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This paper develops a probabilistic two-dimensional (2D) inversion for geoacoustic seabed and water-column parameters in a strongly range-
dependent environment. Range-dependent environments in shelf and shelf-break regions are of increasing importance to the acoustical-
oceanography community, and recent advances in nonlinear inverse theory and sampling methods are applied here for efficient probabilistic
inversion in 2D. The 2D seabed and water column are parameterized by highly efficient, self-adapting irregular grids which match the local
resolving power of the data and provide parsimonious solutions requiring few parameters to capture complex environments. The self-adapting
parameterization in the water-column and seabed is achieved by implementing the irregular grid as a trans-dimensional hierarchical Bayesian
model which is sampled with the Metropolis-Hastings-Green algorithm. To improve sampling, population Monte Carlo is applied with a large
number of interacting parallel Markov chains employing a load balancing algorithm on a computer cluster. The inversion is applied to simulated
data for a vertical line array and several source locations to several kilometers range. Complex pressure fields are computed using a parabolic
equation model and results are considered in terms of 2D ensemble parameter estimates and marginal uncertainty distributions. [Supported by
NSERC]
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INTRODUCTION

Matched-field inversion (MFI) has received significant attention for range-independent
geoacoustic parameter estimation (e.g., [1, 2, 3]) as well as probabilistic inference for uncertainty
estimation (e.g., [4, 5, 6]). Range-dependent inversions have been investigated to a lesser extent
and are typically limited to relatively simple environments and/or make strong simplifying
assumptions [e.g., noise-free simulations allow identifying features of range dependence prior to
inversion, sediment layering is parallel to the seabed and/or range dependence consists of a
small number of one-dimensional (1D) segments, see [7] and references therein].

Geoacoustic inversion with uncertainty estimation is challenging due to several factors: The
inverse problem is known to be significantly nonlinear [8] and requires computationally
intensive sampling techniques to quantify uncertainty. In addition, the information content of
full-field data requires careful choice of parameterizations (model selection): Simple (subjective)
parameterizations have been shown to lead to significant residual-error dependence [9] and may
indicate an under-parametrized model [6]. Difficulties associated with parameterization are
greatly exacerbated in range-dependent environments.

A substantial generalization of model selection is achieved by trans-dimensional (trans-D)
models that relax the requirement of specifying a single model to a group of reasonable
models [10]. For example, instead of assuming a certain number of sediment layers in a
geoacoustic inversion, the number of layers is specified in terms of lower and upper bounds and
treated as an unknown in the inversion. Efficient parameterizations are of paramount
importance for probabilistic 2D inversion, where the curse of dimensionality can preclude the
use of regular-grid parameterization. Irregular grids have been applied in tomography [11], and
irregular grids based on Voronoi cells [12] have been used for interpolation applications [13].
The latter approach can be used as a trans-D hierarchical model for efficient parameterization
in inverse problems [14] as it allows nodal density to vary in space and be sparse where little
parameter variability and/or low data information content exist and dense where variability
and/or information is high. Hence, the parameters consist of the number of nodes, node
positions, and environmental properties at each node.

This paper applies a trans-D nonlinear acoustic inversion for 2D seabed and water-column
variability [15]. The environment is parametrized in terms of an irregular grid of Voronoi nodes
where the number of nodes and nodal locations are assumed unknown. In the seabed, an
unknown sound velocity, density, and attenuation are associated with each node; in the
water-column, only sound velocity at each node is unknown. These parameters define the 2D
environment used for acoustic forward computations. During the inversion, the nodes self-adapt
to local structure/data resolution based on Bayesian parsimony. Through this intrinsic
parsimony, structure is controlled in such a way as to be consistent with prior and data
information, and no subjective choices are required. Sampling from trans-D posterior
distributions is achieved by the Metropolis-Hastings-Green (MHG) algorithm [16, 10]. Here,
trans-D interacting Markov chains [17, 18, 6] are applied to improve dimension jumps and
fixed-dimension chain mixing, which is instrumental in extending trans-D sampling to
nonlinear 2D inversion. The algorithm is applied to simulated full-field acoustic data for several
frequencies and source ranges, as recorded at a vertical line array (VLA). Acoustic-field
predictions are computed using a range-dependent wide-angle Padé parabolic equation (PE)
model [19].

