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Abstract

In this paper, a novel boundary-type meshless method, the boundary point method (BPM), is developed via an approximation

procedure based on the idea of Young et al. [Novel meshless method for solving the potential problems with arbitrary domain. J Comput

Phys 2005;209:290–321] and the boundary integral equations (BIE) for solving two- and three-dimensional potential problems. In the

BPM, the boundary of the solution domain is discretized by unequally spaced boundary nodes, with each node having a territory (the

point is usually located at the centre of the territory) where the field variables are defined. The BPM has both the merits of the boundary

element method (BEM) and the method of fundamental solution (MFS), both of these methods use fundamental solutions which are the

two-point functions determined by the source and the observation points only. In addition to the singular properties, the fundamental

solutions have the feature that the greater the distance between the two points, the smaller the values of the fundamental solutions will

be. In particular, the greater the distances, the smaller the variations of the fundamental solutions. By making use of this feature, most of

the off-diagonal coefficients of the system matrix will be computed by one-point scheme in the BPM, which is similar to the one in the

MFS. In the BPM, the ‘moving elements’ are introduced by organizing the relevant adjacent nodes tentatively, so that the source points

are placed on the real boundary of the solution domain where the resulting weak singular, singular and hypersingular kernel functions of

the diagonal coefficients of the system matrix can be evaluated readily by well-developed techniques that are available in the BEM. Thus

difficulties encountered in the MFS are removed because of the coincidence of the two points. When the observation point is close to the

source point, the integrals of kernel functions can be evaluated by Gauss quadrature over territories.

In this paper, the singular and hypersingular equations in the indirect and direct formulations of the BPM are presented corresponding

to the relevant BIE for potential problems, where the indirect formulations can be considered as a special form of the MFS. Numerical

examples demonstrate the accuracy of solutions of the proposed BPM for potential problems with mixed boundary conditions where

good agreements with exact solutions are observed.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Meshless method; Fundamental solution; Boundary integral equation; Singular and hypersingular kernels; Moving element; Boundary point

method

1. Introduction

Classical numerical methods used to find the solutions of
a wide variety of engineering problems make use of some
form of discretization. Depending on the scheme of
discretization adopted, numerical solution techniques for
boundary-value problems can be classified into domain-
type methods and boundary-type methods [1]. In recent

years, meshless methods, particularly the boundary-type
meshless methods, have attracted much attention due to
their simplicity to use and wide applicability to varied
engineering problems. These are considered as promising
numerical methods in computational mechanics. Meshless
methods do not require meshes to discretize the solution
domain, and the approximate solution is constructed
completely based on a set of scattered nodes. Since neither
domain nor surface meshing is required, meshless methods
have become very popular for engineers in model creation
and are important in scientific computation. Several
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domain-type meshless methods, such as the element free
Galerkin (EFG) method [2], the reproducing kernel particle
method [3], the point interpolation method (PIM) [4], the
point interpolation method using radial basis functions [5],
the meshless local Petrov–Galerkin (MLPG) method [6],
and the smooth particle hydrodynamics (SPH) method [7]
have been proposed recently and have achieved remarkable
progress in solving a wide range of static and dynamic
problems for solids and structures.

