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Tibério S. Caetano
NICTA/ANU

Canberra, ACT 0200
tiberio.caetano@nicta.com.au

Matthew Turk
University of California

Santa Barbara, CA, 93117
mturk@cs.ucsb.edu

Abstract

Many traditional methods for shape classification in-
volve establishing point correspondences between shapes to
produce matching scores, which are in turn used as similar-
ity measures for classification. Learning techniques have
been applied only in the second stage of this process, af-
ter the matching scores have been obtained. In this paper,
instead of simply taking for granted the scores obtained
by matching and then learning a classifier, we learn the
matching scores themselves so as to produce shape simi-
larity scores that minimize the classification loss. The solu-
tion is based on a max-margin formulation in the structured
prediction setting. Experiments in shape databases reveal
that such an integrated learning algorithm substantially im-
proves on existing methods.

1. Introduction
Shape classification through feature-matching scores has

been an active research area in recent years [3, 2, 12]. Ap-
proaches in this category typically solve the shape classifi-
cation problem by determining scores based on point corre-
spondences between an input shape and a set of stored shape
exemplars. The matching scores obtained are then used for
classification in a second stage, which may involve learning
[17]. However, the matching objective function is typically
handcrafted or engineered in a non data-driven manner.

The key contribution of this paper is to show how the
matching criterion itself can be optimized so that the fi-
nal classification error delivered by matching scores is min-
imized. In other words, instead of performing learning
only after matching scores have been obtained, we learn the
matching scores themselves so that the classification loss

Figure 1. (a) Existing methods; learning happens after the match-
ing scores have been obtained. (b) Our approach; both matching
and classification are optimized within a unified learning scheme.

is small. Figure 1 illustrates the comparison between tra-
ditional methods (top) and our proposed learning scheme
(bottom). We embed both matching and classification in a
unified learning framework, so that the alignment of two
shapes is parametrized to produce matching scores with
good discriminative power.

In order to accomplish this task, as part of our training
set, we need not only have shapes with labeled classes, but
also labeled matches between shapes of the same class. Our
setting is similar to the one recently introduced in [5], but
differs in that here we are concerned with minimizing the
classification error, not the matching error per se. In our
experiments, we will show how the expensive step of man-
ually labeling matches can be avoided.

We will show that the problem of learning matching
scores for classification leads to a non-convex optimization
problem, which is very hard to solve. Our strategy is to
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make use of recent methods related to structured prediction,
notably [15], enabling us to solve the problem in an elegant
way, with good empirical results.

Our approach is independent of the shape alignment
method used to compute the matching scores. This is an
important property of our formulation, as one could choose
any matching algorithm and apply our learning scheme to
improve classification results.

2. Literature Review
Various methods have addressed the shape classification

problem in the framework of deformable shape matching
[3, 2, 17], often involving two distinct steps: 1) establish-
ing point correspondences between shapes, and 2) using
the scores obtained from this matching process as similar-
ity measures for classification. A well-known technique
that follows this methodology is shape context matching
[2]. The idea consists of describing how each node in the
shape “sees” the other nodes, by capturing the distribution
of points in the surrounding region. Linear assignment is
applied to solve the correspondence problem based on these
features, with asymptotic time complexity O(N3). More
efficient matching algorithms are based on representing the
shapes as 1D sequences and using dynamic programming
to do matching [12].

Berg et al. [3] formulates the correspondence problem
as an integer quadratic programming problem, where the
cost function has terms based on similarity of correspond-
ing geometric blur point descriptors as well as the geomet-
ric distortion between pairs of corresponding feature points.
Excellent results were obtained for the task of general ob-
ject categorization. Casting shape matching as a quadratic
assignment problem is NP-Hard, but efficient approxima-
tions have been proposed, like the spectral matching algo-
rithm of [10]. More recently, Leordeanu et al. [11] showed
that good recognition performance can be obtained by us-
ing only second-order geometric relationships between fea-
tures, without relying on the local appearance of shape
points.

Machine learning techniques have been applied for shape
classification, but only after the matching scores have been
obtained. Zhang and Malik [17] proposed a discriminative
classifier which is learned based on shape context match-
ing scores. Classification is done based on error-correcting
output codes and a significant performance improvement is
reported on the MNIST dataset. In more recent work, the
authors apply a novel classifier called SVM-KNN [16] over
shape and texture measurements to discriminate object cat-
egories.

