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Abstract

Clusters of atoms can be divided into three categories depending on their topology. One of the categories provides the basis for devel-
opment of a model of a perfectly random structure (ideal amorphous solid) using the non-equilateral triangle topology in the coordina-
tion shell. Metallic glasses solidify as amorphous solids with random arrangement of atoms. A model of Zr-based metallic glass has been
constructed and described in terms of cluster topology, and compared with a recently published dynamic molecular model of the same
alloy. It is shown that the pair distribution function for the ideal amorphous model relates to the pair correlation function obtained from
the dynamic model. Debye X-ray scattering computations reveal the presence of vacancies and other flaws relative to the ideal amor-
phous solid. A shift in the peak position can be predicted using the Erhenfest formula. Two atomic displacement mechanisms involving
a five-atom sub-cluster are identified as the fundamental means of compositional redistribution between clusters in the alloy.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The understanding of the atomic-scale structure of sol-
ids (from which modern technology and society benefit so
greatly) has come about to a large degree because of the
development of the methods of geometry and X-ray crys-
tallography. From the first discovery of the diffraction of
X-rays by a crystal in 1912 [1] to the present day, when
structures of large protein molecules are determined rou-
tinely, crystallography has developed from small begin-
nings to become an enormously successful and powerful
tool. Of pivotal importance in this success is the fact that
the methods of crystallography are based on the concept
of an ideal (perfect) crystal in which unit cells or building
blocks of the material are stacked in perfectly repeating
rows and columns to form a periodic array of atoms or
molecules (of infinite extent). This same ideal is assumed
for the very simplest to the most complex of structures.
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Although real crystals only ever approximate this ideal
(some not very closely), it is this ideal structure which is
always used as a permanent baseline relative to which real
crystalline materials are compared and can be understood.

In 1984 a new class of solid materials were discovered [2]
that possessed long-range orientational order but no trans-
lational symmetry. These so-called quasicrystals gave sharp
diffraction peaks like crystals but had symmetries incom-
patible with those found for normal crystals. As this field
has developed over the last 25 years, a model that has been
used extensively to understand the structure of these novel
materials is the Penrose tiling model [3]. This structure is
envisaged to be made up of two different types of building
blocks (tiles), which take the place of the single unit cell of
the ideal crystal model. Although real quasicrystals do not
conform exactly to the ideal Penrose model, it nevertheless
plays a role of prime importance in providing the same
kind of baseline relative to which real quasicrystals may
be understood.

For the third class of solid materials, namely amorphous
or glassy materials, the situation has not been so
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satisfactory and there is still much debate concerning the
exact nature of these materials. In a recent article, Sheng
et al. [4] say that “the atomic arrangements in amorphous
alloys remain mysterious at present”. A search of recently
published literature on atomic structure of metallic glassy
alloys will reveal that the main effort towards solving this
problem is directed towards atomistic molecular dynamics
simulations. Since glassy materials are non-equilibrium
structures, one should anticipate that the results of each
simulation, carried out in different laboratories, will be dif-
ferent; no asymptotically unique structure can be achieved.
In light of the above, one can conjecture that this is not the
right approach to define the ideal baseline model for the
structure of amorphous metals. Instead, a geometrical
model should be sought. Such a geometrical ideal amor-
phous solid (IAS) for mono-sized spheres has been
described in detail elsewhere [5], and we follow that
approach here to describe the ideal amorphous structure
of a Zr-based metallic glass. Coincidentally, a molecular
dynamics model of the very same Zr-based metallic glass
has been just published by Hui et al. [6], and this gives a
special opportunity for comparison and analysis of what
are at present the best atomistic dynamic model, with the
best theoretical baseline model for this material.

2. Geometric simulations

2.1. IAS model of [Zr41.2Ti13.8Cu12.5Ni10Be22.5] metallic

glass

According to the specific IAS rules [5], the construction
of random packing of spheres of m types is as follows:

Step 1: Begin by setting up m virtual bins, each bin con-
taining enough of each type of sphere.