For a large class of problems, boundary-type solution
methodologies are now well established as viable alter-
natives to the prevailing domain-type methods because of
the computational advantages they offer. In particular,
boundary-type methods have the merit of predicting
accurate and complete solutions while reducing the
dimensionality of any given problem by one and thus
simplifying the effort involved in data preparation and
computer time. The BEM is the most popular boundary-
type solution procedure, formulated in terms of BIE [1].
There are also several boundary-type meshless methods
reported where the dimensionality advantage can be
retained, corresponding to the BEM. The boundary node
method (BNM) represents a coupling between the BIE and
the moving least-square approximations [8,9]. The Trefftz
method is a noteworthy boundary-type meshless method
that features conciseness and an ease of performance.
The crucial construct of the Trefftz method is the use
of a set of trial functions, singular or non-singular,
which a priori satisfy the governing differential equation
under consideration [10,11]. In the boundary knot
method (BKM), a set of non-singular general solutions is
employed as trial functions to solve Helmholtz and
convection–diffusion equations [12,13]. The merits of
using non-singular trial functions such as T-complete
functions [14] or general solutions lie in the fact that the
collocation and observation points can be coincident and
placed on the real boundary of the problem. However, the
matrix of the influence coefficients thus formed may be ill-
conditioned or the condition number of the matrix could
become large [14] so that the scale of solvable problems
would be limited. In the method of fundamental solutions
(MFS), singular functions are taken as the trial functions
[15–19]. As the singular nature of the fundamental
solutions, however, the source points must be placed
outside the solution domain to avoid the singularity which
forms a fictitious non-physical boundary, or a pseudo-
offset boundary. Determination of the offset distance from
the real physical boundary may become troublesome and
ambiguous, especially for engineering problems that
involves complicated geometry. If the offset distance is
too small, the diagonal coefficients of the influence matrices
will diverge because of the singular nature of the
fundamental solutions. On the other hand, if the offset
boundary is far from the real boundary, the influence
matrices may also become ill-conditioned since the condi-
tion number of the influence matrix becomes very large.
The location of the source and observation points is vital

to the accuracy of the solution when implementing the
MFS.
A distinct feature in the Trefftz method including the

BKM and the MFS is that each of the coefficients of
system matrices are computed on only one point (integra-
tion-free), compared with element-type methods in which
the integration must be performed over elements. This
feature, which is usually known as one-point scheme,
greatly reduces the computational cost. Stimulated by the
work in [10–19], a novel boundary-type meshless method—
the boundary point method (BPM) is here developed via an
approximation procedure based on the idea in [20] and the
BIE to eliminate the shortcoming of the MFS described
above. In the BPM, the boundary of the solution domain is
discretized by unequally spaced boundary nodes, with each
node having a territory where the field variables are
defined. The BPM has both the merits of the BEM and the
MFS, as both of these methods use fundamental solutions,
the two-point functions. As mentioned before, in addition
to the singular properties, the fundamental solutions have
the feature that the greater the distance between the two
points, the smaller the values of the fundamental solutions.
By making use of the feature, most of the off-diagonal
coefficients of the system matrix are computed by one-point

scheme in the BPM, just like that in the MFS. In order to
deal with the singularity, the ‘moving elements’ are
introduced by organizing the relevant adjacent nodes
tentatively, so that the source points are placed on the real
boundary of the solution domain where the resulting weak
singular, singular and hypersingular kernel functions of the
diagonal coefficients of the system matrix can be evaluated
readily by well-developed techniques used in the BEM.
Thus difficulties encountered in the MFS are removed
because of the coincidence of the two points. When the
observation point is close to the source point, the integrals
of kernel functions are evaluated by Gauss quadrature over
the specified domains. The introduction of the moving
element makes it possible to switch readily between the
one-point scheme and Gauss quadrature for evaluating the
coefficients of the system matrix, while most of them are
evaluated by one-point scheme in the BPM. It is obvious
that the derivation procedure in the BPM can be extended
to numerous applications while keeping all the merits of
the BEM.

2. Formulations

2.1. Basic equations

The governing equation and the boundary conditions of
the boundary-value problem governed by the Laplace
equation are given as follows:

r2uðxÞ ¼ 0; x 2 O, (1)

uðxÞ ¼ ū; x 2 G1, (2)
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qðxÞ ¼
qu

qn
¼ q̄; x 2 G2, (3)

where u and q are the potential and its normal derivative
(flux), respectively. O, G1 and G2 are the solution domain,
the Dilichlet and the Neumann boundaries ðG ¼ G1 [ G2Þ,
respectively on which the potential and flux are specified.
ð Þ represents the specified value, x the field point and n the
outward unit vector on the boundary. The real physical
problems for the Laplace equation include steady tem-
perature fields, potential flow problems, torsion bar
problems and Stokes equations of the vorticity transport
equations. There are indirect and direct formulations of the
BIE [1] that describe the Laplace equation equivalently.
The single and the double layer potentials in the indirect
formulation for the interior problems are as follows:

uðyÞ ¼

Z
G
cðxÞu�ðx; yÞdGðxÞ, (4)

uðyÞ ¼ ½1� gðyÞ�jðyÞ �
Z
G
jðxÞ

qu�ðx; yÞ

qnðxÞ
dGðxÞ: (5)