Similar to our approach, Frome et al. [8] use a large-
margin formulation to learn local distance functions for
shape-based image retrieval and classification. The opti-
mization criterion is based on the property that the dis-

tance between images of the same class should be less than
the distance between images of different classes. Learning
consists of determining weights for patch-based local dis-
tance functions, whereas the correspondences between im-
age patches are taken for granted.

Recently, Caetano et al. [5] proposed to learn point-to-
point shape correspondences using training pairs of shapes
with manually labeled matchings. They reported a very
meaningful result showing that linear assignment with such
a learning scheme can match (or exceed) the performance of
state-of-the-art quadratic assignment relaxations. In terms
of methodology, this is the work most closely related to
ours. The key novelty of our approach is that we are
not concerned with minimizing the matching error between
shapes, but the incurred classification loss. In our formula-
tion, the quality of alignment itself is not important as long
as the learned matching scores provide good discriminative
power over shapes of different categories. Blaschko and
Lampert proposed to embed a binary classifier and sliding
window detection together in a unified learning framework
to locate objects in images [4].

We want to stress that our formulation is not dependent
on a specific shape matching or classification algorithm. It
is a general formulation which allows any shape matching
algorithm based on correspondences to be optimized to out-
put matching scores that are meaningful for object class dis-
crimination.

3. Matching-Based Shape Classification
Many shape classification algorithms based on matching

scores follow a recipe of the following type:

1. Handcraft a feature-feature similarity measure.

2. For a given input shape, find the optimal correspon-
dence (match) between the shape and every shape in
a set of labeled reference shapes. The correspondence
between two shapes is obtained by maximizing the ag-
gregate feature-feature similarity between the shapes.

3. Use the score of this optimal correspondence as a sim-
ilarity measure between the shapes.

4. Classify the shape based on this similarity measure.

A well-known algorithm which is an instance of this recipe
is [17]. The above can be written in mathematical form as:

g(x;R, θ) = f(s(x, r1,φ), . . . , s(x, r|R|,φ); θ) (1)

where x is an input shape to be classified, g(x;R, θ) is the
class to which the classifier assigns x and s : X ×X ×Φ "→
R denotes some score function that returns the matching
score of input test shape x against a specific shape r in a
stored set of shapes R, when the features φ are used. The
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vector θ simply means that after each score s(x, ri,φ) has
been computed, it may be somehow weighted by θ in or-
der to produce the final class to which x is going to be
assigned, i.e., g(x;R, θ). The function f defines the clas-
sification rule, for example the class of the highest scored
ri (weighted by θ). The vector θ is estimated so as to min-
imize the misclassification rate in the training set (possibly
with regularization).

The critical observation to be made here is that learning
is only performed after the scores (s) have been obtained. If
the scores are for any reason not reliable, they will serve as
poor features to be later parametrized by θ. In other words,
for bad matching scores, even a good learning algorithm
may yield poor results. Presenting a solution to this problem
is precisely the goal of this paper.

4. Learning Matching Scores for Classification
4.1. Basic Goal

We want to parametrize the matching score itself. The
goal then is to perform machine learning such that the
matching scores produced will naturally be able to discrim-
inate classes. The classifier can therefore be written as

g(x;R, θ) = f(s(x, r1,φ; θ), . . . , s(x, r|R|,φ; θ)). (2)

Here s itself is parametrized. It is instructive to compare
(eq. 2) against (eq. 1).

For our formulation, we will treat the function f as a K-
nearest-neighbor (KNN) classifier – i.e., rather than choos-
ing the class of the highest-scored ri, we will choose the
classes of the K shapes in R which result in the highest
aggregate score. More precisely,

g(x;R, θ) =

[
class(k∗i )

∣∣∣k∗= argmax
k∈K(R,K)

K∑

i=1

s(x, ki,φ; θ)

]
,

(3)
where K(R,K) is the set of K-subsets of R.

