and B are convex and S ⊂ R2 is convex then so is⋃
λ∈S (λ1A + λ2B). If 0 ∈ A and 0 ∈ B then 0 ∈ A ∩ B. Thus it is clear that 0 ∈ A �̌C B and

0 ∈ A �̌C B. Thus we have:

Proposition 5 If A, B ⊂ Rn are sets of negative type and C ⊂ R2 is of negative type then A �̌C B
and A �̌C B are also of negative type.

11
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The operations A �̌C B and A ˇ̄�C B are identical when A and B are bounded since in that case
0 ? A = 0 ? B = {0}. However for unbounded sets they differ. We also need the following
generalisation of (Seeger, 1990, Proposition 4.1). The proof is the same as Seeger’s and is omitted.

Proposition 6 if C ⊂ R2 is of negative type and A, B ⊂ Rn are of negative type then

A �̌C B ⊂ A ˇ̄�C B ⊂ A �̌C B.

We now consider some binary operations on functions. The inherent notation overloading in the
following is justified later in Theorem 9. If x ∈ Rn, then x′ denotes its transpose.

Definition 7 Suppose C ⊂ R2 is of negative type and suppose f , g : Rn → [0,∞]. The direct and
inverse sum of type C of f and g are respectively

( f �̌C g)(x∗) := γ̌C(( f (x∗), g(x∗))′) (15)

( f �̌C g)(x∗) := inf
x∗1+x∗2=x∗

γ̌C(( f (x∗1), g(x∗2))′). (16)

As with the set operations, for p ∈ [1,∞] we abbreviate �̌Cp by �̌p and �̌Cp by �̌p. Special cases
of these operations are

( f �̌1 g)(x∗) = f (x∗) + g(x∗) sum
( f �̌∞ g)(x∗) = f (x∗) ∨ g(x∗) maximum
( f �̌1 g)(x∗) = inf

x∗1+x∗2=x∗
( f (x∗1) + g(x∗2)) infimal convolution

( f �̌∞ g)(x∗) = inf
x∗1+x∗2=x∗

( f (x∗1) ∨ g(x∗2)) inf-max convolution.

The first three are standard; the last corresponds to the addition of the level sets of the two functions
f and g, and has been studied in more detail by Seeger and Volle (1995).

These operations on functions preserve convexity as is shown in the following generalisation
of (Seeger, 1990, Theorem 3.2); the proof of the second part is essentially the same as in (Seeger,
1990) modulo minor details. The proof is in Appendix G.

Proposition 8 Suppose C ⊂ R2 is of negative type and f , g : Rn → R̄ are convex. Then f �̌C g and
f �̌C g are also convex.

The justification for the overloading of notation �̌C and �̌C to refer to operations on both sets
and functions is provided by the following proposition. It is a generalisation of (Seeger, 1990,
Theorems 5.1 and 5.2). It explains the relevance of these operations on infraprediction sets, as their
effect can be equivalently calculated using the corresponding operation on the support functions.
The proof is in Appendix G.

Proposition 9 Suppose C ⊂ R2 is of negative type and A, B ⊂ Rn are of negative type. Then

σ̌A�̌C B = σ̌A �̌C σ̌B (17)

σ̌A�̌C B = σ̌A �̌C σ̌B. (18)

12
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We now consider the polars of the direct and inverse sum operations. Since the polar of a
infraprediction set corresponds to the inverse gain, the following result shows how these inverses
behave under the generalised sum operations. The form of the right-hand side (with the appearance
of CU) is appealing. The proof is in Appendix G.

Proposition 10 Suppose C ⊂ R2
+ is of positive type and A, B ⊂ Rn are of positive type. Then

(A �̌C B)U = AU �̌CU BU. (19)

7. Conclusions

We showed how one could start with a convex body and hence derive the theory of proper losses (or
gains). As well as the aesthetic attraction, there are some concrete advantages of doing so. It shows
that the natural way to define the Bayes risks is as 1-homogeneous functions which means that the
associated losses (or gains) are 0-homogeneous. The theory of polar duality (long used in production
economics) then provides a general and elegant way to define an inverse loss which can be used as
a universal substitution function in the aggregating algorithm. Furthermore, operations on convex
bodies have corresponding operations on Bayes risks. We have spelt out some of these connections
explicitly. Appendices B, D, E, F illustrate the general theory with specific examples: cost-sensitive
misclassification loss, lp losses (the family is closed under inverses), Brier loss, and the self-inverse
“Boosting loss” which is induced by a Cobb-Douglas style concave support function.

