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There are several competing methods commonly used to solve energy grained master equations describing
gas-phase reactive systems. When it comes to selecting an appropriate method for any particular problem,
there is little guidance in the literature. In this paper we directly compare several variants of spectral and
numerical integration methods from the point of view of computer time required to calculate the solution
and the range of temperature and pressure conditions under which the methods are successful. The test
case used in the comparison is an important reaction in combustion chemistry and incorporates reversible
and irreversible bimolecular reaction steps as well as isomerizations between multiple unimolecular species.
While the numerical integration of the ODE with a stiff ODE integrator is not the fastest method overall,
it is the fastest method applicable to all conditions.
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1. Introduction

The master equation (ME) formulation for solving

gas-phase chemical kinetics problems is well known

and commonly employed.1–5 The most common and

oldest application of ME methods identifies the small-

est magnitude eigenvalue of the energy grained ME

matrix as the macroscopic rate constant of a unimo-

lecular dissociation or isomerization reaction, treated

irreversibly. Beyond this long-time, single exponen-

tial decay mode corresponding to the macroscopic

rate constant, with a little more computational effort

the ME description yields the total concentration and

energy-resolved population distribution at all times,

following the specification of some initial popula-

tion distribution. A two-dimensional (2D) ME, re-

solved in both energy and angular momentum, yields

similar information to its smaller one-dimensional

(1D) counterpart in terms of both macroscopic rate

constants and time-dependent population distribu-

tions. 2D MEs incorporate the effect of angular mo-

mentum conservation which is neglected by 1D ME

descriptions and which may be important in high

accuracy calculations.6–11

Increasingly, ME methods are being employed to

investigate systems beyond single unimolecular reac-

tions. Complex networks of interconverting isomers

and bimolecular reactions proceeding through a long-

lived collision complex can readily be modelled using

ME matrix techniques.12–19 ME simulations of these

so-called multi-well systems can yield similar informa-

tion to the unimolecular case. The determination of

rate constants from the ME is often not as straight-

forward as simply identifying the smallest eigenvalue

of the ME matrix. The evolution in time of a partic-

ular initial distribution of population can be readily

calculated, and several types of analyses are available
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to determine classical chemical rate constants from

such time-dependent populations.20 Bimolecular re-

action paths are usually incorporated by assuming

that the reaction is occurring under pseudo-first-order

conditions.

The matrices arising from 2D and multi-well MEs

are significantly larger than unimolecular ME matrices

resolved in energy only. While the discretization in en-

ergy of a 1D unimolecular ME is typically of the order

of hundreds of energy grains (less than a thousand),

multi-well MEs resolved in energy only are discretized

with hundreds of energy grains within each species, or

well. Similarly, 2D MEs are discretized with hundreds

of energy grains within each rotational level. One can

easily construct a 2D or multi-well ME discretized over

tens of thousands of points. The potential also exists

to construct 2D multi-well MEs, with a corresponding

further increase in the size of the discretization.

Clearly, the order of the matrix describing the dis-

cretized ME is equal to the number of points in the

discretization. Increasing the size of the discretization

(and hence the ME matrix) significantly increases the

computational effort and amount of computer time

required to solve the ME. Hence using ME methods

effectively in applications where 2D or multi-well de-

scriptions are required, with the corresponding larger

matrices, needs the fastest solution methodologies

available. Additionally, common modes of using ME

solutions are in the calculation of falloff curves, requir-

ing repeated solutions for different pressures, or fitting

of parameters to the functional forms defining the ki-

netic or collisional quantities,21–25 for which a fast

solution method is essential to enable many iterations

of the fitting procedure.

At least three different approaches to solving the

ME for time-dependent population distributions exist

and are commonly used. The most common methods

are spectral methods, based on finding an eigendecom-

position of the ME matrix. The exponential operator

is then expanded in the eigenbasis, with a truncated

expansion being valid for a restricted time range. A

truncation of this type is the origin of identifying the

smallest eigenvalue of the unimolecular ME matrix as

the macroscopic rate constant. The discretized ME

is a stiff ordinary differential equation (ODE), so that

stiff ODE integrators can be used to propagate in time

an initial population distribution. The classification

of the ME as a stiff ODE depends on the range of

the eigenvalue spectrum, reinforcing the significance

of spectral analysis of the ME matrix. The integra-

tion of the ODE can also be achieved by Monte Carlo

methods.26–29 This approach appears to be good at

simulating very complex dynamics, but can be slow

to converge.