BAYESIAN TRANS-DIMENSIONAL MODELS

Let d be N observed data and .#, denote a group of models specifying particular choices of
physical theory, model parameterization, and error statistics. Let m; be M} parameters
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representing a realization of model .#;,. Bayes’ rule can be written for a Bayesian hierarchical

del [16]
mode P(k)P(dlk, my)P(my k)

Srer | PRHP@IK',m},)P(m},|k)dm)],’

where P(k) is the prior over k. The state space is trans-D and given by the union of all
fixed-dimensional spaces in £ . A Markov chain that converges to the posterior P(k,m;|d) can
be formulated using the MHG algorithm. Note that P(k,m;|d) intrinsically addresses model
selection and typical inferences about expectations do not require the computation of
normalizing constants. This is a substantial advantage over model selection by way of
computation of normalizing constants/evidence [20].

P(k,mg|d) = (1)

Here, the seabed and water column are parametrized with independent 2D partition models
with a variable number of nodes [21, 14] and with the bathymetry assumed to be known. The
partition model extends over a range given by the largest source-array separation and a
maximum depth chosen to be sufficiently large for the PE model. Including creation and
deletion of nodes, the Voronoi cells provide a natural re-partitioning of the space. Complex
acoustic pressure fields measured at a VLA of H hydrophones and F frequencies (N = FH) are
given by d={ds,f =1,F}, and errors are assumed here to be independent. The likelihood
function used in this work is given by [22]

F
log, L(k,mp) o< —H Y log, |df —ds(k,myp)|? . @)
f=1

Equation (2) is a hierarchical model in terms of the standard deviation of the residual error
which is implicitly sampled. Data for several source ranges are included by summing over the
log, L terms for each range.

TWO-DIMENSIONAL PARAMETERIZATION

The 2D environment is parametrized here as a partition model in terms of Voronoi cells [12].
Voronoi cells are non-overlapping nearest-neighbor regions that are fully described by a node
position (in range and depth) and a norm that defines the distance between the node position
and any point in space. Here, we choose the Euclidean distance d® for the ith node for
normalized coordinates in range r, and depth z, (normalized by maximum range and depth,
respectively)

D =D 2+ ) - 2,02, 3)
where r(ni) and zsli) are the range and depth for the ith node, respectively. An example of
partitioning a unit area into Voronoi cells is shown in Fig. 1. The seabed or water-column
parameters associated with a node are considered constant within the cell area. A vector of
Voronoi nodes can represent a 2D environment efficiently with a small number of parameters.
The trans-D hierarchical formulation of the model ensures parsimony, constraining the number
of nodes to be consistent with data and prior information. The computation of predicted
pressure fields is carried out using the Padé-expansion PE model PECan [19] which requires a
regular grid in range and depth. Hence, for each prediction, a nearest-neighbor interpolation is
performed from the irregular Voronoi nodes onto the regular PE grid.

INVERSION RESULTS
The simulation environment extends from 0- to 4-km range and 0- to 300-m depth (Fig. 2).

Discretization for the PE algorithm involves a grid of 401 and 1001 grid points in range and
depth, respectively. Sound velocity varies as a function of range and depth in the water column
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FIGURE 1: Example of a unit area partitioned by 6 Voronoi nodes using the Euclidean norm. Node positions are
indicated as dots and nearest-neighbor cell boundaries with lines.

and seabed. Density and attenuation are constant and assumed known in the water, but vary
with range and depth and are unknown in the seabed. However, since this inversion is
predominatly sensitive to velocities, results are only shown for velocities. The water column is
strongly stratified at shallow depths and includes a low-velocity range-dependent intrusion from
0- to 2-km range. The bathymetry changes from 200-m to 100-m depth over the total range with
a flat section near the center. The seabed has a 10-m thick low-velocity (1550 m/s) layer that
forms the water-sediment interface. Below this is a wedge (1600 m/s) extending from 2 to 4 km
and decreasing in thickness from 70 to 10 m before cutting off entirely. Otherwise, the seabed
consists of a basement of 1700 m/s (Fig. 2).