The viewpoint of losses as 0-homogenous functions allows us to think of losses differently:
losses are simply “distorted probabilities”. The “inverse loss” can undo the distortion. This notion
of distorted probabilities seems different to that used in the insurance and risk literature where it is
the cumulative distribution (or more particularly the survival function) that is distorted (Reesor and
McLeish, 2002; Pflug and Römisch, 2007; Furman and Zitikis, 2009; Chateauneuf, 1996).

The (0- and 1-) positive homogeneity of ` and L means one can equally define ` on the proba-
bility simplex (as is traditionally done). Interestingly, one can achieve the same results if instead `
is defined on the Euclidean unit ball, which corresponds to working with the square roots of prob-
abilities. Such a viewpoint allows connections to be drawn to the theory of kernels on probability
distributions (Hein and Bousquet, 2004).

The framework can also be used to derive surrogate regret bounds (for the general multiclass
case) using the theory of decomposition of convex bodies (Schneider, 2014, Section 3.2) and the
bridge to f -divergences (Garcia-Garcia and Williamson, 2012) can be recovered by parametrising
f -divergences also in terms of convex sets. These further results will appear in an extended version
of the present paper.

The viewpoint of the paper also shows the strong connection between losses (or more precisely
gains) and norms. A gain corresponds to a set of negative type. If that set is symmetric about the
origin then it is the unit ball of a norm. The symmetry is not relevant when the argument is always
in the positive orthant. It is an interesting future direction to see what can be exploited by this
connection with norms, and the theory of asymmetric metric spaces (Zaustinsky, 1959).
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Appendix A. Losses and Gains

We will now present some example proper losses and gains, which will serve to illustrate the per-
spective presented in the body of the paper.

Rather than seperately working out losses and gains, one can easily convert from one to the
other (not uniquely). In order to convert, one needs to map sets of positive type to negative type
(and vice versa). The simplest transformation is S = −I = {−x : x ∈ I}. However in order to
respect the common conventions for losses (e.g. non-negativity), and more technically to ensure
polars continue to exist (see section 5) we will require the conversion be done in a manner which
ensures that 0 ∈ I and 0 < S .

Given an infraprediction set I ⊆ Rn with associated gain 1I = ∂̌σ̌I and some c ∈ Rn observe that
by setting S = c − I one can derive the loss `S as follows:

`S (x) = ∂̂σ̂S (x) = {x∗ : σ̂S (x) + 〈x∗, y − x〉 ≥ σ̂S (y), ∀y ∈ Rn}

= {x∗ : 〈x, c〉 − σ̌I(x) + 〈x∗, y − x〉 ≥ 〈y, c〉 − σ̌I(y), ∀y ∈ Rn}

= {x∗ : − σ̌I(x) + 〈x∗ − c, y − x〉 ≥ −σ̌I(y), ∀y ∈ Rn}
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Figure 4: Canonical translation from losses to gains; superprediction sets to infraprediction sets.

Let z∗ = x∗ − c so z∗ + c = x∗

= {z∗ + c : − σ̌I(x) + 〈z∗, y − x〉 ≥ −σ̌I(y), ∀y ∈ Rn}

= c + {z∗ : σ̌I(x) + 〈−z∗, y − x〉 ≤ σ̌I(y), ∀y ∈ Rn}

= c − {z∗ : σ̌I(x) + 〈z∗, y − x〉 ≤ σ̌I(y), ∀y ∈ Rn}

= c − ∂̌σ̌I(x)

and thus
`S (x) = c − 1I(x) (20)

as one would expect.
We now present a canonical choice of c to choose when mapping S to I via S = c − I which

illustrates another property of super- (infra-) prediction sets. Since the concave support func-
tion σ̂S is indeed concave, it has a maximum when restricted suitably. It is natural to consider
arg maxp∈∆n σ̂S (p). Since S is convex and 〈x, p〉 is linear, by the minimax theorem we have

V := max
p∈∆n

σ̂S (p) = max
p∈∆n

min
x∈S
〈x, p〉 = min

x∈S
max
p∈∆n
〈x, p〉.

Since S ⊆ Rn
+, arg maxp∈∆n〈x, p〉 = ei, where i = arg max j x j and thus V = minx∈S ‖x‖∞. Thus

p∗ = arg maxp∈∆n σ̂S (p) is the (normalised onto ∆n) normal to the hyperplane that supports S at the
point of intersection with the corner of the l∞ ball — see Figure 4. The same argument holds, mutatis
mutandis, for infraprediction sets. Hence a natural conversion from S to I is, given x∗ = `(p∗),
Tx∗ : Rn 3 x 7→ 2x∗ − x ∈ Rn.
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S c = co∆n

({
e1
c1
, . . . , en

cn

})

e1
c1

e2
c2

c =


c1
c2
...

cn


hc

B∞
‖c‖1

Figure 5: Superprediction set for cost-sensitive misclassification loss.