The range of methods available and the impor-

tance of the speed of finding the solution makes the

question of selecting a solution methodology an impor-

tant one. The selection is further complicated by nu-

merical properties of the solution, rendering methods

that are highly successful under one set of conditions

ineffective under other conditions. Usually low tem-

peratures and pressures lead to numerical difficulties.

Despite the importance of the relative speed of so-

lution methods, these are rarely directly compared. In

this paper we aim to somewhat redress this situation,

giving a direct comparison between several competing

methods for a test system. Our primary focus will be

on the speed of each method in calculating the solu-

tion accurately. The robustness (the ability to solve

difficult cases) of each of the selected methods must

also be considered.

The structure of the paper is as follows. In the

next section we revise the ME used as the test case.

Section 3 gives an overview of the solution methods

being compared in this work. General descriptions

of the solution behaviour and comparisons are given

in Sec. 4, while the dependence on the architecture

of the processor used to perform the calculations are

highlighted in Sec. 5. Section 6 concludes.

2. The Master Equation

The ME is well known and described in detail else-

where,1–5,13,14 so only some details pertinent to the

current case shall be pointed out here. The energy

grained multi-well ME discretized over a set of energy

grains pi (with each isomer described by a subset of

the n grains pi) can be written as a series of equations

of the form

dpi

dt
= ωδE

∑
j

Pijpj − ωpi

− pi

∑
r

k
(L,r)
i +

∑
r

k
(G,r)
i piri

(1)

where ω is the collision frequency, δE is the energy

grain size, Pij describes collisional energy transfer
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within each species, k
(L,r)
i and k

(G,r)
i are microscopic

rate constants for the interconversion reactions and

iri is an indexing function. The sum over j is over all

energy grains belonging to the same species as grain

i while the sums over r are over all reactive channels.

For notational simplicity the explicit time-dependence

of pi has not been shown.

Bimolecular reactions are easily incorporated if

they are modelled under pseudo-first-order conditions

(which makes the reaction linear in pi).
19 The first two

terms on the right of Eq. (1) do not apply in the bi-

molecular case if the reactant not in excess is assumed

to maintain its equilibrium distribution, which is a

reasonable assumption. The k
(L,r)
i and k

(G,r)
i terms

for reactions from bimolecular states are then formed

by the microscopic rate constant for the reaction mul-

tiplied by the total population of the bimolecular

species assumed to be in excess and the Boltzmann

population of the reactant not in excess. As usual,

detailed balance can be invoked to determine the rate

constants for the reverse reaction.

Equation (1) can be written as a matrix ODE as

dp

dt
= Ap (2)

where A is an n×n matrix if there are n energy grains

in total.

Clearly, altering the order of the pi alters the

structure of the matrix A. As described in detail

elsewhere,12,13 collecting grains from each isomer to-

gether yields a well-structured block matrix with

dense blocks on the main diagonal and diagonal

blocks elsewhere, plus non-zero rows and columns

corresponding to the bimolecular terms. This block

structure can be utilized to produce a matrix-vector

product routine which takes less time than a generic

matrix-vector product, scaling better than the normal

order n2.

As a test system we use a multi-well ME similar to

one we have studied previously.13,14 The ME describes

the reaction between singlet methylene and acetylene,

which proceeds through a multi-well collision complex

to form propargyl:

1CH2 + C2H2 
 C3H4 → C3H3 + H . (3)

This reaction is thought to play an important role in

the formation of soot in combustion.30,31 The C3H4

species exists as three interconverting isomers:

propyne 
 cyclopropene 
 allene . (4)

The 1CH2 +C2H2 reaction produces the cyclopropene

isomer, which must isomerize to allene or propyne

before irreversibly decomposing to the propargyl pro-

duct. This reaction scheme is summarized in Fig. 1.
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Fig. 1. Schematic reaction scheme for the modelled 1CH2 + C2H2 reaction.
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The ME studied here differs from that reported in

Refs. 13 and 14. The previous studies included only

one propargyl-forming reaction, propyne → propargyl

+ H. That is, decomposition of allene was not consid-

ered. The current model treats formation of propargyl

from both allene and propyne, with microscopic rate

constants based on the inverse Laplace transform32–35

of the rate expressions of Harding and Klippenstein.36

An energy grain size of 200 cm−1 was used

throughout, giving a matrix of order 714. The colli-

sion frequency was taken as the Lennard–Jones value.