Step 2: Place one sphere of any type at the origin
(x = y = z = 0).
Fig. 1. Density of points on the surface of a sphere: (a) according to the equa
variables: 0 6 H 6 p,0 6 / 6 2p.
Step 3: Place k spheres (normally �k) in contact with the
sphere at the centre, forming a cluster of random
configuration. It is essential to use the method of
division of the sphere’s surface into equal areas [7]
to avoid bias (see Fig. 1). Pick up spheres from
the bins with a frequency in proportion to the
required composition.

Step 4: Identify all three-adjacent-sphere sites formed on
the surface of the created cluster and sort the sites
in ascending order of distance from the origin.

Step 5: Add spheres of m type on identified sites corre-
sponding to the required composition and in
order from the closest to the furthermost from
the centre. Reject overlapping spheres.

Step 6: Repeat the previous two steps as many times as
required; in principle, the additions can be carried
out to infinity; in practice, the simulation ends
with a cell of finite dimensions.

The outcome of this computational process is a three-
dimensional geometrical pattern of randomly packed
spheres, called a “Round Cell” if it is of finite dimensions
or an IAS if it is of infinite extent. The essential informa-
tion about the Cell is stored in a matrix, [xn,m], where
the vectors xn define the positions of all atoms/spheres with
respect to the origin and m identifies the corresponding
type of the sphere, including its radius. It is a structure of
special geometrical and topological properties. As a rule,
the centres of any three adjacent spheres form triangles
of unequal sides due to (i) some/all spheres not touching
and (ii) different sphere radii. There is not a single incidence
of four adjacent spheres that are coplanar, in direct con-
trast to any of the crystallographic Bravais lattices. Conse-
quently, there is no translational symmetry in this
structure. The geometrical construction of IAS lends itself
readily to description and analysis by Voronoi tessellation
and associated Delauny simplexes. This includes structure
l area scheme [7] and (b) according to equal probability for the spherical



Fig. 2. Round Cell (computer simulated model) for the bulk metallic glass
of five elements (Zr, green; Ti, red; Cu, blue; Ni, grey; and Be, yellow),
created by the IAS method. It comprises approximately 7000 spheres
randomly packed according to the scheme described herein. (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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recognition method developed by Brostow et al. [8]. A large
number of tetrahedral Delauny simplexes and a large size
of three-type clusters indicates that the solid has a glassy
structure. Moreover, an amorphous structure has disor-
dered tetrahedra, as is the case for the Round Cell
described above. Other topological properties of the struc-
ture will be discussed later.

For the metallic glass [Zr41.2Ti13.8Cu12.5Ni10Be22.5], an
ideal amorphous atomic arrangement can be represented
by the IAS random packing of five different size spheres.
The spheres have radii chosen to correspond to the atomic
radii of the elements (Zr 0.159, Ti 0.145, Cu 0.128, Ni
0.125, Be 0.114, in nm). We have simulated the correspond-
ing Round Cell model, shown here in Fig. 2, and measured
the geometrical and topological properties of this arrange-
ment. The atomic packing density of this Round Cell is
0.625 (±0.003) for a total of approximately 7000 spheres.

The condition of rigidity/solidity is implicit in the con-
cept of an ideal amorphous solid that has no flaws (the
same is true for an ideal crystalline solid). The rigidity of
every sphere with k contacts is achieved when no more than
(k � 1) contacts occur on one hemisphere. Then the sphere
Table 1
Maximum possible number of outer spheres, kmax, that can be in contact with
radius of the inner sphere is ri).

kmax 8 9 10 11 12

l(r) [11] 1.22 1.15 1.09 1.05 1.05
ro/ri 1.56 1.35 1.20 1.10 1.0
is immovable (locked-in) in its cage formed by the sur-
rounding spheres [9]. A less axiomatic measure of solidity,
or solid-like character of the structure, is provided by a cri-
terion based on the Delauny simplex circumradii requiring
that solid-like percolative clusters exist in all glass phase
models, such as the IAS considered here [10]. This is indeed
the case for the IAS since it does not contain any loose
spheres.