Our training data is organized as follows: for each shape
xi ∈ X , we provide the labeled match Y i,j for each other
shape xj which belongs to the same class, as well as a col-
lection of shapes belonging to different classes. Now, our
nth training instance is given by the tuple
(

xn︸︷︷︸
“probe” shape

; {xi ∈ X\xn

∣∣class(xi) = class(xn)}
︸ ︷︷ ︸

shapes belonging to the same class

;

{xi ∈ X
∣∣class(xi) %= class(xn)}

︸ ︷︷ ︸
shapes belonging to different classes

; Y n
︸︷︷︸

matchings

)
.

For simplicity we assume that for each training instance,
there are exactly K shapes belonging to the same class.1

1Were this not the case, we would choose some subset of size K; we

Our classifier will be trained so as to find a θ that makes ob-
jects of the same class more similar than objects of different
classes. We will denote this tuple by (xn, xsame

n , xdiff
n , Y n).2

Our goal now would simply be to find θ so as to mini-
mize the classification loss, i.e.,

θ∗ = argmin
θ

N∑

n=1

∆ (xn, g(xn;Rn, θ)) . (4)

where

∆(x, g) =
1
K

K∑

i=1

1{class(x)}(gi), (5)

i.e., the proportion of the K neighbors that have the correct
class label.3 Note that our set R is different for each training
instance n; here we have Rn = xsame

n ∪xdiff
n . For the sake of

decreasing training time, we use only a subset of xdiff (see
section 6).

In order to avoid overfitting, a regularization term may
be added to the loss. Typical choices are L2, L1 and L∞
regularizers. In our experiments we use an L2 regularizer,
so that (eq. 4) becomes

θ∗ = argmin
θ

N∑

n=1

∆ (xn, g(xn;Rn, θ)) +
λ

2
‖θ‖2 , (6)

which is the problem we want to solve (λ is a regularization
constant). We will now investigate in detail the parametriza-
tion that we use for s(x, r, φ; θ), which is the only step left
in order to have a final operational description of the opti-
mization problem in (eq. 6).

4.2. The Model
It is left for us to specify the form of the score s of the

best match between x and r. We assume that this score is
given by features linearly parametrized by θ, i.e.,

s(x, r, φ; θ) = max
y
〈φ(x, r, y), θ〉 , (7)

where y represents a putative correspondence between x
and r; yij = 1 if xi "→ rj , yij = 0 otherwise (xi here
denotes the ith point belonging to the shape x). Moreover
we typically enforce one-to-one matches, i.e.,

∑
i yij ≤ 1

may then include multiple training instances with the shape xn, each using
a different subset. For instance, when K = 1, we may consider every pair
of shapes belonging to the same class as a separate training instance.

2To briefly explain our notation: Y i represents a collection of matches;
Y i,j represents the jth entry in this collection. For the (i, j)th entry of the
matrix itself, we use yi,j .

3Alternately, we could use any loss function defined on the K neigh-
bors; for example we could consider only the label of the most popular
neighbor if we wanted.
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and
∑

j yij ≤ 1 (the inequalities allow for extra points in
either x or r). The best match under θ is now given by

y∗(x, r, φ; θ) = argmax
y

〈φ(x, r, y), θ〉 . (8)

In particular, we assume that the feature map φ(x, r, y) is
additive on unary feature maps ψ involving individual pairs
of points:

φ(x, r, y) =
∑

ij

ψ(xi, rj)yij (9)

(our specific choice for ψ appears in section 5). Substituting
(eq. 9) into (eq. 8), we obtain

y∗(x, r, φ; θ) = argmax
y

〈φ(x,r,y),θ〉
︷ ︸︸ ︷∑

ij

−〈ψ(xi, rj), θ〉︸ ︷︷ ︸
−cij (negative “cost”)

yij . (10)

Note that this is a linear assignment problem in the general
case. However, we would like to be able to exploit the fact
that since we are matching shapes, the order information of
feature points is known. In other words, if xi "→ rj , then
xi+1 "→ rj+1 or xi+1 "→ rj−1. In fact this constraint is so
convenient that it results in a quadratic time dynamic pro-
gramming solution to (eq. 10), instead of the general cubic
time solution for linear assignment (see [12] for details).4

Finally, under our K-nearest-neighbor formulation, we
define the “score” (under θ) of a set of matches by

sc(x, k, Y k; θ) =
K∑

i=1

〈
φ(x, ki, Y

k,i), θ
〉

(11)

(here k is a set of K shapes, Y k is a set of K matches). We
will use k∗, Y k∗ to denote the maximizer (over k, Y k) of
this expression.