The rotational constants and vibrational frequencies

were taken from Karni et al.37 The 1CH2 + C2H2 mi-

croscopic rate constants were derived from the data

of Blitz et al.38 In the present case, one should not

become overly concerned with the accuracy of the in-

put data as this ME is used as a test problem only;

detailed predictions of the model are not important in

this context.

While the methylene plus acetylene channel was

linearized and treated reversibly under pseudo-first-

order conditions, our previous work shows that at

low temperatures treating the propargyl formation

reaction in a similar manner significantly alters the

dynamics through reformation of C3H4.
14 Hence the

propargyl population was not included in the mod-

elled state space and was calculated by consideration

of conservation of total population. For a discussion

of the implications for the available solutions methods

on the treatment of bimolecular sinks see our previous

paper.13

3. Solution Methods

This paper compares several varieties of spectral pro-

pagation and direct time integration. That is, Monte

Carlo integration methods were not considered at this

time.

The efficiency and stability of the solution can be

improved by symmetrizing the matrix before solving

the ME (though under certain circumstances the sym-

metric form of the ME is not automatically the best

choice39). If f is the vector describing the Boltzmann

population of the system (with the same ordering as

the vector p), then the transformation

ρ = Sp , B = SAS−1 (5)

giving the ODE
dρ

dt
= Bρ (6)

yields a symmetric matrix B = BT if the diagonal

matrix S is given by

Sii = f
−1/2
i . (7)

The eigenvalues λi and eigenvectors yi (so that Byi =

λiyi) of a symmetric matrix form an orthogonal set,

allowing the formal solution of Eq. (6),

ρ(t) = exp(Bt)ρ(0) (8)

to be expressed as

ρ(t) =
∑

i

〈ρ(0),yi〉 exp(λit)yi (9)

allowing the population distribution p(t) = S−1
ρ(t)

(and hence the total concentration of each species as

an appropriate sum over elements of p(t)) to be calcu-

lated for any time t ≥ 0 from the eigendecomposition

of B and the initial population distribution, ρ(0). The

eigenvalues λi are constrained on physical grounds to

be strictly non-positive, λi ≤ 0. A truncation of the

sum in Eq. (9) to include only terms in which the

eigenvalue is smaller than some cutoff c yields a trun-

cated expansion valid for times t � 1/c. Hence, if

the eigenvalue spectrum allows, we can get away with

looking at a subset of eigenpairs if we are only inter-

ested in the evolution of the population at chemically

relevant times.

In this work we have used two different approaches

to finding the eigenpairs required by Eq. (9). Direct

diagonalization using the QR method implemented

in the routine Dsyev of the Lapack library40 pro-

duces the full set of n eigenvalues and eigenvectors for

the complete sum in Eq. (9). To truncate the sum

to include only contributions from eigenpairs with

small eigenvalues, the Lanczos method41 was used,

as implemented in the Arpack library.42 While the

normal Lanczos iteration converges to extremal ei-

genpairs faster than internal ones, large magnitude

eigenvalues converge much more quickly than small

magnitude eigenvalues. It was found that with the

Lanczos method applied to the matrix B convergence

of the desired small magnitude eigenvalues and the

corresponding eigenvectors was impossible to achieve,
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particularly for the critical element corresponding to

the bimolecular methylene state. Hence the Lanczos

method in shift-and-invert mode was used with a zero

shift, to transform the desired small eigenvalues into

large magnitude eigenvalues. This was at the cost of

requiring a linear system solve with the full matrix B

at each Lanczos iteration.

The straight application of the Lanczos method to

B is not the only method notable by its absence from

the timing results to be presented below. Methods

based on the drift-determined diffusion approxima-

tion43 which have shown promise previously12,13,22,44

and are extremely attractive for large systems due to

linear scaling, were not successful. The mode of fail-

ure was similar to the straight (non-shift-and-invert)

Lanczos case, in that the element of the eigenvectors

corresponding to the bimolecular methylene state —

which completely determines the projection coefficient

in Eq. (9) in the current case of an initial methylene

population — was not accurately determined.