The coordination numbers, based on touching neigh-
bours, will be range-bound to kmin 6 k 6 kmax, where
kmin P 4, and the value of kmax will depend on the compo-
sition of the IAS and the specific cluster selected. To a first
approximation one can use the following values for kmax as
shown in Table 1. These are listed as a function of the ratio
ro/ri, relying on the data for l(r) from Table 3 from Clare
and Kepert [11].

Thus, if there were a cluster with Zr as the inner
sphere and Be as all the outer spheres, then theoretically
it could have 18 Be atoms in a random (tight) arrange-
ment touching the Zr inner atom. However, the proba-
bility of such a cluster occurring is negligible, because
of the of Fürth combinatorics calculations carried out
previously [5,12], and because a cluster of this composi-
tion is very unlikely in a system comprising five different
types of atom. The majority of clusters will have a mix
of spheres of different types as shown by the results of
Hui et al. (their Fig. 8b).

The measured distribution of coordination numbers for
the IAS, based on touching contacts between the spheres,
and on Voronoı̈ tessellations, is shown in Fig. 3. We can
see that the coordination shell obtained by the Voronoı̈ tes-
sellation method includes on average seven spheres more
than the primary, direct contact shell, which is expected
[8]. When compared to the result of Hui et al. shown in
their Fig. 8a, we note that relaxations towards equalization
of interatomic distances closes off some gaps in the clusters,
lowers the number of Voronoı̈ faces and consequently low-
ers the coordination number relative to the rigid IAS
structure.

For a system of touching spheres in random arrange-
ment, the contact probability between species i and j can
be predicted by the probabilistic formula:

P ij ¼ dcicj ð1Þ

where d = 2 for i = j or d = 1 for i – j, and ci and cj are the
concentrations of species i and j, respectively. This is a
straightforward calculation for a given composition.
Theoretically, the same information should be obtained
an inner sphere in a cluster (the radius of the outer spheres is ro, and the
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0.96 0.93 0.90 0.88 0.86 0.84
0.92 0.87 0.82 0.79 0.76 0.72



Fig. 3. Measured distribution of coordination numbers in the Zr-based
Round Cell: by direct contact (blue) and by Vorono tessellation (red) as
indicated in the diagram. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Probability of contacts between the elements predicted by Eq. (1)
compared with the relative density of pairs measured in Fig. 4. One-to-one
correspondence is expected.
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from calculations of the pair distribution function by the
formula:

gijðrÞ ¼
V

NiN j

XNi

i¼1

nijðrÞ
4p2Dr

ð2Þ

The result for gij with a high resolution of Dr = 0.001 nm
is shown in Fig. 4; the comparison of Pij calculated from
Eq. (1) vs. gij derived from Eq. (2) is shown in Fig. 5. A
Fig. 4. Radial pair distribution function for the Round Cell of Fig. 2,
calculated according to Eq. (2) with radial increment of 0.001 nm. Pair
peaks appear individually due to the high resolution.
one-to-one correlation should be expected. Some devia-
tions from the linear relationship are thought to be due
to the relatively small size of the simulated Round Cell
and to the fact that the outermost layer was not counted in.

To illustrate the difficulties of interpretation of pair dis-
tribution functions we have calculated it again for the
Round Cell using Eq. (2) with a resolution of Dr =
0.026 nm, with the result shown in Fig. 6. The lower
Fig. 6. Radial pair distribution function for the Round Cell of Fig. 2,
calculated with a lower resolution (radial increment of 0.026 nm).