An alternative transformation is attractive for fair bounded losses. A proper loss `S : Rn
+ → R

n
+

is fair if LS (ei) = 0 for all i ∈ [n] and is bounded if ‖`S (z)‖∞ ≤ ∞ for all z ∈ Rn
+. In this case

set α := arg maxz∈Rn
+
‖`S (x)‖∞ and x∗ := α1. Then the transformation T : x 7→ x∗ − x ensures not

only is 0 ∈ I = T (S ) but that T (`(Rn
+)) ⊆ Rn

+ and thus I can be considered the unit ball of a norm.
Analogous to the development in section 5 for losses, the corresponding Bayes risk GI = σ̌I and
gain 1 = ∂̌G can be related to the gauge of the norm. Thus one can see the intimate relationship
between gains and norms. Solely because gains are only defined on Rn

+ there is no need for the
symmetry constraint. However, to correspond to a norm the gain (or loss) needs to be bounded.

Appendix B. Cost-sensitive misclassification loss

We now consider the cost-sensitive misclassification loss. Let c ∈ (0,∞)n and consider the set
Tc := {t1, . . . , tn} :=

{
e1
c1
, . . . , en

cn

}
. The ∆n-convex hull (intersection of supporting halfspaces with

normal vectors in ∆n) is
S c := co∆n Tc =

⋂
H supports Tc

H = Hc ∩ R
n
+

where Hc := {x ∈ Rn : 〈c, x〉 − 1 ≥ 0}. Thus S c is a convex set of positive type and hence a
superprediction set. As can be seen σ̂S c(x) attains its maximum over x ∈ ∆n at c since c is the
normal vector to the hyperplane hc = {x ∈ Rn : 〈c, x〉 − 1 = 0}. See Figure 5. The corresponding
loss can be found by observing that Tc will be supported by a hyperplane with normal vector z ∈ Rn

+

at ti∗ when i∗ ∈ arg mini∈[n]〈z, ti〉 and hence

`c(z) = ∂̂σ̂S c(z) =

ti∗ : i∗ ∈ arg min
i∈[n]

〈z, ti〉
 .

Furthermore if z is such that hz supports Tc at ti∗ , then 〈z, ti∗〉 − σ̂S c(z) = 0 and thus σ̂S c(z) = 〈z, ti∗〉
and thus σ̂S c is piecewise linear. The maximum occurs at c at which point all components of
z = `c(c) are equal (the intersection with the corner of the l∞ ball). Suppose then that z = α1. We
have (noting the earlier definition of hc) that 〈x, α1〉 − 1 = 0 and thus α = 1

‖c‖1
so `c(c) = 1/‖c‖1.
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Appendix C. Shifting the maximum of L

The previous example suggests the following question. Given an arbitrary superprediction set S
with associated proper loss `S , how might one modify `S in order that the maximum of LS occurs
at a pre-specified point? The motivation for this question is that this is a canonical way of making a
given loss asymmetrical in a desired way. If one is given only ` or L this is not obvious. However
the answer is trivial in terms of S . As we have seen the maximum of σ̂S (x) occurs for the value of
x normal to the hyperplane that supports S at the point it intersects the corner of a scaled l∞ ball.
Thus suppose that p∗ := arg maxp∈∆n σ̂S (p) and we desire the maximum to occur at p′ , p∗. Then
it suffices to translate the set S by (`S (p′) − `S (p∗)). That is, let S ′ = S − (`S (p′) − `S (p∗)). Then
bd S ′ intersects the corner of the same l∞ ball and hence σ̂S ′ (and `S ′ has the desired property). By
the additivity properties of support functions, we can of course write

σ̂S ′(x) = σ̂S (x) − 〈`S (p′) − `S (p∗), x〉.

and
`S ′(x) = `S (x) − (`S (p′) − `S (p∗)).

While this argument answers the question, it seems like cheating. One may instead want a
more powerful result; given an arbitrary fair proper loss `S with p∗ = arg maxp∈∆n σ̂S (p), transform
the loss to a new fair proper loss `S ′ with arg maxp∈∆n σ̂S ′(p) = p′ in a manner that preserves
“something” about the shape of S . However this is too much to ask and is in fact impossible
using any fixed non-affine mapping T that would work for all superprediction sets. This effectively
follows from a result due to Meyer and Kay (1973) that the only maps that map arbitrary convex
sets to convex sets are affine.