It is well known that loss of relative accuracy in the

eigenvalues and eigenvectors hampers spectral decom-

position of MEs at low temperatures and pressures.

Following earlier work,14,38,45 we have overcome this

difficulty by performing the calculations in extended

precision. The Lapack and Arpack routines were

ported to quadruple precision, and to arbitrary pre-

cision in software arithmetic using the Mpfun pack-

age of Bailey.46 A total of three precisions were used:

approximately 16 decimal digits (double precision),

approximately 34 decimal digits (quadruple precision)

and 50 decimal digits (Mpfun).

A second route to the time-dependent population

distribution comes from observing that the solution to

Eq. (6) can also be written as

ρ(t) − ρ(0) =

∫ t

0

dρ(τ)

dτ
dτ =

∫ t

0

Bρ(τ)dτ (10)

which fully specifies ρ(t) once one sets ρ(0). Explicit

numerical integration of Eq. (6) can in principle be

achieved by the simplistic first-order formula

ρ(t + δt) = ρ(t) + δtBρ(t) (11)

however in practice such a formula, and any related

non-stiff integration scheme, requires an impracti-

cally small δt to maintain accuracy. No matter how

sophisticated the non-stiff integration and how much

recent history of the integration is taken into account

(generally reflected in the order of the integration

scheme), an impractically large number of matrix-

vector products are required to integrate to chemically

relevant times, if such integration is achievable at all.

Stiff ODE integrators, on the other hand, use less ex-

plicit derivative information and more trajectory and

eigenvalue information, to achieve more accurate in-

tegration over widely varying behaviour. This comes

at the expense of using Newton’s method to solve a

non-linear system of equations involving the Jacobian

matrix, the matrix of first derivatives. In the linear

first-order case of Eq. (6), the Jacobian matrix is just

the ME matrix, B.

Two different numerical integration routines were

used in this work, both developed by Hindmarch and

coworkers: Vode47 is a variable-coefficient stiff in-

tegrator that has been used in previous ME stud-

ies, notably by Miller and coworkers.48–51 Lsoda

from the Odepack package52 is notable for its abil-

ity to automatically switch between stiff and non-stiff

integration, as appropriate.53

4. General Results and Discussion

The two spectral approaches, each in three precision

levels, and the two integrators in double precision

yield a total of eight variants in the solution method.

For each method an initial population of singlet

methylene was propagated from t = 0 to t = 1 second,

sampled at 76 discrete times. This time range spans

all of the behaviours of the system. Each calculation

was performed for MEs describing a range of tempera-

tures from 300 K to 2000 K and at 1 Torr (0.133 kPa)

and 1000 Torr (133 kPa).

The quantitative behaviour of the system, as pre-

viously reported,13,14,38 is not significantly altered by

the more accurate modelling of the propargyl for-

mation. Representative population profiles are shown

in Fig. 2. These population profiles show clearly the

different behaviour of the population in different time

regimes and indicates that the behaviour is tempera-

ture and pressure dependent, particularly in terms of

the branching ratios to the C3H4 stable species.

The shift-and-invert Lanczos and numerical in-

tegration approaches require further specification to

that which has been given so far. In the Lanczos/

Arpack case, the number of eigenpairs desired and
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(a)

(b)

Fig. 2. Population profiles for the five species involved in the modelled 1CH2 + C2H2 reaction at (a) 300 K and 1 Torr and
(b) 1200 K and 1000 Torr.

the maximum subspace dimension need to be spe-

cified. It has been found that for this particular

system under the conditions being modelled here, five

eigenpairs are sufficient to yield reasonable popula-

tions over a decent range of chemically relevant times

for the 1000 Torr case. In the 1 Torr case, on the

other hand, 25 eigenpairs are required to model

the population evolution reasonably. There was little

difference in performance observed with changes in

the maximum subspace size. Generally a subspace
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Fig. 3. Sample CPU times for numerically integrating the ME solution with the Lsoda and Vode integrators as a function
of the modelled temperature. The modelled pressure was 1000 Torr and the relative error tolerances varied from 10−6 to
0.1. Intel Pentium 4 1.9 GHz CPU.

of dimension 20 would lead to around twice as

many restarts before convergence as a subspace of

dimension 40.