Learning now consists of solving (eq. 6) under the above
model for s.

4.3. A Major Difficulty
We now discuss how difficult it is to solve (eq. 6). Note

that there are finitely many K-subsets of R, and for each
r ∈ R, there are a finite number of possible matches be-
tween x and r. Therefore, there are a finite number of
matching scores (eq. 11) for a given pair (x,R). On the
other hand, θ ∈ Rd, where d is the dimensionality of the
parametrization. Since there are uncountably many θ’s and

4The approach presented in [12] assumes that the first point in each
shape is aligned (or that we can “guess” this alignment easily), while their
solution becomes cubic if this assumption cannot be made. It is safe to
use the quadratic time version if, for instance, our shapes are not subject
to rotations (as happens to be the case in our experiments). Of course, we
could easily resort to the cubic time version were this not the case, though
doing inference would obviously be slower.

only a finite number of score values, there are large equiv-
alence classes of θ that produce the same g(x;R, θ), and
therefore the same loss ∆. From the optimization point of
view, this is very bad news because it means that ∆ is piece-
wise constant on θ (non-convexity comes as a corollary); the
added regularization term does not improve the situation, as
it is convex and therefore the sum is still not convex and
near-piecewise constant.

Our approach in this paper will follow the strategy pro-
posed in [15] for the solution of analogous problems. The
basic trick consists of constructing a convex optimization
problem whose optimal solution is an upper bound on the
loss.

4.4. The Convex Relaxation
In recent years Machine Learning researchers have found

a way to solve optimization problems like those in (eq. 6),
most notably in [15].

It is possible to obtain a convex relaxation for this opti-
mization problem by means of the maximum margin clas-
sification criterion [15]. First, consider the constraints we
aim to satisfy, i.e.,

sc(xn, xsame
n , Y n; θ) ≥ sc(xn, k, Y k; θ) (12)

for all n, k ∈ K(Rn,K), and Y k ∈ Yk

(here Yn denotes the space of all possible matches between
xn and shapes in K(R,K)). In words: for the nth train-
ing sample, we want the score for the labeled matches (Y n)
between shapes of the same class (xn and xsame

n ) to be no
smaller than the score for any possible matches (Y k ∈
Yk) between other possible subsets of the shapes (k ∈
K(R,K)). If the problem is separable, one needs to regu-
larize the solution since there are infinitely many solutions.
One option is to use the intuitive margin-maximization prin-
ciple, which in addition has theoretical generalization guar-
antees and in practice consists of minimizing the squared
norm of the parameter vector under the constraints in (eq.
12) relaxed by a margin of 1. For non-separable problems
slacks must be added to the constraints and penalized in the
objective function. The resulting formulation is

minimize
θ,ξ

1
N

N∑

n=1

ξn +
λ

2
‖θ‖2 (13a)

subject to

sc(xn, xsame
n , Y n; θ)− sc(xn, k, Y k; θ) ≥ ∆(xn, k)− ξn

for all n, k ∈ K(Rn,K), and Y k ∈ Yk (13b)

Note however that the problem we wanted to solve was that
of minimizing the regularized risk, i.e., (eq. 6). The follow-
ing lemma makes the connection between the two optimiza-
tion problems (eq. 6) and (eq. 13):
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Lemma 4.1. The optimal solution (ξ∗, θ) in (eq. 13) is such
that ξ∗n ≥ ∆(xn, g(xn;R, θ)).

Proof. The constraint in (eq. 13b) holds for every k, Y k, so
in particular it holds for Y k∗ . We then obtain the inequality
sc(xn, xsame

n , Y n; θ)−sc(xn, k∗, Y k∗ ; θ) ≥ ∆(xn, k∗)−ξ∗n.
But from (eq. 11) we see that Y k∗ is the maximizer of the
sc(·) function, therefore the LHS of the inequality cannot
be positive. This implies ξ∗n ≥ ∆(xn, g(xn;R, θ)).

What this lemma (essentially due to [15]) implies is that,
since (eq. 13) tries to minimize

∑
n ξn, it will also bring

down the aggregated loss
∑

n ∆(xn, g(xn;R, θ)).
We now have a convex relaxation, but the optimization

problem (eq. 13) still has an exponential number of con-
straints. To address this issue, we proceed with a cutting-
plane method, which consists of a systematic search for a
small set of critical constraints, which will be the only ones
to be ultimately enforced [15].