The physical meaning of the above two equations can be
explained as the potentials induced from the distributions
of the charge c and the moment of couple j on G,
respectively. In Eqs. (4) and (5), y is the source point, u�½¼

logð1=rÞ=ð2pÞ in a two-dimensional (2D) problem or ¼
1=ð4prÞ in a three-dimensional (3D) problem] is the
fundamental solution of Laplace equation, where r is
the distance between x and y. In addition, g represents the
coefficient relating to the free term of singular kernels.
gðyÞ ¼ 1 when y 2 O but gðyÞ ¼ 0:5 when y is located on
smooth boundaries. Incorporated with Dilichlet boundary
conditions, c or j can be solved using Eq. (4) or (5). For
Neumann boundary conditions, following the normal
derivation procedures and by locating y on G, Eqs. (4)
and (5) will lead to

qðyÞ ¼ ½1� gðyÞ�cðyÞ

þ

Z
G
cðxÞ

qu�ðx; yÞ

qnðyÞ
dGðxÞ; y 2 G, ð6Þ

qðyÞ ¼ �

Z
G
jðxÞ

q2u�ðx; yÞ

qnðxÞqnðyÞ
dGðxÞ; y 2 G. (7)

In the present work, Eqs. (4) and (6) are termed as the first
equations, and Eqs. (5) and (7) are termed as the second
equations, respectively, of the indirect formulations. When
y 2 G and y and x are coincident, the kernels become weak
singular in Eq. (4), singular in Eqs. (5) and (6) and
hypersingular in Eq. (7), respectively, which require special
attention to numerical implementation.

The direct formulation of BIE has recently gained
popularity among engineers and scientists, since the
problem unknowns are the same as the real physical
variables that govern the equations. With the terminology
in the present work, the first (or conventional, singular)

and the second (hypersingular) integral equations of direct
formulations are expressed as follows [1]:

gðyÞuðyÞ þ
Z
G

uðxÞ
qu�ðx; yÞ

qnðxÞ
dGðxÞ

¼

Z
G

qðxÞu�ðx; yÞdGðxÞ, ð8Þ

gðyÞqðyÞ þ
Z
G

uðxÞ
q2u�ðx; yÞ
qnðxÞqnðyÞ

dGðxÞ

¼

Z
G

qðxÞ
u�ðx; yÞ

qnðyÞ
dGðxÞ. ð9Þ

The second or hypersingular BIE (9) is derived from a
differentiated version of the first or conventional BIE (8).
The hypersingular BIE has diverse important applications
such as evaluation of boundary stresses and fracture
mechanics. The first and the second BIE in the indirect
and direct formulations are the basis of the BEM. With the
impetus of the MFS [15–20] as inspiration, a novel
boundary-type meshless method, the BPM, can be derived
based on the BIE via the approximation procedure
described in the following subsection.

2.2. The boundary point method

Discretization in the BPM is simple to implement but
slightly different from that in the BEM using constant
boundary elements. Suppose that N nodes are placed on a
smooth section of the boundary G, with each node being
the centroid of a territory, DGm (m ¼ 1; 2; . . . ;N), which is
locally smooth. A territory is a segment of curved line in
2D or a piece of curved surface in 3D such that the node in
the BPM locates on the G. The summation of all the
territories form the total boundary, that is,

G ¼
[N
m¼1

DGm; DGm ¼
lm ð2DÞ;

am ð3DÞ;