In the numerical integration case, the error toler-

ance of the integration needs to be specified. In this

work we used a range of tolerances, specifying an al-

lowable relative error in the calculated ρi(t) values

from 10−6 to 0.1, with an accurate integration thresh-

old of 10−30 (so that little effort is made to accurately

calculate elements of ρ(t) smaller than 10−30).

4.1. Numerical integration

We shall deal first with results from the numerical

integration of the ODE. Figure 3 shows sample tim-

ings from integrating the initial population (comprised

solely of methylene) to one second of simulation time.

The integration was performed on an Intel Pentium 4

1.9 GHz processor. While the data shown in Fig. 3 is

for modelling a pressure of 1000 Torr, the times aris-

ing from modelling 1 Torr are similar. Generally there

was a slight trend toward requiring more CPU time to

simulate higher temperatures. Such systematic vari-

ations of the required CPU time with the conditions

being modelled are not particularly surprising. It has

been shown, particularly in the work of Miller and

Klippenstein,17,50,54,55 that the eigenvalues control-

ling the timescales of the different physical processes

being modelled change in an unpredictable way as the

conditions are varied. Correspondingly the changing

behaviour of the system effects the time-step needed

to maintain accuracy in the integration, and hence the

required number of matrix-vector products and lin-

ear system solves. This variation is evident in Fig. 4,

which shows the number of matrix-vector products

required to integrate the population to a particular

time.

Figure 3 clearly shows that the Vode integrator

required significantly more CPU time to calculate the

solution than the Lsoda integrator. This is despite

the assertion by the author that Vode is a more so-

phisticated integrator than Lsoda,47 which is sup-

ported by the fact that the Vode integrator required

significantly less matrix-vector products to calculate

the solution than the Lsoda integrator. The timing

difference can be attributed to the ability of Lsoda to

integrate up to around t = 10−10 second in non-stiff

mode which does not require expensive linear system

solves.

In terms of both the total species population and

the energy-resolved population distribution, accurate

results did not rely on a particularly stringent relative
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Fig. 4. Number of matrix-vector products required to integrate the ME to particular simulation times with the Lsoda and
Vode integrators with relative error tolerance 10−6.

error tolerance for either of the integration routines.

Setting the error tolerance to 0.01 yielded significant

errors only in very small elements of ρ(t) (below the

10−30 absolute threshold), and small errors in the ele-

ment of ρ(t) corresponding to the methylene reactant

population. Decreasing the relative error tolerance to

0.1 produced only a moderate increase in the error,

significantly smaller than the order of magnitude in-

crease one might expect. The errors produced by the

Vode and Lsoda integration routines were similar.

4.2. Direct diagonalization

As pointed out in the previous section, spectral me-

thods require high precision arithmetic to combat

numerical cancellation errors for low pressure and,

particularly, low temperature cases. In terms of re-

quired calculation time, the cost of the added precision

is high. This is revealed in Table 1 which gives sam-

ple timings for the direct diagonalization approach,

relative to the total time for the double precision di-

agonalization and propagation. The data presented in

Table 1 is averaged over calculations for the six tem-

peratures considered (from 300 K to 2000 K) at both

1 Torr and 1000 Torr. Systematic variation of calcu-

lation time with modelled conditions was once more

evident, but was not as simple as in the numerical

Table 1. Average CPU times to calculate the ME solution
by direct diagonalization, relative to the total time for the
double precision calculation. Intel Pentium 4 1.9 GHz CPU.

Double Quadruple 50 digit
Precision Precision MPFUN

Overhead < 0.01 0.37 0.16

Diagonalization 0.95 230 330

Propagation 0.05 6.3 8.0

Total 1.0 240 340

integration case (where higher temperatures generally

took longer), nor as pronounced. The times were av-

eraged as the variation in calculation times generally

spanned less than 5% of the average time, making the

systematic variation far less significant than in the

numerical integration case.

In Table 1, the total calculation times are split

into contributions from the matrix diagonalization,

from the calculation of the propagated solution via

Eq. (9), and the remaining “Overhead”. Overhead is

primarily the time taken to construct the matrix. Mi-

croscopic rate constants and densities of states were

precomputed and read from disk, so are not included

in the timing of Overhead. Splitting the calculation

time in this case shows clearly that the matrix diago-

nalization is the most time-consuming element of the
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calculation of the propagated populations, and that

the matrix construction time, which is independent of

the solution method within each precision, is an in-

significant component of the calculation. The total

CPU time required for the total calculation in double

precision (the reference time) was 9.54 seconds.