4.5. The BMRM Algorithm
We use the “Bundle Methods for Regularized Risk Min-

imization” (BMRM) solver of [14], which merely requires
that for each candidate θ, we compute the difference in gra-
dient (w.r.t. θ) of the score function of the true assignments
(xsame

n ), and the most violated constraint (kviol, Y kviol
):

φ(xn, xsame
n , Y n)− φ(xn, kviol, Y kviol

), (14)

and also the loss ( 1
N

∑
n ∆(xn, kviol)). See [14] for further

details (for more explanation of BMRM, see Algorithm 1 in
[14], which we have omitted due to space constraints).

Clearly the critical step consists of finding the most vio-
lated constraint for the current solution of the optimization
problem. Note that the most violated constraint for the nth

observation and current solution θ is the one which maxi-
mizes ξn. Therefore, from (eq. 13b), we need to solve

argmax
k,Y k

[
sc(xn, Rn, Y k; θ) + ∆(xn, k)

]
(15)

as this is the k, Y k for which the constraint (eq. 13b) is
tightest. Note that, algorithmically, this problem is pre-
cisely the same as the matching problem and can be solved
in quadratic time using dynamic programming [12].

5. Implementation Details
In this section we describe the implementation details of

our method, including our features, shape matching algo-
rithm, and the way we labeled matches in the training set.

5.1. Features and Labeling Samples
Each shape is represented as a set of evenly spaced points

along the contour of an object, for which shape descriptors

are extracted. Consider a specific point O along the shape,
with four immediate point predecessors p1, p2, p3, p4 and
four immediate point successors q1, q2, q3, q4. p1Oq1 forms
a turning angle (TA) for that specific feature point. To make
the feature set more robust to scale variance, we also use
p2Oq2, p3Oq3, and p4Oq4 as turning angles. Therefore, we
extract four TAs for each point in the shape as part of our
feature set.

We have also used a feature that we call distance across
the shape (DAS) to describe each point along the shape.
Consider the interior bisector of the angle p1Oq1, which
intersects the contour at point O′. The length of OO′ is the
distance across the shape (DAS) at point O. If the bisector
intersects with the shape multiple times, the distance to the
closest intersection is used. In case the exterior bisection
intersects with the contour, the distance to the intersection
is the exterior distance across the shape (EDAS).

Finally, we used the inner-distance shape context (IDSC)
feature at each contour point, which was proposed by
Huang et al. [12]. This feature has proven to be very useful
to match shapes under significant non-linear deformations.

Manually labeling point-to-point correspondences be-
tween shapes of the same class in the training set is time-
demanding. We provide a semi-automatic way to allevi-
ate this problem. By providing manual correspondences for
a few salient feature points, we can use the dynamic pro-
gramming matching algorithm to complete the labeling in
quadratic time. In fact, we found that this was necessary
only for the “difficult” shapes in our dataset, while the re-
mainder may be labeled automatically. Although this kind
of noise in our training set would present a major issue if we
were learning matching scores, we found that this “noisy”
data is nevertheless useful when we are learning classifica-
tion scores.

5.2. Shape Matching Parametrization
Since we have a linear assignment criterion to be opti-

mized in addition to the order constraint, we can solve the
problem using a simple dynamic programming algorithm of
quadratic time complexity, as presented in [12]. We imple-
mented the algorithm in [12] in order to obtain the optimal
solution of the optimization problem (eq. 8). Note that we
apply this algorithm both at test time (to predict the class of
a new shape instance) and at training time (to generate the
most violated constraint).