Fig. 7. X-ray scattering patterns from amorphous structures: (left) calculated using Eq. (3) for the Round Cell of the Zr-based glass and (right)
experimental results from a Zr-based metallic glass [14].
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resolution has the effect of “smearing” of the peaks, thus
concealing detailed information. The individual peaks
appearing in Fig. 4 have now merged into one broad peak
(albeit with a split) between 0.22 and 0.32 nm, which
includes contributions from all atomic pairs. The first peak
of the split (at approx. 0.27 nm) corresponds to Zr–Be and
Ti–Cu pairs, and the second (at approx. 0.32 nm) to the
other Zr–X pairs. The remaining, much less abundant,
pairs with distances between 0.22 and 0.32 nm also contrib-
ute to the body of the peak. The second peak in the pair
distribution function (at approximately 0.55 nm) has no
split, which indicates the absence of any regular face-cen-
tred cubic or hexagonal close-packed (hcp) cluster arrange-
ments in the IAS. We have provided a proof that the IAS
has no short-, medium- or long-range order in a previous
publication [5].
2.2. X-ray scattering from Zr-based IAS

Given the wavelength of radiation, k, the positions of all
atoms [xn], and the atomic scattering factors, fn, then the
scattered intensity, I, in a given direction of observation,
S, can be calculated using the Debye equation:

IðSÞ ¼
X

n

X

n–n0
fn f n0 exp 2pðs� s0Þ � ðxn � x0Þ½ � ð3Þ

We have computed X-ray scattering from the Round
Cell of Fig. 2 using the software DISCUS [13]. The input
into the program includes the matrix [xn,m], and the corre-
sponding atomic scattering factors are selected automati-
cally. The scattering computed from a single realization
of the Round Cell comprising only 7000 atoms is very
noisy. In order to improve the statistics, and hence the
smoothness of the pattern, calculations were carried out
on a much larger system comprising over 500 copies of
the single Round Cell realization, each in a different ran-
dom orientation. Circular averaging has been used to pro-
duce further smoothing. The resulting scattering pattern is
shown in Fig. 7a. The characteristic rings seen in the figure
concur with the variation of the sin(kr(xn))/kr(xn) function,
convoluted with appropriate atomic scattering factors, as
predicted by the Debye scattering equation. It is also sim-
ilar to an experimentally obtained scattering pattern for
this metallic glass shown in Fig. 7b [14].

Three characteristics in the scattering patterns can be
related to the atomic arrangements and imperfections in
the amorphous solids:

1. The intensity of the first scattering peak.
2. The position of the first scattering peak.
3. The background intensity related to the concentration

of vacancies.

To investigate these effects, we have simulated vacancies
in the IAS model by: (i) removing at random 10% of atoms,
thus creating 10% of vacancies but retaining the same over-
all composition and the same average pair distance r(xn);
and (ii) removing all Cu atoms, thus creating 12.5% vacan-
cies, consequently also changing the composition of the
alloy and increasing the average pair contact distance.
The results are shown in Fig. 8a and b. For the introduced
content of vacancies, the intensity of the first peak has
decreased correspondingly, in agreement with the Debye
equation [15] and corroborating the results of Makinson
et al. [16]. At the same time, the background intensity
has increased with the content of vacancies as predicted
by the Laue formula [16], also corroborating the results
of Makinson et al.

Removing the Cu atoms lowers the intensity of the peak,
but also causes a shift in the position of the peak (Fig. 8b)
in accordance with the Ehrenfest formula proposed by
Rachek [17], 2Lpsin(h) = Ek, where E = 1.23 is the so-
called Ehrenfest number and Lp is the average distance
between the scattering pairs. Using the atomic radii for
the metallic alloy, the calculated number-weighted average
for the IAS without Cu atoms increases from an initial



Table 2
Parameters for molecular dynamic simulation based on Lennard–Jones
potential.

Temperature of
simulation (�C)

Time of
simulation (s)

Number of
steps

LJ

exponents

300 10�12 1000 24:6

Fig. 8. Intensity profiles from the calculated X-ray scattering pattern: (a) obtained for the Round Cell without imperfections (red line) and with 10%
vacancies (blue line) created by random deletion of spheres, and (b) obtained from the calculated X-ray scattering pattern for the Round Cell (red line) and
the Round Cell with all Cu-type spheres removed (green line). Notice the reduced intensity and the small shift in peak position. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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value of 0.1412–0.1431 nm. According to the Ehrenfest for-
mula, this should reduce the scattering angle by approxi-
mately 1.4�, quite close to the observed shift in Fig. 8b.