(
(10)

where lm and am denote the curved length and the curved
area of the territory of the mth node, respectively. The
boundary variables are assumed to be constant over a
territory. However, the difference between a territory in the
BPM and a constant element in the BEM can be seen
clearly in that an element is a segment of straight line in 2D
or a piece of plane surface in 3D so that, in general, the
node in the BEM does not locate on the real G. However,
the node in the BPM does locate on the real G. In addition,
the curved line boundary in 2D and the curved surface
boundary can be correctly described by the use of moving
elements when necessary, as discussed in the following
section.
By dividing G into territories, the first Eqs. (4) and (6) in

the indirect formulation can be written in discrete form as
follows:

ūðyiÞ ¼
XN

m¼1

cðxmÞ

Z
DGm

u�ðx; yiÞdGðxÞ; yi 2 G1, (11)
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q̄ðyiÞ ¼ 0:5cðyiÞ þ
XN

m¼1

cðxmÞ

�

Z
DGm

qu�ðx; yiÞ

qnðyiÞ
dGðxÞ; yi 2 G2 ð12Þ

and the second Eqs. (5) and (7) in the indirect formulation
can be written in discrete form as follows:

ūðyiÞ ¼ 0:5jðyiÞ �
XN

m¼1

jðxjÞ

�

Z
DGm

qu�ðx; yiÞ

qnðxÞ
dGðxÞ; yi 2 G1, ð13Þ

q̄ðyiÞ ¼
XN

m¼1

jðxjÞ

Z
DGm

q2u�ðx; yiÞ

qnðxÞqnðyiÞ
dGðxÞ; yi 2 G2. (14)

It is known that the form of Eqs. (11)–(14) are also
constructed from the first and the second equations of the
indirect BEM formulations using constant elements so the
integrals of kernel functions over element m are defined as
follows:

Gim ¼

Z
DGm

u�ðx; yiÞdGðxÞ, (15a)

Fim ¼

Z
DGm

qu�ðx; yiÞ

qnðyiÞ
dGðxÞ; (15b)

Tim ¼

Z
DGm

qu�ðx; yiÞ

qnðxÞ
dGðxÞ; (15c)

Him ¼

Z
DGm

q2u�ðx; yiÞ

qnðxÞqnðyiÞ
dGðxÞ. (15d)

Eqs. (11)–(14) can be further written in compact form as

ūðyiÞ ¼
XN

m¼1

Gimcm; (16)

q̄ðyiÞ ¼
XN

m¼1

ðFim þ 0:5dimÞcm, (17)

ūðyiÞ ¼ �
XN

m¼1

ðTim � 0:5dimÞjm; (18)

q̄ðyiÞ ¼
XN

m¼1

Himjm, (19)

where cm ¼ cðxmÞ and jm ¼ jðxmÞ are the boundary
unknowns to be solved. When x and y are coincident
(i ¼ m), the integrals are weakly singular in Eq. (15a),
strongly singular in Eqs. (15b), (15c) and hypersingular in
Eq. (15d), which constitute the principal diagonal terms of
the system matrix. The strongly and hypersingular
boundary integrals can be evaluated in the sense of Cauchy
principal values and Hadamard finite part values, respec-
tively. This issue is discussed as follows.

When iam or y 2 O, the kernel functions in the integrals
(15) are regular and therefore are easy to evaluate if the
distances r are relatively not too small. In this case, Brebbia
suggested that 4-point Gauss quadrature would have
sufficient accuracy for constant elements in the BEM [1].
However, as the kernel functions in integrals (15), in this
case, constitute most of the off-diagonal terms of the
system matrix, computational cost can be significantly
reduced by the use of one-point scheme. In addition, if a
kernel has a singular order of Oðr�sÞ, where s is an integer,
the decaying order of the integral values of this kernel
function is also s with the increase of r. Consequently, the
variation of the kernel will have the order of Oðr�s�1Þ if r is
relatively not too small. Based on these properties, the
reasonable accuracy in evaluating the integrals (15) can
be achieved using one-point scheme only. In other words,
the value of kernel function can be well represented by the
value at the node which is located at the centre of the
corresponding territory in the BPM, since the variation of
the kernel along the territory becomes negligibly small in
this case. Therefore, if the distance r is relatively not too
small, the one-point scheme will provide reasonably
accurate integrals of kernel functions using the following
approximations:

Gim � u�ðxm; yiÞDGm, (20a)

Fim �
qu�ðxm; yiÞ

qnðyiÞ
DGm, (20b)

Tim �
qu�ðxm; yiÞ

qnðxÞ
DGm, (20c)

Him �
q2u�ðxm; yiÞ

qnðxÞqnðyiÞ
DGm, (20d)

where DGm is defined by Eq. (10). It can be seen that the
formulations (16)–(19) as well as the one-point scheme in
the BPM are very similar to that of the MFS. The use of
boundary elements is unnecessary. The feasibility of using
one-point scheme has been demonstrated by the successful
performance of a variant of the MFS [20].
The first and the second equations for the direct

formulations in the BPM can be, respectively, derived
from Eqs. (8) and (9) by using the same approximation
procedures as

XN

m¼1

ðTim þ 0:5dimÞum ¼
XN

m¼1

Gimqm, (21)

XN

m¼1

Himum ¼
XN

m¼1

ðFim � 0:5dimÞqm. (22)

Incorporating the boundary conditions (2) and (3), and
rearranging the boundary known and unknown variables is
usually done in the BEM [1], either Eq. (21) or Eq. (22) can
be written in matrix form as

Ax ¼ b, (23)
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where the system matrix A is not symmetric. This is also
true for most boundary-type methods based on BIE such
as BEM and BNM. However, the approach presented in
[21] for obtaining a symmetric A gives a potential for
further study to see if the Galerkin formulation could be
used to obtain a symmetric system matrix for the present
BPM.

2.3. The accuracy of one-point scheme

It is crucial for the proposed BPM that the accuracy of
one-point scheme for the values of the kernel functions can
be verified. As shown in Fig. 1, the kernel functions are to
be evaluated over a territory on G with a length l and
outward normal n(x). r0 is the distance from the source
point y to the observation point x or the centre of the
territory. The kernel functions are evaluated by both one-

point scheme at the point x and eight-point Gaussian
quadrature over the territory. Various kernel function
values and absolute errors with different y (Fig. 1) are
compared in Figs. 2 and 3, respectively, as a function of
relative distance, r0/l.

It can be seen that the greater the relative distance is, the
smaller the value is, a feature stemming from the properties
of fundamental solutions. The corresponding errors of the
2D kernel functions are shown in Fig. 3. It also can be seen
that the greater the relative distance is, the smaller the error
between the kernel functions by the two algorithms are, a
feature also stemming from the properties of fundamental
solutions. When the relative distance r0=l exceeds 2, the
difference of the values of fundamental solution from the
two algorithms is negligibly small, in which the kernel
functions can be computed suitably by one-point scheme.
The use of Gauss quadrature is necessary only within the
range of r0=lp2. A similar phenomenon can also be
observed in the 3D case.

2.4. The moving elements

As can be seen from Sections 2.2 and 2.3, computational
cost can be significantly saved through the use of one-point

scheme in evaluating the integrals (15) when the distance r

is relatively not too small, which constitute most of the off-
diagonal terms of the system matrix in the BPM. However,
in some cases the distance between the collocation and field
points is relatively small, or they may even be coincident.
In this case, the integrals (15) constitute principal and sub-
principal diagonal terms of the system matrix. The manner
in evaluating these integrals plays an important role in
achieving high computational accuracy in the BPM,
although their quantity is very small compared with the
off-diagonal terms.
Noticing that the adjacent boundary nodes describe the

local features of the boundary such as position, curvature
and direction, the ‘moving elements’ can be introduced by
organizing the relevant adjacent nodes over which the
treatment of singularity and Gauss quadrature can be
carried out for evaluating the integrals of kernel functions.
As shown in Fig. 4, a 2D domain has been discretized by
boundary nodes where the source and observation points
are numbered by i and m, respectively. In Fig. 1, each node,
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say node i, has a territory DGi with a length li. In general, a
moving element is constructed by three adjacent points.
For example, if m ¼ i, the moving element is constructed
by the nodes i � 1, i and i þ 1. In this case, the integral of
kernel functions is singular and constitutes the principal
diagonal terms of the system matrix. If m ¼ i þ 1, the
moving element is then constructed by the nodes i, i þ 1
and i þ 2. In this case, the integrals of kernel functions are
regular and constitute the near diagonal terms of the
system matrix (see subsequent discussion for more detail).
Otherwise, if the difference between the values i and m is
not small, the moving element is no longer required. In this
case, the integral of kernel functions is regular and
constitutes the off-diagonal terms of the system matrix,
which can be evaluated by one-point scheme.