At 1000 Torr, the double precision calculations

produced accurate total population profiles over all

the timescales of the modelled behaviour at temper-

atures of 900 K or greater. At 600 K most of the

evolution of the total populations was reproduced,

losing unimportant detail at times shorter than t =

10−10 seconds. The double precision direct diago-

nalization failed completely at 300 K. The quadru-

ple precision direct diagonalization reproduced the

population profiles at the temperatures tested from

600 K and above, at all times. At 300 K the quadru-

ple precision results are inaccurate for times shorter

than t = 10−9 seconds, with some inaccuracies re-

maining in the calculated allene population to around

t = 10−7 seconds. That means that at this temper-

ature and pressure, the quadruple precision calcula-

tions do not accurately resolve the populations until

well after the high energy C3H4 populations enter

an approximately steady state, with stabilization and

reactive loss matching the reactive gain.14

At 1 Torr, the double precision direct diagonal-

ization and spectral propagation could not reproduce

the accurate behaviour at long times, once the methy-

lene population dropped significantly. That is, even

at 2000 K the long-time branching ratios cannot be

accurately calculated. The double precision method

could correctly calculate the C3H4 intermediate pop-

ulations for shorter times, down to 900 K. At 600 K

the short time population was not reproduced accu-

rately, though this is a reasonably minor problem. A

far greater issue is the fact that the cyclopropene pop-

ulation was significantly over-predicted for all times,

which also had an effect on the calculated propargyl

population. At 300 K the double precision method

failed completely. The quadruple precision version of

the calculation calculated accurate populations down

to 600 K, but also failed completely for the 300 K case.

4.3. Shift-and-invert Lanczos

In the 1000 Torr case, five eigenpairs provide details

of the evolution of the species populations consistently

from around t = 10−9 seconds. 25 eigenpairs provides

similar resolution in the 1 Torr case. As in the direct

diagonalization case, double precision shift-and-invert

Lanczos calculations failed at lower temperatures and

pressures, requiring higher numerical precision to

accurately calculate the solution. Sample relative

times for the Lanczos-based calculations are given in

Table 2, which shows that in addition to the two or-

ders of magnitude slow-down associated with moving

to higher precision, the larger number of eigenpairs

required introduced a significant difference between

the calculations at the two different pressures consid-

ered. Again unlike the direct diagonalization case,

there was a significant change in the calculation time

with the temperature, with the calculation time gen-

erally decreasing with increasing temperature. Typ-

ically the calculation time for the system at 600 K

was a little more than 20% greater than the 1200 K

times represented in Table 2, while the 2000 K timings

were a little less than 20% smaller. The five eigen-

pairs, 1000 Torr case used a subspace of dimension 20

while the 25 eigenpairs, 1 Torr case used a subspace of

dimension 40. The matrix construction and solution

propagation (in this case greatly truncated from the

direct diagonalization case) are again small compo-

nents of the total calculation time, which is the time

represented in Table 2. The reference time was very

short compared to the methods previously considered,

just 0.52 seconds.

In terms of the required precision, the numerical

behaviour of the calculated solutions were very simi-

lar to those calculated by direct diagonalization. At

1000 Torr the double precision calculation could pro-

duce accurate results down to 900 K, while quadruple

precision can readily calculate the time-resolved pop-

ulations at 600 K, within the limitations of the five

eigenpair expansion. Likewise, for the 1 Torr case the

long-time populations were not calculated accurately

Table 2. CPU times to calculate the ME solution by
shift-and-invert Lanczos using Arpack for a tem-
perature of 1200 K, relative to the 1000 Torr double
precision case. Intel Pentium 4 1.9 GHz CPU.

Double Quadruple 50 digit
Precision Precision MPFUN

1 Torr 1.4 150 205

1000 Torr 1.0 98 125
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in double precision, even at 2000 K. The intermediate-

time populations (from the truncated expansion cut-

off around t = 10−9 seconds to the depletion of the

methylene reactant at around t = 10−3 to t = 10−4

seconds) could be calculated reasonably accurately in

double precision for temperatures of 900 K and above.