Once the feature vectors for every point are obtained,
the cost features between pairs of points are computed. For
point ai in one shape, point bj in the other shape, and their
feature vectors (A1, . . . , AF ), (B1, . . . , BF ) (F is the fea-
ture dimension), we define the feature vector

Φ(ai, bj) =
(

(A1 −B1)2

|A1| + |B1|
, . . . ,

(AF −BF )2

|AF | + |BF |

)
. (16)
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We also define a dummy feature for a point not having
a corresponding match in the other shape, in which case
a dummy variable d is introduced in each shape and we
have Φ(ai, d) := (1, |A1|, . . . , |AF |) and Φ(d, bj) :=
(1, |B1|, . . . , |BF |). Linearly parametrizing ψ(ai, bj), we
then obtain the final cost cij as an inner product:

cij = 〈ψ(ai, bj), (θ1, . . . , θ2F+1)〉 , (17)

where we define the vector

ψ(ai, bj) := (Φ(ai, bj); 0, . . . , 0︸ ︷︷ ︸
F+1 times

) (18)

ψ(ai, d) := (0, . . . , 0︸ ︷︷ ︸
F times

;Φ(ai, d)) and (19)

ψ(d, bj) := (0, . . . , 0︸ ︷︷ ︸
F times

;Φ(d, bj)). (20)

Note in particular that if the parameter coefficients θi are
all equal, then cij reduces to the standard similarity measure
as used in [2, 12].

6. Experiments
6.1. MPEG-7 Dataset

The MPEG7 dataset is frequently used to evaluate shape
matching and recognition algorithms. This shape database
contains 70 shape categories, each of which has 20 samples
with in-plane rotations, articulations, and occlusions.

Learning within the same shape category

In this experiment we want to evaluate the capability of
our algorithm to discriminate one particular object category
from all other object categories.

We divided the MPEG-7 dataset into 70 subsets, each of
which contains objects belonging to a particular category.
We further divided each subset into three parts: 5 train-
ing shapes (i.e., 10 unique correspondences), 5 validation
shapes, and 10 test shapes. The purpose of our validation
set is to choose the value of our regularization constant, λ.
Thus, we train our algorithm using the training set, and re-
port the error on our test set, for whichever choice of λ re-
sults in the lowest error on our validation set.

Denoting the jth shape in the ith category by xi,j , our
training set for the experiment on category i becomes
{{

xi,j , {xi,k|k %= j}
︸ ︷︷ ︸

same category

, {xm,l|m %= i}
︸ ︷︷ ︸
different categories

, Y i
}∣∣∣j, k, l ∈ 1 . . . 5

}
.

For validation and testing, we simply compare each shape to
all other shapes in the dataset, and compute the K-nearest-
neighbors. Since our training sets have five elements, we
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Figure 2. Results - Learning within the same shape category. Our
method underperforms in 8 categories, ties in 34 categories, and
achieves an improvement in 28 categories. Categories in which
we achieve a tie are not shown. The bottom of the figure shows
learning across all categories (“All”), and a model which learns
classification scores only (“KNN”).

have K = 4 in this case.5 When searching for a max-
violator for a match against xi,k (see Section 4.5)), we only
consider shapes with the same index k (this is done simply
to decrease training time).

We compare our retrieval results on each category with
the IDSC+DP algorithm [12, 7] (this is in fact the non-
learning version of our approach). Figure 2 shows the im-
provement of learning versus non-learning using our ap-
proach (i.e., the loss incurred before learning minus the loss
incurred after learning). Our method underperforms in 8
categories, ties in 34 categories, and achieves an improve-
ment in the remaining 28 categories.

Figure 3 analyzes these success and failure cases: learn-

5Note that in this experiment, our learning algorithm only explicitly
minimizes false-negatives (i.e., shapes in the current category being identi-
fied as belonging to a different category). At the expense of training time,
we could of course include negative training data as well, so as to min-
imize false-positives. However, we found in practice that the number of
false-positives was not adversely effected by this learning scheme.
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Figure 3. Left: the three categories in which our method achieves
the greatest improvement. Right: the three categories in which
our method achieves the least improvement (i.e., in which non-
learning outperforms learning). The left images seem to be subject
to noise and occlusions (which our matching algorithm handles
well), whereas the right images seem to be subject to rotation and
deformation (which our matching algorithm handles poorly).

ing seems to perform well when the shapes are subject to
noise and conclusions, but poorly when subject to rotations
and deformations. This is probably in part due to the small
size of our training set (meaning that the test set may be
very different), and due to the fact that we are not using the
rotationally invariant version of the dynamic programming
matching algorithm of [12] (though as mentioned, we could
handle this case at the expense of increased running time).