The local coordinate system of the three-point moving
element for the node of interest, k, is shown in Fig. 5a,
where xjðj ¼ �1;þ1Þ represent the dimensionless distances
from the nodes k � j and k þ j to the collocation node k in
the local coordinate, respectively, as follows:

x�1 ¼ 1þ lk�1=lk, (24a)

x1 ¼ 1þ lkþ1=lk, (24b)

where lk denotes the territory of each node. With the local
coordinate system defined in Fig. 5a and Eq. (24), it is easy
to write the shape functions for each node of the three-
point moving element as follows:

fk�1
¼

1

x�1ðx�1 þ x1Þ
xðx� x1Þ, (25a)

fk
¼
�1

x�1x1
ðxþ x�1Þðx� x1Þ, (25b)

fkþ1
¼

1

x1ðx�1 þ x1Þ
xðxþ x�1Þ. (25c)

The integration span for the moving element is ½�1;þ1�
around the collocation node, corresponding to the territory
of the node. It can be seen from the discussion above
that moving elements are suitable for describing curved

boundaries. When the location of the source node closes to
a corner of the boundary, four-point moving elements can
be constructed. Two local coordinate systems of four-point
moving elements are shown in Figs. 5b and c, respectively.
The purpose of using four adjacent nodes to construct an
element is to maintain, approximately, the same accuracy
as that of the three-point element, because part of the
integration span ½�1;þ1� for the four-point element
around the node of interest is determined by extrapolation
(Fig. 5b). In Fig. 5b, xjðj ¼ 1; 2; 3Þ represent the dimension-
less distances from the nodes k þ j to the collocation node
k in the local coordinate system and are defined as follows:

x1 ¼ 1þ lkþ1=lk, (26a)

x2 ¼ 1þ ð2lkþ1 þ lkþ2Þ=lk, (26b)

x3 ¼ 1þ ð2lkþ1 þ 2lkþ2 þ lkþ3Þ=lk. (26c)

With the local coordinate system defined in Fig. 5b as well
as Eq. (26), the shape functions for each node of the four-
point moving element are written as follows:

fk
¼
�1

x1x2x3
ðx� x1Þðx� x2Þðx� x3Þ, (27a)

fkþ1
¼

1

x1ðx1 � x2Þðx1 � x3Þ
xðx� x2Þðx� x3Þ, (27b)

fkþ2
¼

1

x2ðx2 � x1Þðx2 � x3Þ
xðx� x1Þðx� x3Þ, (27c)

fkþ3
¼

1

x3ðx3 � x1Þðx3 � x2Þ
xðx� x1Þðx� x2Þ. (27d)

Similarly, in Fig. 5c, x�jðj ¼ 1; 2; 3Þ represent the dimen-
sionless distances from the nodes k � j to the collocation
node k in the local coordinate and are defined as follows:

x�1 ¼ 1þ lk�1=lk, (28a)

x�2 ¼ 1þ ð2lk�1 þ lk�2Þ=lk, (28b)
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x�3 ¼ 1þ ð2lk�1 þ 2lk�2 þ lk�3Þ=lk. (28c)

With the local coordinate system defined in Fig. 2c as well
as Eq. (28), the shape functions for each node of the four-
point moving element are written as follows:

fk�3
¼

�1

x�3ðx�3 � x�1Þðx�3 � x�2Þ
xðxþ x�1Þðxþ x�2Þ,

(29a)

fk�2
¼

�1

x�2ðx�2 � x�1Þðx�2 � x�3Þ
xðxþ x�1Þðxþ x�3Þ,

(29b)

fk�1
¼

�1

x�1ðx�1 � x�2Þðx�1 � x�3Þ
xðxþ x�2Þðxþ x�3Þ,

(29c)

fk
¼

1

x�1x�2x�3
ðxþ x�1Þðxþ x�2Þðxþ x�3Þ. (29d)