2.3. Dynamic five-atom sub-clusters

The Round Cell shown in Fig. 2 was subjected to molec-
ular dynamics simulation, with the parameters shown in
Table 2. Irreversible atomic rearrangements were observed
and traced. The most consistently striking observations
were rearrangements which always involved five-atom
sub-clusters and two mechanisms: (i) absorption of an
extra atom into a cluster from a neighbouring cluster; or
(ii) ejection of an atom into an adjacent cluster. These rear-
rangements, driven by generalized thermodynamic forces,
lead to configurational and compositional changes in the
individual clusters.

A five-atom sub-cluster is shown schematically in Fig. 9.
It is a segment of the main cluster, including the inner
sphere (A) with three adjacent spheres (B–D) from the
coordination shell, plus one other sphere (E) touching the
three spheres. Atom E actually belongs to an adjacent clus-
ter. In the diagram the spheres are coloured differently but
the radii are the same for the sake of simplicity, without
reducing generality. The separation between A and E, indi-
cated as h in the diagram, is variable and depends on the
coordination number k of the main cluster, on the spacings
between atoms C–E, which are irregular as a rule, and on
their diameters.

Within the elastic matrix of the surrounding atoms, the
five-atom sub-cluster will change its shape by the action of
interatomic forces, assisted by density differences between
adjacent main clusters. When the “hard sphere” regime is
relaxed by introduction of central atomic force-fields, the
configuration of the five-atom sub-clusters becomes unsta-
ble except at three positions. The most stable arrangement
occurs when atoms A and E separate to a distance
h ¼ 4r

ffiffiffiffiffiffiffiffi
2=3

p
. In this position, atoms B–D touch each other

(d = 2r), and the arrangement of the five-atom cluster cor-
responds to hexagonal close packing. The second stable
configuration occurs when atoms A and E approach and
touch (h = 2r), separating atoms B–D as far as possible
to a distance of approximately d ¼ 2r

ffiffiffi
3
p

. Since atoms B–
D are in contact with atoms A and E at all times, a meta-
stable configuration occurs at some intermediate value of h.
A calculation for the relative balance of the five-atom clus-
ter, based on Lennard–Jones interactions, is shown in
Fig. 10. Rearrangements caused by thermal vibrations will
have an immediate effect on changing the initial IAS
atomic packing arrangement. It is conjectured that the
instability of the five-atom cluster is the main mechanism
for morphological changes of the atomic clusters in the
Zr-based bulk metallic glass, in the NbxPy-type metallic
glasses considered by Sheng et al. [4] or in any other system
allowing a range of coordinations. Furthermore, it can be
envisaged that the a- and b-mechanisms may be the



Fig. 9. Schematic diagram of a general five-atom sub-cluster, shown from the side and top views, and also shown in the special a and b positions. The
spheres are drawn with the same diameters; in multiatomic alloy these will be of different diameters. As a rule, atoms B–D should form a triangle of
unequal sides.
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elementary atomic motions underlying the main deforma-
tion mechanisms, such as local atomic jump and shear
transformation zone described in Ref. [18].

3. Discussion

3.1. Cluster topology

Models of amorphous materials can be divided into two
categories: (i) materials with disordered atomic arrange-
ment but retaining some elementary crystallographic fea-
tures; and (ii) materials with statistically random atomic
arrangements and no Bravais lattice. Both approaches
use clusters of spheres as the basic building blocks of the
structure. A clear distinction can be made between the
two approaches if the topology of the clusters is taken into
account. Frank and Kasper [19] considered the geometry
and topology of clusters of atoms (in preference to crystal-
lographic unit cell) in order to describe the complex atomic
arrangements in crystal structures of transition metal
alloys. They based their considerations on groupings of
atoms comprising an inner (central) atom and a set of clos-
est neighbouring atoms which form the coordination shell.
They chose clusters with coordination shells that included
triangular faces only. In classifying the clusters they distin-
guished three cases, depending on the shape of the triangles
formed by three adjacent atoms (all atoms of the same
size):

Case 1. Coordination shell atoms make equilateral trian-
gles with the centre (inner atom).