Learning across different shape categories

Similarly, we can learn a single model which is able to dis-
criminate all 70 shape categories. This is done simply by
combining the 70 training sets from the previous experi-
ment into a single set (similarly for the validation and test
sets). Results are shown at the bottom of Figure 2 (“All”).
Specifically, the algorithm achieves an error of 15.9% be-
fore learning, and 12.7% after learning.

Finally, we compare our results to an algorithm which
learns classification scores only – i.e., in the theme of Fig-
ure 1 (a). This is done in a framework very similar to
that already described, the only difference being that match-
ing scores are fixed, and we parametrize only classification
scores. That is, we learn a 70 dimensional weight vector
(for our 70 object categories); when performing nearest-
neighbor classification, the distance from a particular shape
is scaled by the weight for that shape’s category. Without
learning, this is identical to the previous model, but only
achieves an error of 13.8% after learning. Although learn-
ing improves over non-learning in both models, the benefit
of learning is increased by tuning the matching scores.

Figure 4 shows an example match before and after learn-
ing; Figure 5 shows the weight vector for these two models.

Figure 4. Left: classification without weights; the match with the
highest score belongs to the incorrect category. Right: classifica-
tion with weights; the categories are the same.
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Figure 5. Top: weights when learning matching scores; the first
half of the weights correspond to matching costs, the second half to
occlusion costs (see Section 5.2). Bottom: weights when learning
classification scores.

6.2. MNIST Dataset
For our second experiment, we do matching on the

MNIST dataset [9], which consists of 70, 000 handwritten
digits (60, 000 for training and 10, 000 for testing). We
represent a digit as a set of contours, and use the Smith-
Waterman algorithm (see [13, 6]) to match multiple con-
tours between two shapes, using the same features as in the
previous section. It is almost impossible to use all of the
images in the training set (due to running time), so we se-
lect the 20 most similar shapes from each category (based
on the Euclidean distance) for each probe shape.

The first experiment is to build a model to classify all
digits, which is similar to our “Learning across different cat-
egories” experiment in Section 6.1. We randomly select 10
samples along with their neighboring shapes for training;
the shape matching score is combined with the Euclidean
distance to classify digits. The second experiment is similar
to the “Learning within the same shape category” experi-
ment in Section 6.1 – instead of learning a general model for
all shapes, we learn a shape-specific model for every probe
shape using its neighboring shapes. This idea is similar to
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Figure 6. Left: matching using the general model. Right: match-
ing using the shape-specific model; the point sizes indicate the
matching scores (see [13]).

the KNN-SVM method [16], which achieves a significant
improvement over generic SVMs. The Smith-Waterman
algorithm is used to automatically generate matchings be-
tween training shapes (so that we don’t need to manually
label the training samples).

Figure 6 shows an example where the shape-specific
model outperforms the general model. The general shape
model misclassifies the probe shape as “9”, whereas the
shape-specific model is able to distinguish them. The circles
on the right of Figure 6 show that the matching scores are
large for these points, which appear to be critical in distin-
guishing “4” from “9”. This example shows our method’s
strength in that we aim to optimize the matching score for
classification, not for matching itself.

Overall, the shape matching method without learning
gives an error of (1.84%), which is smaller than KNN with
L2 distance (3.09%, [1]). The error rate of the learned gen-
eral model depends on the amount of training data and on
model parameters: with regularization constant C = 0.001,
error bound e = 0.1, using 3-NN classifiers, the classifi-
cation error rate is 0.88%. We also perform a comparison
with the shape context matching method of [2]. Among 63
misclassified samples by [2], only 32 are misclassified by
our non-learning shape matching method and only 28 are
missclassified by our learned general model. This shows
that our method is complimentary to the shape matching
method (and possibly others), and by combining them, it is
likely to build an even stronger classifier.

The shape-specific classifiers are more computationally
intensive so we apply this method only for probe shapes
where the Euclidean distance and matching score give con-
flicting predictions. There are a total of 236 samples that
need a shape-specific classifier, 210 of which are classified
correctly by it. The overall error rate when applying shape-
specific learning is 0.58%, which is comparable to state-of-
the-art methods (see [1]).

7. Conclusion
We have presented a novel approach that embeds shape

matching and classification in a unified learning scheme.

Instead of relying on handcrafted or engineered matching
functions, we learn point matching measures via structured
estimation with the goal of minimizing the classification
loss. Our method can be applied to improve any shape clas-
sification algorithm based on correspondences.
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