At 600 K the quadruple precision calculations were ac-

curate until the system approaches the long-time limit

as the methylene population drops off. 50 digit arith-

metic was required to fully resolve the populations at

1 Torr and 600 K. In most cases the method was not

applied at 300 K due to difficulties with the Cholesky

decomposition used for the inversion operation.

4.4. Direct comparison

Having dealt with each of the three methods in turn,

we now do some more direct comparisons between the

methods. One of the most significant aspects of the

comparison is that the numerical integration with a

stiff integrator can accurately model the evolution of

an initial population, with complete energy resolution,

under all the conditions tested here without having to

resort to high precision calculations in difficult cases.

While there is nothing fundamentally wrong with per-

forming the calculations in high precision, it is some-

thing of an inelegant solution and requires a high price

to be paid in terms of CPU time.

Direct comparison of the times required for all

the methods and variations considered is shown in

Table 3. The times are quoted relative to the dou-

ble precision direct diagonalization, the most common

approach to solving MEs of this type. The two times

quoted for the Lanczos methods are for the five eigen-

vector, 1000 Torr case and the 25 eigenvector, 1 Torr

case, respectively.

Clearly, the double precision spectral approaches

require much less CPU time than any of the other

methods, with the Lanczos-based method requiring

13 and 18 times less time than the direct diagonali-

zation method. Both methods are standard, general

approaches that require no exceptional software. The

shift-and-invert Lanczos method has the disadvantage

that the number of eigenpairs required to elucidate the

desired dynamics is not generally known beforehand.

A much more serious drawback of the double pre-

cision spectral methods is that they fail for “low”

temperature cases. In this case, low can be anything

Table 3. Average CPU times to calculate the ME solution,
relative to direct diagonalization in double precision. Intel
Pentium 4 1.9 GHz CPU.

Method Variant Relative Time

Direct double precision 1.0

Diagonalization quadruple precision 240

50 digit MPFUN 340

Numerical LSODA 10−6 tol 13

Integration LSODA 10−2 tol 6.3

VODE 10−6 tol 15

VODE 10−2 tol 10

Lanczos double precision 0.056 0.077

quadruple precision 5.6 8.6

50 digit MPFUN 6.9 12

below 900 K. As the temperature of the modelled sys-

tem is reduced the failure of the propagation may not

be obvious, producing total population profiles that

may appear to be reasonable. Errors can be detected

by comparing with a more accurate method, though

this somewhat defeats the purpose of developing a fast

method. A better way of detecting numerical failure,

at least the mode of failure caused by catastrophic

cancellation in the small elements of the eigenvec-

tors, is by examining the energy resolved populations.

Figure 5 demonstrates this. Clearly, the highly irregu-

lar and unphysical population at low energy is numer-

ical noise. The magnitude of this noise is the result of

the transformation from the symmetrized representa-

tion of the ME (B and ρ) used to simplify the eigen-

problem, back to the original representation (A and

p) required to calculate physically meaningful popula-

tions. This transformation magnifies numerical noise,

initially smaller that 10−16, so that it dominates the

meaningful population at higher energies. In certain

situations it is possible to rescue the results by identi-

fying and removing this numerical noise by excluding

it from the total population sum.

5. The Effect of Word-Size

Contrary to popular belief, there is much more to the

ability of a computer to perform calculations quickly

than the CPU clock speed. Issues such as memory

bandwidth and cache hit rate can significantly alter

the ability of the CPU to maintain high efficiency.
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Fig. 5. Energy resolved populations for allene at various times after initiation, calculated by direct diagonalization in double
precision for the ME modelling 600 K and 1000 Torr. Population elements calculated to be negative shown with light
lines.

Table 4. CPU times to calculate the ME solution at
1200 K and 1000 Torr using CPUs of various architec-
ture, relative to the direct diagonalization in double
precision calculation on each architecture. Selected
methods are direct diagonalization in double preci-
sion (DP DSYEV), quadruple precision (QP DSYEV)
and 50 digit arithmetic (50d DSYEV) and numerical
integration with LSODA with relative error tolerance
of 10−2. Intel Pentium 4 1.9 GHz, Compaq Alpha
667 MHz and SGI R14000 600 MHz CPUs.

Method Pentium 4 Alpha R14000

DP DSYEV 1.0 1.0 1.0

LSODA 6.3 6.8 4.1

QP DSYEV 240 41 62

50d DSYEV 340 745 700

The architecture of the processor also has a significant

effect, as will be demonstrated next.