Case 2. Triangles in the coordination shell are equilateral;
shell atoms make isosceles triangles with the
centre.

Case 3. No requirements on the shape of triangles within
the shell.

The addition of atoms onto three-adjacent-sphere sites
on the clusters of the first case leads directly to the hexag-
onal close packing of spheres. The second case was of spe-
cial relevance to the complex crystal structures of transition
alloys. Frank and Kasper showed the existence of four spe-



Fig. 10. Variation in potential energy of a five-atom sub-cluster in relation
to the atomic separations indicated in Fig. 9.

Fig. 11. Pair correlation function for the Zr-based IAS model after being
subjected to a molecular dynamics run.
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cial coordination clusters – CN12, CN14, CN15 and CN16
– which became known as the Frank–Kasper (FK) polyhe-
dra. The outer shell polyhedra display elements of rota-
tional symmetry imposed by the geometry implied in
condition 2 above. The addition of atoms onto three-adja-
cent-sphere sites onto these clusters creates quasicrystals.
Incidentally, the range of FK polyhedra was further
extended by Borodin [20], and generalized by Alvarez [21]
when deriving principles for construction of concentric
shells of fullerene polyhedra.

In metallic glasses the inevitable variance of coordina-
tion numbers from cluster to cluster has evoked the idea
that atomic arrangements in these alloys could be described
in terms of random packing of regular FK polyhedra
[4,6,22]. Such a structure would account for the seemingly
disordered nature of these materials. However, on closer
inspection problems with this view become evident. First,
the FK polyhedra exhibit rotational symmetry, and, if
packed without distortion, relatively sharp X-ray or elec-
tron diffraction spots should occur (instead of diffuse scat-
tering rings). This is, in fact, observed when annealing of
metallic glass leads to the onset of nanocrystallization
[23]. Second, if atomic relaxations are allowed to occur
so as to fit the polyhedra contiguously, then they are no
longer FK polyhedra satisfying the requirements of case
2 above, and furthermore, the connecting atomic structures
will contain polyhedra other than those based on tetrahe-
dral groupings, with quadrangles besides triangles. Strictly
speaking, the FK polyhedra are not an appropriate choice
to describe amorphous atomic arrangements because the
atoms in the coordination shells form equilateral triangles.
The third case includes clusters with random arrange-
ment with non-equilateral triangles in their coordination
shell, according to the third case above. The addition of
atoms onto three-adjacent-sphere sites of this cluster can,
theoretically, be carried out without limit. We regard this
case as the basis for the development of a theoretical model
of an ideal amorphous solid. Such an ideal amorphous
solid for mono-sized spheres has been described in detail
elsewhere [5]. In an IAS of Class I the cluster’s polygonal
faces have triangular shapes exclusively; any triangle
formed by three adjacent spheres in the coordination shell
is a non-equilateral triangle, in accordance with case 3
above. Indeed, the first cluster in the construction of the
IAS (step 3) is an FK cluster with non-equilateral triangu-
lar topology constructed by random placement of the coor-
dination shell spheres. The IAS model of a rigid solid
requires the spheres (representing atoms) to be impenetra-
ble and in contact with each other. This is a stricter defini-
tion of coordination number than that used by Frank and
Kasper and others, which makes the topological arguments
well defined.