Data are simulated for a source at 50-m depth, 5 ranges (1, 2, 3, 3.5, 4 km), and 3
frequencies (50, 100, and 200 Hz). The frequency range was chosen to be consistent with the
scale of the environmental variation. The data were simulated for a 32-element VLA at 0-km
range with 4-m sensor spacing from 10-134-m depth. Complex Gaussian noise with a standard
deviation of 15% of the maximum data magnitude at each frequency was added. The inversion
was initiated at a model drawn randomly from the prior and constrained to a low dimension (3
nodes each in water and seabed).

Figure 3 shows the marginal distributions for the number of nodes in sediment and water
column. In addition, the sampling of & is shown for a randomly selected chain. The uncertainty
for % in the sediment is much larger than in the water but both peak at the same value of 7. The
chain jumps between different numbers of nodes more frequently for the seabed than for the
water column.

Posterior velocity estimates are considered in terms of ensemble-mean models and standard
deviations. Figure 2 shows a detailed picture of the structure in the water column which is well
recovered. However, gradients in velocity make for a much more challenging problem. The
ensemble mean for velocity in the seabed (Fig. 2) shows that the sediment structure is
accurately recovered by the inversion. In addition, the 2-marginal distributions (Fig. 3) show
that a parsimonious parameterization requiring only few Voronoi nodes is sufficient to obtain
the results in Fig. 2. All interfaces are recovered as relatively sharp transitions and are less
smeared out when the velocity contrast is high, such as from 0- to 1.7-km range near the
water-sediment interface. Figure 2 also shows posterior standard-deviation estimates for the 2D
water-column and geoacoustic parameters. Uncertainties for velocity are generally low in the
water and larger in the seabed. Uncertainty also increases rapidly with increasing depth below
the seafloor. These uncertainty estimates would likely decrease for inversions with increased
data bandwidth, decreased range, and increased number of sources.
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FIGURE 2: Nonlinear 2D inversion results for water column and seabed (top—true model, middle—ensemble mean,
bottom—standard deviation). The inversion self adapts to structure, specifying locations of interfaces/layering is not
required. Bathymetry is indicated by a white line and source (*) and receiver (V) locations are shown. Water-column
and seabed structure are shown at different color scales for better visibility.
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FIGURE 3: Posterior sampling of the number of nodes in (a) seabed and (b) water column. Chain plots are given for a
randomly chosen single chain.

SUMMARY

This paper developed and applied a probabilistic and fully-nonlinear 2D inversion for a
geophysical/acoustical problem. Parameter and uncertainty estimation in 2D poses substantial
challenges for all aspects of inversion. Efficient parameterizations are required, and choosing an
appropriate parameterization for 2D problems a priori is much more difficult than in 1D.
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Therefore, quantitative model selection is essential to a successful algorithm. Here, model
selection was addressed intrinsically by formulating the inversion for a trans-D hierarchical
model which relaxes model specification from a single model to a reasonable group of models. In
particular, a 2D partition model was chosen to represent the environment in terms of
nearest-neighbor regions (Voronoi cells) which can represent complex environments with few
parameters. The partition model for the 2D ocean system was split into water-column and
seabed partition models separated by known bathymetry. Including unknown bathymetry is
possible in principle but is non-trivial in terms of sampling from the posterior distribution
efficiently.

The application to simulated data gave promising results with velocity structure well
resolved in the water column and seabed. The ability to jointly recover water-column and seabed
parameters in a general 2D inversion illustrated the potential of the method for experiments in
challenging environments with significant 2D water-column structure which may not be
straightforward to measure during an experiment.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada. The computational work was carried out on a parallel
high-performance computing cluster operated by the authors at the University of Victoria
funded by the Natural Sciences and Engineering Research Council of Canada and the Office of
Naval Research. The authors thank Dr. Gary Brooke, Dr. David Thomson, Dr. Dag Tollefsen,
and Dr. Malcolm Sambridge for valuable discussions.

REFERENCES

[1] M. D. Collins, W. A. Kuperman, and H. Schmidt, “Nonlinear inversion for ocean-bottom
properties”, J. Acoust. Soc. Am. 93, 2770-2783 (1992).