Appendix D. `p losses

In general the calculation of polars of superprediction sets, or equivalently the inverse loss may
be difficult to achieve in closed form. However, analogous to the case of convex gauges, there
is a parametric family which has an attractive self-closure property with respect to taking polars.
Following Barbara and Crouzeix (1994), we define γ̂p : Rn

+ → R as follows for p ∈ [−∞, 0)∪ (0, 1].

γ̂p(x) :=


(∑n

i=1 xp
i

) 1
p , x ∈ Rn

+,

−∞ otherwise
p ∈ (0, 1],

γ̂p(x) :=


(∑n

i=1 xp
i

) 1
p , x ∈ intRn

+

0 x ∈ bdRn
+

−∞ otherwise

p ∈ (−∞, 0),

γ̂−∞(x) :=
{ ∧n

i=1 xi, x ∈ Rn
+

−∞, otherwise.

Barbara and Crouzeix (1994) show that for all p ∈ [−∞, 0) ∪ (0, 1], γ̂p is indeed a concave gauge
and furthermore if q satisfies 1

p + 1
q = 1 then

γ̂Tp = γ̂q. (21)
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`−2(Rn
+)

`2/3(Rn
+)

d

x

y

s

S −2S 2/3

hd

hs

Figure 6: The family of `p losses is closed under inverse (polars). The figure shows that `−1
2/3 = `−2.

If p ∈ (0, 1] then q ∈ [−∞, 0), and if p ∈ [−∞, 0) then q ∈ (0, 1]. Thus no gauge γ̂p is self-polar.
The family of concave gauges γ̂p can be used to define a family of proper losses on n outcomes

Since σ̂S = γ̂S T = γ̂TS , and the polar is given via (21), we will determine the loss function

`p(x) := ∂̂σp(x), x ∈ intRn
+

= ∂̂γq(x)

=: (y1, . . . , yn)′.

When q , −∞ (so p , 1), we have

yi =
∂

∂xi

 n∑
j=1

xq
j


1
q

=

 n∑
j=1

xq
j


1
q−1

xq−1
i =

x
1

p−1
i(∑n

j=1 x
p

p−1
j

) −1
p

.

When q = −∞ (so p = 1), we have `p(x) = ∂̂
(∧n

i=1 xi
)
. But x 7→

∧
i xi is the support function of

{e1, . . . , en} or its convex hull R+
n \ ∆n and we see `1 is just 0-1 loss.

The closure under inverse of the family {`p : p ∈ [−∞, 0) ∪ (0, 1]} is illustrated in Figure 6, and
their variation in shape of the corresponding superprediction sets S p is illustrated in Figure 7.

21



WILLIAMSON

Figure 7: Illustration of the range of `p losses. The upper part shows `p(R2
+) for p ∈ [−10,−4/10] and the

lower part the corresponding polar (inverse) loss `q(R2
+), the colors matching and q ∈ [4/14, 10/11].

Appendix E. Brier Loss

Consider the spherical proper gain. Define the infraprediction set Isph = Rn
+ ∩ Bn, where Bn =

{x : ‖x‖2 ≤ 1} is the unit ball for the 2-norm. Obviously, for x ∈ Rn
+, with ‖x‖2 = 1, we have

σ̌Isph(x) = 1 and thus (due to 1-homogeneity), σ̌Isph(x) = ‖x‖2 for all x ∈ Rn
+. Hence the gain

1sph(x) = ∂̌‖x‖2 = x
‖x‖2

, which as expected is 0-homogeneous.
One might expect that 1sph would correspond to the Brier score (upon inversion); however that

turns out not to be the case. Set c = 2
n 1 and S = c − I so via (20) `(x) = c = x

‖x‖2
. Consider n = 2

and restrict ` to ∆2 to get

`((p, 1 − p)′) = 1 − ((p, 1 − p)′)
1

(p2 + (1 − p)2)1/2
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S Brier

S TBrier

`Brier(Rn)

`−1
Brier(R

n)

Figure 8: Brier loss and its inverse for n = 2.

and thus for p ∈ [0, 1] the Bayes risk L(p) = 〈(p, 1− p)′, `((p, 1− p)′)〉 = 1− (p2 + (1− p)2)1/2. The
weight function (Reid and Williamson, 2011) associated with the binary proper loss is

w(p) = −L′′(p) =
1

(2p2 − 2p + 1)3/2 ,

which differs from the weight function for the Brier score which is identically 1.
We will now determine the inverse loss for the Brier loss. This is easily plotted as with other

losses because S TBrier = lev≥1 σ̂S Brier ; see Figure 8.
The Brier score is usually defined for p ∈ ∆n in terms of its Bayes risk LBrier(p) = 1 −

∑n
i=1 p2

i .
For our purposes we need to work with the 1-homogeneous extension:

LBrier = σ̂S Brier : Rn 3 x 7→ ‖x‖1

1 − n∑
i=1

(
xi

‖x‖1

)2 = ‖x‖1 −
‖x‖22
‖x‖1

.
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Thus

σ̂S TBrier
(y) = inf

x,0

〈x, y〉
σ̂S Brier(x)

(22)

= inf
x,0

〈x, y〉

‖x‖1 −
‖x‖22
‖x‖1

.