Hui et al. [6] make the point that different interpreta-
tions of the atomic configurations can be elicited from
molecular dynamics and ab initio models if no theoretical
model is established, and that there is a pressing need for
new methodology in modelling the structures of multicom-
ponent BMGs. We believe that the IAS model provides
such an unambiguous theoretical baseline reference, as
shown already to some extent by the considerations above.
We have repeated calculations of the pair distribution func-
tion (called more correctly pair correlation function) after
subjecting the IAS model to molecular dynamics simula-
tion. The result is shown in Fig. 11. It is very similar to



Fig. 12. Two examples of different clusters undergoing configurational changes during molecular dynamics simulation. The a- and b-mechanisms are
clearly identified in these examples. The scale underneath indicates the number of steps in the simulation.
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the PCF at 300 K obtained by Hui et al. and shown in their
Fig. 4a. The accuracy of their work corroborates the result
and confirms the validity of the IAS model.

3.2. Atomic rearrangements

As envisaged, the thermodynamic potential of the IAS
structure is higher than that of the more relaxed, dynamic
structure based on the same atoms (changes in entropy
associated with these rearrangements will only become
measurable when significant ordering takes place.) When
the Round Cell is subjected to a molecular dynamics
(MD) process it is expected that the atomic structure will
change and its thermodynamic potential will decrease.
Each of the five-atom sub-clusters will be driven towards
one of the two stable positions: (i) the less favourable posi-
tion, which we denote as a; and (ii) the more stable posi-
tion, denoted as b. In general, clusters with low
coordination numbers (k 6 �k) will have five-atom sub-clus-
ters which are closer to the a position shown in Fig. 10 at h/
r = 2. Then atom E will gradually approach atom A to an
equilibrium (touching) separation, and therefore become
part of the main cluster centred on atom A. By this process,
the coordination number of the main cluster increases and
its configuration changes. This effect was also noted by Hui
et al. [6] in their Fig. 11 and by Liu et al. [24], who said that
“adjustment of the relative atomic sites occurs without any
long-distance diffusion”. It should occur most vigorously
for clusters of lowest coordination number, surrounded
by clusters of high coordination numbers (high density).
It is presumed that this occurs as a cooperative movement
with the surrounding atoms. For further reference, we
denote this process as the a-mechanism.

Concurrently, other five-atom sub-clusters contained in
main clusters with coordination numbers k P �k will diffuse
towards the b position at h=r ¼ 4
ffiffiffiffiffiffiffiffi
2=3

p
(h � 3.27). This will

have a pronounced effect on the configuration of the main
cluster, as well as creating a potential hcp embryo that may
lead to nanocrystallization by enthalpic attraction of adja-
cent atoms. As atoms A and E move apart, atoms B–D are
drawn together, thus creating gaps between the outer
atoms of the main cluster, opening space for diffusion of
other atoms towards the inner atom and towards the
embryo. This process of rearrangement will be denoted as
the b-mechanism. Examples of the a- and b-mechanisms
are shown in Fig. 12a and b for selected clusters from com-
puter simulations carried out on the bulk metallic glass.
The sequence shows the atomic configuration of the cluster
in IAS packing, followed by MD at 50, 100, 150, 200 and
250 steps. Such structural changes can be described more
precisely in terms of the metamorphosis of Voronoi poly-
hedra, as given elsewhere [25].

Strong evidence for the random distribution of atoms
in the Zr-based alloy was published by Martin et al.
[23], who presented elemental maps of all alloying ele-
ments in relatively large volume of 5 � 103 nm3, showing
clearly that the elements are spread evenly throughout
that volume. The appearance of the so-called i-phase in
the BMG at an early stage of annealing was also con-
firmed by the same authors. The sharp diffraction spots
with fivefold symmetry from the i-phase require the for-
mation of regular icosahedral clusters. This means that,
topologically, the clusters must have coordination shell
atoms of the same type, and they must be equally spaced
to form equilateral triangles (CN12). Such a cluster can
act as a nucleus (seed) for the growth on a nanoparticle
with fivefold symmetry. Measurements carried out on
the nanoparticles indicate volumes containing approxi-
mately hundreds of atoms. Martin et al. [23] suggest, on
the basis of composition depth profiles, that the i-phase
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in this alloy is formed with Ti as the outer atoms and Be
as the inner atoms. Considering the complexity of the i-
phase structure and the large number of atoms involved
in the quasicrystalline arrangement, it is considered unli-
kely that the composition of the i-phase nanoparticles is
made of the two types of atom only. The work of Hui
et al. confirms that the extended clusters incorporate more
than two atomic species (see their Fig. 10). It is conjec-
tured that the new technique of fluctuation electron
microscopy may be a suitable technique to map the com-
positional variations at the small scale.