[2] S. E. Dosso, M. L. Yeremy, J. M. Ozard, and N. R. Chapman, “Estimation of ocean-bottom
properties by matched-field inversion of acoustic field data”, IEEE J. Ocean. Eng. 18,
232-239 (1993).

[3] P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms and a posteriori
probability distributions”, J. Acoust. Soc. Am. 95, 770-782 (1994).

[4] S. E. Dosso, “Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler
approach”, J. Acoust. Soc. Am. 111, 129-142 (2002).

[5] D. dJ. Battle, P. Gerstoft, W. S. Hodgkiss, W. A. Kuperman, and P. L. Nielsen, “Bayesian
model selection applied to self-noise geoacoustic inversion”, J. Acoust. Soc. Am. 116,
2043-2056 (2004).

[6] J. Dettmer and S. E. Dosso, “Trans-dimensional matched-field inversion with hierarchical
error models and interacting Markov chains”, J. Acoust. Soc. Am. 132, 2239-2250 (2012).

[7]1 N. R. Chapman, S. Chin-Bing, D. King, and R. B. Evans, “Benchmarking geoacoustic
inversion methods for range-dependent waveguides”, IEEE J. Ocean. Eng. 28, 320-330
(2003).

[8] S. Dosso and J. Dettmer, “Bayesian matched-field geoacoustic inversion”, Inverse Problems
27, 055009 (2011).

Proceedings of Meetings on Acoustics, Vol. 19, 055088 (2013) Page 6



J. Dettmer and S. Dosso

[9] S. E. Dosso, P. L. Nielsen, and M. J. Wilmut, “Data error covariance in matched-field
geoacoustic inversion”, J. Acoust. Soc. Am. 119, 208-219 (2006).

[10] J. Dettmer, S. E. Dosso, and C. W. Holland, “Trans-dimensional geoacoustic inversion”, J.
Acoust. Soc. Am. 128, 3393-3405 (2010).

[11] N. Rawlinson and M. Sambridge, “Irregular interface parametrization in 3-d wide-angle
seismic traveltime tomography”, Geophys. J. Int. 155, 79-92 (2003).

[12] M. G. Voronoi, “Nouvelles applications des parametres continus a la theorie des formes
quadratiques”, J. rein. Angew. Math. 134, 198-287 (1908).

[13] M. Sambridge, J. Brain, and H. McQueen, “Geophysical parametrization and interpolation
of irregular data using natural neighbours”, Geophys. J. Int. 122, 837—857 (1995).

[14] T. Bodin and M. Sambridge, “Seismic tomography with the reversible jump algorithm”,
Geophys. J. Int. 178, 1411-1436 (2009).

[15] J. Dettmer and S. E. Dosso, “Probabilistic two dimensional joint water-column and seabed
inversion”, J. Acoust. Soc. Am. (2013), submitted.

[16] P. dJ. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination”, Biometrika 82, 711-732 (1995).

[17] C. d. Geyer, “‘Markov chain Monte Carlo maximum likelihood”, in Computing Science and
Statistics: Proceedings of the 23rd Symposium on the Interface, 156—163 (1991).

[18] A. Jasra, D. A. Stephens, and C. C. Holmes, “Population-based reversible jump Markov
chain Monte Carlo”, Biometrika 94, 787-807 (2007).

[19] G. H. Brooke, D. J. Thomson, and G. R. Ebbeson, “Pecan: A canadian parabolic equation
model for underwater sound propagation”, J. Comp. Acous. 69, 69—100 (2001).

[20] J. Dettmer, S. E. Dosso, and J. C. Osler, “Bayesian evidence computation for model selection
in geoacoustic inversion”, J. Acoust. Soc. Am. 128, 3406-3415 (2010).

[21] D. G. T. Denison, C. C. Holmes, B. K. Mallick, and A. F. M. Smith, Bayesian Methods for
Nonlinear Classification and Regression, 1-277 (Wiley, New York) (2002).

[22] S. E. Dosso and M. J. Wilmut, “Data uncertainty estimation in matched-field geoacoustic
inversion”, IEEE J. Ocean. Eng. 31, 470-479 (2006).

Proceedings of Meetings on Acoustics, Vol. 19, 055088 (2013) Page 7



	Cover Page
	Article