When n = 2 this is solvable explicitly. Since we know σ̂S TBrier
must be 1-homogeneous it suffices to

evaluate it on the simplex ∆2 and then 1-homogeneously extend it. Parametrising an element of ∆2

as (p, 1 − p)′ we obtain

σ̂S TBrier
(p) = inf

x,0

x1 p + x2(1 − p)

x1 + x2 −
x2

1+x2
2

x1+x2

This can be solved directly resulting in

σ̂S TBrier
(p) =

1
2

(2p − 1)2
√

p(1 − p)

2p2 +
√

p(1 − p) − 2p

It does not seem possible to find a closed form for `−1
Brier when n > 2. However the objective

function in (22) can be seen to be quasi-convex in x (since σ̂S (x) is concave in x and thus 1/σ̂S (x)
is quasi-convex) and thus is amenable to numerical solution.

Appendix F. Cobb-Douglas Functions and Boosting Loss

As a final example consider the parametrised concave function

ψa(x) :=


(∏n

i=1 xai
i

)1/‖a‖1 x ∈ Rn
+

−∞ otherwise,
(23)

where a = (a1, . . . , an)′ ∈ (0,∞)n. Barbara and Crouzeix (1994, page 52) show that ψa is “self-dual”
in the sense that for all x ∈ Rn

ψTa (x) =
‖a‖1
ψa(a)

ψa(x). (24)

The function ψa can be seen to be the form of the Cobb-Douglas production function (Cobb and
Douglas, 1928) the self-duality of which has been an object of considerable interest in microeco-
nomics (Houthhakker, 1965; Samuelson, 1965; Sato, 1976).

We illustrate the self-duality with a simple example. Set n = 2 and a1 = a2 = 1 and thus
ψa(x) =

√
x1x2. Taking this is as the concave support function for a loss `ψ, the polar is immediately

obtainable from (24). One has

`ψ(R2
+) = lev=1 S ψ and `−1

ψ (R2
+) = lev=1/2 S ψ.

The form of `ψ is of interest. Differentiating σ̂ψ(x) = ψ(x) one obtains the partial losses

`ψ,1(x) =
1
2

x2
√

x1x2
and `ψ,2(x) =

1
2

x1
√

x1x2
, (25)
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S ψ

S Tψ

lev=1 ψ = `ψ(Rn
+)

lev= 1
2
ψ = lev=1 ψ

T = `−1
ψ (Rn

+)

Figure 9: Illustration of the self-dual nature of the Cobb-Douglas loss when a1 = a2 = 1. The inverse loss
can be found by taking the level set at level 1

2 . See also Figure 10.

and hence restricting the loss to ∆2 we obtain

`ψ,1(p) =
1
2

√
1 − p

p
and `ψ,2(p) =

1
2

√
p

1 − p
,

which can be recognised as the “boosting loss” — see Buja et al. (2005). This loss has weight
function

wψ(p) = −ψ′′a (p) =
1

4(p(1 − p))3/2 .

The superprediction sets associated with the loss `ψ and its inverse are illustrated in Figures 9 and
10, which also shows the self-dual nature of the loss.

It would be of interest to determine other self-dual losses using the results of (Houthhakker,
1965; Samuelson, 1965; Sato, 1976) and to ascertain the significance (if any) of the self-dual nature
of the “boosting loss” — the fact that for all x ∈ Rn

+, `ψ(`ψ(`ψ(x)))) = `ψ(x), a fact one can verify
directly by using the formulae in (25).

25



WILLIAMSON

Figure 10: Graph of Cobb-Douglas support function (with a1 = a2 = 1) ψ : R2
+ 3 (x, y) 7→

√
xy with the

contours at height 1
2 and 1 (thicker lines) corresponding to the inverse loss and loss curves respectively of

Figure 9.