3.3. X-ray scattering and imperfections

Real solids contain imperfections in their atomic
arrangements, whether they are departures from an ideal
crystalline or pseudo-crystalline arrangement, or depar-
tures from an ideal amorphous arrangement. Thus, perfec-
tion is used here in a broader sense, referring to any
structure that obeys given rules without exception, whether
it applies to Bravais rules for construction of single crystal
or IAS rules for construction of a perfectly random atomic
arrangement. In this broader sense, a gas in which the par-
ticle velocities obey the Maxwell distribution precisely is
called an “ideal gas”. The point made here is that perfec-
tion need not be a characteristic of crystals only. An IAS
structure (Round Cell) follows precisely the specific rules
of random packing, and therefore it is perfectly random;
any deviations from these rules can be called imperfections
(or flaws). A description of possible imperfections in the
IAS has been given previously [5]. We discount solids
which are crystalline materials but disordered to such an
extent that long-range atomic order becomes undetectable.
There is an adequate understanding of the observed
changes in diffuse X-ray scattering caused by disorder [26].

However, the peak position measured on the experimen-
tally derived scattering pattern (Fig. 7b) is approximately
2.8� lower that for the imperfection free IAS model
(Fig. 7a). This difference cannot be accounted for by the
flaws considered here. We have noted that the simplest
explanation would be that the atomic radii chosen for the
Zr-based IAS model are incorrect, and should be some-
what larger. However, another important factor should
be taken into account, namely that vacancies are not stable
in an amorphous structure and become randomly distrib-
uted throughout the system [27]. The effect of this requires
deeper analysis than we are able to present here.

3.4. Conclusions

1. In metallic glasses with random atomic arrangements,
statistical indeterminacy limits the precise definition of
site occupation by atoms; only the probability of near-
est-neighbour contacts can be predicted. At a scale lar-
ger than a representative volume element, it must be
assumed that atomic distribution is homogeneous, in
agreement with the overall composition. There cannot
be permanency of site identification in amorphous alloys
because of the non-existence of a “lattice” and the ease
with which mechanisms a and b can change cluster
composition.

2. Flaws in the random arrangements can be modelled
using the ideal amorphous solid, and their effect can
be observed by X-ray scattering. However, Round Cells
containing more than 106 atoms/spheres are required to
give a reasonably smooth scattering curve and statisti-
cally meaningful results.

3. Ubiquitous a- and b-mechanisms have been identified
and described that are deemed to effect compositional
changes in amorphous glassy materials, and may have
direct consequences on the mechanical behaviour of
amorphous alloys.

4. The ideal amorphous solid model provides the baseline
reference for metallic glasses; by definition, it contains
no imperfections in its randomness of packing.

5. A clear distinction can be made between truly amor-
phous solids, as defined by the ideal amorphous solid
with no short-, medium- or long-range order, and a dis-
ordered solid, in which there is merely no long-range
order (e.g. crystalline solids in which the size of the crys-
tals is very small, say, around a nanometre).

6. Analysis of the structure can be carried out by the well-
established topological measures of Voronoi tessellation
and Delauny simplexes.

7. We conclude, with some caution, that a novel science of
amorphousness, describing the ideal amorphous atomic
arrangements, has been given sufficient basis for further
development. The new theory should proceed from the
simple, new and powerful unifying idea provided by
the concept of ideal amorphous solid.
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