Table 4 shows some sample relative timings on

three different systems, based on Intel Pentium 4

1.9 GHz, Compaq Alpha 667 MHz and SGI R14000

600 MHz processors. These timings are quoted rel-

ative to the double precision direct diagonalization

times on each processor, which were 9.54 seconds,

6.46 seconds and 5.51 seconds, respectively. Two

things stand out from the timings above and in

Table 4. The first is that despite the clock speed being

around a factor of three higher for the Pentium 4, the

calculation on this processor took significantly longer

than for the other two processors. The second is that

the quadruple precision calculations took, relatively,

almost an order or magnitude longer on the Pentium 4

based machine, almost as long as the 50 digit software

arithmetic calculation.

Both of these observations can be rationalized by

noting that while the Pentium 4 processor is based

on 32 bit arithmetic, the Alpha and R14000 proces-

sors are 64 bit chips. The “double precision” calcu-

lation on the 64 bit processors are actually calcula-

tions in the processor’s natural word size, whereas

the Pentium 4 is indeed performing precision dou-

bling. The “quadruple precision” calculations on the

64 bit processors are analogous to performing 64 bit

arithmetic on 32 bit processors (the origin of the

term double precision). On the 32 bit Pentium 4

the quadruple precision calculations involving 128 bit

numbers must be decomposed twice into 32 bit calcu-

lations, an operation involving considerable overhead

and disallowing many code optimizations and access

to special features of the processor instruction set and

architecture.
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6. Conclusion

Two things must be considered when selecting a

method to solve a large ME problem. The first is one

must select a method that is actually capable of solv-

ing the problem. Selecting a method satisfying this

condition is complicated by the fact that the applica-

bility of the spectral methods (specifically the level of

numerical precision required) depends on the temper-

ature and pressure being modelled by the ME and may

not be known before attempting the calculation. Even

once the calculation has been performed, whether suf-

ficient precision has been used may not be obvious.

Clearly, in many applications this is not acceptable,

which is why we recently proposed high precision di-

rect diagonalization as a “black box” type method for

solving all manner of ME problems without further

thought.14

The second major consideration is the time taken

to calculate the solution. The double precision spec-

tral methods win hands down on this criteria, pro-

vided the modelled conditions are sufficiently high in

temperature and pressure. While the shift-and-invert

Lanczos procedure was much faster than the direct

diagonalization with Dsyev, it should be pointed out

that the task of determining the required number of

eigenpairs for a reasonable description of the dynam-

ics is not trivial. In this work the number of required

eigenpairs was determined by altering the number of

eigenpairs used in the sum of Eq. (9), starting with a

complete high precision eigendecomposition. There

is no indication in the eigenvalue spectrum that a

subset of 25 eigenpairs yields a significantly improved

solution over a subset of the smallest 20 eigenpairs.

Among the next fastest methods are the numeri-

cal integration methods, particularly when the error

tolerance is reduced. Integration with Lsoda with an

error tolerance of around 10−2 is the fastest method

capable of resolving the population profiles under all

the temperature and pressure conditions tested. Ad-

ditionally, numerical integration allows non-linear sys-

tems to be solved, removing the need for linearization

of bimolecular reactions by invoking pseudo-first-order

conditions. Hence this must become our new recom-

mended method for solving the ME without regard for

the conditions being modelled. Given the relatively

loose requested error tolerance, the Lsoda integra-

tor implemented in single precision may allow signif-

icantly faster execution on 32 bit processors (which

currently dominate the desktop computer market).

Spectral propagation may still offer significant ad-

vantages over numerical integration, not the least of

which is the faster execution under conditions for

which it is accurate. In particular if the ME appli-

cation requires propagations of many initial popula-

tions under set conditions, spectral propagation may

be much faster as a single eigendecomposition can

quickly propagate any initial population, while the

numerical integration must be rerun for each.

There still does not exist a scalable method for

solving very large problems involving bimolecular re-

actions. All the methods used here require the explicit

formation of the ME matrix and the computational ef-

fort is dominated by n3 terms. The shift-and-invert

Lanczos method and numerical integration do offer

possible routes to scalability if the dense system solve

required to calculate the effect of B−1 is replaced with

an iterative solution method. This possibility is yet to

be explored.
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