Appendix G. Proofs

Proof (Proposition 1) By definition, ∂̌ f (x) = {s ∈ Rn : f (y) ≥ f (x) + 〈s, y − x〉, ∀y ∈ Rn}. Thus for
α > 0,

∂̌ f (αx) = {s : f (y) ≥ f (αx) + 〈s, y − αx〉, ∀y ∈ Rn}

= {s : f (αy′) ≥ f (αx) + 〈s, αy′ − αx〉, ∀y′ ∈ Rn}

= {s : α f (y′) ≥ α f (x) + α〈s, y′ − x〉, ∀y′ ∈ Rn} = ∂̌ f (x).
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Proof (Proposition 3) We first prove

s ∈ ∂̂γ̂C(d)⇔
[
γ̂C(d) = 〈s, d〉 and s ∈ CT

]
. (26)

(⇒) Suppose d ∈ Rn. If s ∈ ∂̂γ̂C(d) then

∀y ∈ Rn, γ̂C(y) ≤ γ̂C(d) + 〈s, y − d〉.

Hence (setting y = 0 and then y = 2d, and exploiting the 1-homogeneity of γ̂C), we have

γ̂C(0) = 0 ≤ γ̂C(d) − 〈s, d〉 (27)

γ̂C(2d) = 2γ̂C(d) ≤ γ̂C(d) + 〈s, d〉

and thus

γ̂C(d) ≤ 〈s, d〉 (28)

and hence (27) and (28) imply

γ̂C(d) = 〈s, d〉. (29)

Hence

∀y ∈ Rn, γ̂C(y) ≤ 〈s, d〉 + 〈s, y − d〉 = 〈s, y〉. (30)

Observe now that

t ∈ CT ⇔
[
〈t, y〉 ≥ 1 ∀y such that γ̂C(y) = 1

]
and so using (30)

⇔
[
γ̂C(y) ≥ 1⇒ 〈t, y〉 ≥ 1

]
⇔ s = t

and thus s ∈ CT.
(⇐) Suppose then that s ∈ CT and there exists d such that γ̂C(d) = 〈s, d〉. Then

0 = γ̂C(d) + 〈s,−d〉

⇒ 〈s, y〉 = γ̂C(d) + 〈s, y − d〉,∀y ∈ Rn

⇒ 〈s, y〉 ≤ γ̂C(d) + 〈s, y − d〉,∀y ∈ Rn. (31)

Since s ∈ CT, we have [
∀y ∈ Rn, γ̂C(y) ≥ 1⇒ 〈s, y〉 ≥ 1

]
⇒

[
∀y ∈ Rn, ∀α > 0, γ̂C(y) ≥ α⇒ 〈s, y〉 ≥ 1

]
⇒

[
∀y ∈ Rn, ∀α > 0, 〈s, y〉 < α⇒ γ̂C(y) < α

]
⇒

[
∀y ∈ Rn, ∀α > 0, 〈s, y〉 ≤ α⇒ γ̂C(y) ≤ α

]
,
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where we used again the 1-homogeneity of γ̂C and the fact that it is upper semi-continuous (all its
above-level sets are closed), which is a consequence of γ̂C = σ̂CT and the fact that concave support
functions are upper-semicontinuous. Thus with (31), we have

γ̂C(y) ≤ γ̂C(d) + 〈s, y − d〉, ∀y ∈ Rn

which means s ∈ ∂̂γ̂(d).
Equation 26 implies

s
γ̂CT(s)

∈ ∂̂γ̂C(d) ⇔
[
γ̂C(d)γ̂CT(s) = 〈s, d〉 and

s
γ̂CT(s)

∈ CT
]
. (32)

By swapping the roles of d and s and of C and CT, (26) also implies

d ∈ ∂̂γ̂CT(s) ⇔
[
γ̂CT(s) = 〈s, d〉 and d ∈ C

]
.

Thus
d

γ̂C(d)
∈ ∂̂γ̂CT(s) ⇔

[
γ̂CT(s)γ̂C(d) = 〈s, d〉 and

d
γ̂C(d)

∈ C
]
. (33)

Since C = {x : γ̂C(x) ≥ 1},
d

γ̂C(d)
∈ C ⇔

γ̂C(d)
γ̂C(d)

≥ 1.

Since the second term is always true we conclude that d
γ̂C(d) ∈ C for all d. Likewise s

γ̂CT (s) ∈ CT for
all s. Hence (32) is equivalent to (33) and we have proved the proposition.

Proof (Proposition 8) From (3) we can write (since ( f (z), g(z)) ∈ R2
+)

( f �̌C g)(z) = sup{〈x, ( f (z), g(z))′〉 : γ̌CU(x) = 1}

Since z 7→ 〈x, ( f (z), g(z))′〉 is convex in z (for each x), ( f �̌C g)(z) is the supremum of a family of
convex functions and thus convex.

Similarly we can write

( f �̌C g)(z) = inf
x1+x2=z

sup{〈x, ( f (x1), g(x2))′〉 : γCU(x) ≤ 1, x ∈ Rn}.

Let φ(x1, x2; x) = 〈x, ( f (x1), g(x2))′〉. For each x, φ(x1, x2; x) is jointly convex in x1 and x2. Thus
ψ(x1, x2) = sup{φ(x1, x2; x) : γCU ≤ 1} shares this property as it is the supremum (over a convex
set) of a family of jointly convex functions. Finally observe that ( f �̌C g)(z) is the restriction of
ψ(x1, x2) to a linear subspace and is thus convex in z.
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Proof (Proposition 9) We have

σ̌A�̌C B(x) = σ̌⋃
λ∈CU∩R2

+
(λ1A+λ2B)(x)

= sup
λ∈CU∩R2

+

σ̌λ1A+λ2B(x)

= sup
λ∈CU∩R2

+

λ1σ̌A(x) + λ2σ̌B(x)

= sup
λ∈CU∩R+2

〈λ, (σ̌A(x), σ̌B(x))′〉 (34)

= σ̌CU((σ̌A(x), σ̌B(x))′) (35)

= γ̌C((σ̌A(x), σ̌B(x))′)

= (σ̌A �̌C σ̌B)(x)

where the step from (34) to (35) is justified since A and B are of negative type, σ̌A(x) and σ̌B(x) are
positive for all x, and hence the supremum over λ will automatically be in R2

+. This proves (17). In
order to prove (18) we observe that

(σ̌A �̌C σ̌B)∗̌(x) = sup
x∗∈Rn
{〈x, x∗〉 − inf

x∗1+x∗2=x∗
γ̌CU((σ̌A(x∗1), σ̌B(x∗2))′)}

= sup
x∗∈Rn

sup
x∗1+x∗2=x∗

{〈x, x∗〉 − γ̌CU((σ̌A(x∗1), σ̌B(x∗2))′)}

= sup
x∗1,x

∗
2∈R

n
{〈x, x∗1〉 + 〈x, x

∗
2〉 − γ̌CU((σ̌A(x∗1), σ̌B(x∗2))′)}

= sup
x∗1,x

∗
2∈dom σ̌A×dom σ̌B=:M

{〈x, x∗1〉 + 〈x, x
∗
2〉 − γ̌CU((σ̌A(x∗1), σ̌B(x∗2))′)}

but for (a, b) ∈ R2
+, γ̌CU((a, b)′) = sup{λ1a+λ2b : λ ∈ C} and since 0 ∈ A, σ̌A(x∗1) = supy∗∈A〈x

∗, y∗〉 ≥
〈x∗, 0〉 = 0 (and similarly for σ̌B(x∗2)), we can write

(σ̌A �̌C σ̌B)∗̌(x) = sup
(x∗1,x

∗
2)∈M

inf
λ∈C

Lx((x∗1, x
∗
2), λ),

where Lx is a finite function defined on M ×C by

Lx((x∗1, x
∗
2), x) = 〈x, x∗1〉 + 〈x, x

∗
2〉 − λ1σ̌A(x∗1) − λ2σ̌B(x∗2).

Since Lx((x∗1, x
∗
2), λ) is concave in (x∗1, x

∗
2) and convex in λ, dom σ̌A and dom σ̌B are convex (since

dom σ̌A = (0+A)U (Hiriart-Urruty and Lemaréchal, 2001, p. 140)) so M is convex, and C is convex
by assumption, and thus Sion’s minimax theorem (Sion, 1958) applies and we can write

(σ̌A �̌C σ̌B)∗̌ = inf
λ∈C

sup
(x∗1,x

∗
2)∈M

Lx((x∗1, x
∗
2), λ)

= inf
λ∈C

(
rA,λ1(x) + rB,λ2(x)

)
, (36)
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where

rA,λ1(x) : = sup
x∗1∈dom σ̌A

(
〈x, x∗〉 − λ1 ? σ̌A(x∗1)

)
rB,λ2(x) : = sup

x∗2∈dom σ̌B

(
〈x, x∗〉 − λ2 ? σ̌B(x∗2)

)
.

(37)

Now when λ1 = 0,

rA,λ1(x) = sup
x∗1∈dom σ̌A

〈x, x∗〉 = σ̌dom σ̌A(x) = (ı̌A0+)(x) = ı̌0+A(x),

where the last step follows from (Hiriart-Urruty and Lemaréchal, 2001, p. 107). Hence for all
λ1 ≥ 0, rA,λ1(x) = ı̌λ1?A(x) and similarly for all λ2 ≥ 0 rB,λ2(x) = ı̌λ2?B(x). Thus taking conjugates
of both sides of (36) and using Fenchel’s duality theorem, we have

(σ̌A �̌C σ̌B)∗̌∗̌(x∗) = (σ̌A �̌C σ̌B)(x∗)

= sup
λ∈C∩R2

+

(rA,λ1 + rB,λ2)∗̌(x∗)

= sup
λ∈C∩R2

+

(
ı̌λ1?A + ı̌λ2?B

)∗̌ (x∗)

= sup
λ∈C∩R2

+

(
σ̌λ1?A �̌1 σ̌λ2?B

)
(x∗)

= sup
λ∈C∩R2

+

σ̌λ1?A∩λ2?B(x∗).

Now

A ˇ̄�C B =
⋃

λ∈C∩R2
+

(λ1 ? A ∩ λ2 ? B)

and thus

σ̌A ˇ̄�B = sup
λ∈C∩R2

+

σλ1?A∩λ2?B.

By Proposition 6 we have
σ̌

A�̌C B
= σ̌A�̌C B ≤ σ̌A ˇ̄�C B ≤ σ̌A�̌C B

and thus σ̌A ˇ̄�C B = σ̌A�̌C B.

Proof (Proposition 10) We make use of the classical result that (co(A ∪ B))U = AU ∩ BU (which
is in fact proved in Seeger (1990) as a special case of the present theorem). Due to associativity of
unions and intersections this extends to the polar of arbitrary unions of sets in the obvious manner.
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Also note that as we have shown, A �̌C B is convex and hence

(A �̌C B)U =

 ⋃
λ∈CU∩R2

+

(λ1A + λ2B)


U

=
⋂

λ∈CU∩R2
+

(λ1A + λ2B)U.

Set S 1 := {x ∈ R+ : (x, 0)′ ∈ CU}, S 2 := {x ∈ R+ : (0, x)′ ∈ CU} and S 0 = CU \ (S 1 ∪ S 2). Then

(A �̌C B)U =

⋂
λ∈S 0

(
(λ1A)U ] (λ2B)U

) ∩
 ⋂
λ1∈S 1

(λ1A)U
 ∩

 ⋂
λ2∈S 2

(λ2B)U
 ,

where we have used the result (A + B)U = AU ] BU (Seeger, 1990). Furthermore, since the intersec-
tion of closed sets is closed and for ε > 0, (εA)U = 1

ε AU we have

(A �̌C B)U =

⋂
λ∈S 0

(
1
λ1

AU
)
]

(
1
λ2

BU
) ∩

 ⋂
λ1∈S 1

(λ1A)U
 ∩

 ⋂
λ2∈S 2

(λ2B)U


=

⋂
λ∈S 0

⋃
α1+α2=1,α1,α2≥0

(
α1

λ1
AU ∩

α2

λ2
BU

) ∩
 ⋂
λ1∈S 1

(λ1A)U
 ∩

 ⋂
λ2∈S 2

(λ2B)U
.

For λ ∈ S 0, let β1 := α1
λ1

and β2 := α2
λ2

, so α1 = β1λ1, α2 = β2λ2 and hence

(A �̌C B)U =

⋂
λ∈S 0

⋃
β : 〈β,λ〉≤1, β∈R2

+

(β1AU ∩ β2BU)

 ∩
 ⋂
λ1∈S 1

(λ1A)U
 ∩

 ⋂
λ2∈S 2

(λ2B)U


=

 ⋃
β : 〈β,λ〉≤1,,β∈R2

+ ∀λ∈S 0

(β1AU ∩ β2BU)

 ∩ β∗1AU ∩ β∗2BU,

where β∗i = 1/λ∗i , and λ∗1 = max{λ1 : (λ1, 0)′ ∈ CU} and λ∗2 = max{λ2 : (0, λ2)′ ∈ CU} and thus β∗1
satisfies 〈(β∗1, 0)′, (λ1, 0)′〉 ≤ 1 ∀(λ1, 0)′ ∈ CU and β∗2 satisfies 〈(0, β∗2)′, (0, λ2)′〉 ≤ 1 ∀(0, λ2)′ ∈ CU.
Therefore we can incorporate the second and third terms in the equation above into a more restrictive
condition on the union, and so

(A �̌C B)U =
⋃

β : 〈β,λ〉≤1, β∈R2
+, ∀λ∈CU

(β1AU ∩ β2BU),

which by the dual representation of C (3) gives

=
⋃

β∈C∩R2
+

(β1AU ∩ β2BU)

= AU �̌CU BU.
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