For 3D cases, the surface moving elements can be
constructed in a similar way along the two directions over
the boundary surface. The local coordinate system for a
nine-point surface moving element is shown in Fig. 6. The
shape function for each node of the surface element is
defined by the product of the corresponding 2D shape
functions in Eq. (25) as follows:

cs;t
ðx; ZÞ ¼ fs

ðxÞft
ðZÞ

ðs ¼ j � 1; j; j þ 1; t ¼ k � 1; k; k þ 1Þ. ð30Þ

The integration span for the surface moving element is also
½�1;þ1� in either of the directions, x or Z, around the
collocation node ðj; kÞ, corresponding to the territory aj;k ¼

lj lk as shown in Fig. 6. In the 3D case, if the location of the
source node is near a corner or an edge of the boundary,
16-point or 12-point moving elements can be constructed,
respectively, in a way similar to that in the corresponding
2D case.

With the introduction of the moving elements, if the
source and the observation nodes are not coincident ðmaiÞ

but r is relatively small, all the integrals of kernel functions
in Eq. (15) can be written in the following form for both 2D
and 3D cases:

I im ¼

Rþ1
�1 K ½xðxÞ; yi�JðxÞdx ð2DÞ;Rþ1
�1

Rþ1
�1

K ½xðx; ZÞ; yi�Jðx; ZÞdxdZ ð3DÞ;

8<
: (31)

which can be evaluated by Gauss quadrature, where J is
the Jacobian, K a kernel. From the process of the
construction of the moving element it is evident that the
shape functions under the integral sign are added together
and are equal to unity because in the BPM the boundary
variables are assumed to be constant within the territory of
a node.
In addition to being able to describe curved boundary,

with the moving element, Gauss quadrature can be carried
out over the integration span if necessary. As the
integration span corresponds to the territory of the
collocation node only, the algorithm can be easily changed
from Gauss quadrature to one-point scheme, and vice
versa.

2.5. Treatment of singular and near singular kernels

If the source and the observation points are coincident
ðm ¼ iÞ, the integral of kernel functions becomes singular.
The treatment of singular kernel functions with various
orders, including weakly, strongly and hypersingular, has
been well documented in the BEM literature [1,22,23].
However, with the definition of the moving element and the
unit property of shape function within the integration span
in the BPM, the treatment of singular kernel functions
becomes fairly simple. The integrals with strongly singular
kernels in Eq. (15c) and hypersingular kernels in Eq. (15d)
can both be evaluated indirectly with the divergence-free
properties as follows:

Tnn þ g ¼ �
XN

m¼1;man

Tnm, (32)

Hnn ¼ �
XN

m¼1;man

Hnm. (33)

The integrals in Eq. (15b) with strongly singular kernels
but without the divergence-free property can be evaluated
directly with the Gauss quadrature in a symmetrical
manner [24]. In the 2D case, the integrals are written in
the following form:

Fii ¼

Z 0

�1

qu�½xðxÞ; yi�

qnðyiÞ
JðxÞdx

�

þ

Z þ
0

qu�½xðxÞ; yi�

qnðyiÞ
JðxÞdx

�
ð2DÞ. ð34Þ

That is, the integration span is divided into two parts at the
singularity point x ¼ 0 before integration, which is also
the symmetrical point of the span (Fig. 7a). The Gauss
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quadrature is then carried out over the two parts by using
the same number of Gauss points. This is because any
integrand can be decomposed into two functions, an odd
and an even function. Only the odd function behaves
singularly and contributes to the Cauchy principal values
of the integrals. However, the odd functions in the two
parts will eventually be cancelled in the course of the
quadrature because of the anti-symmetrical property of the
odd function. In the end, only the even function
contributes to the final results of these integrals.

In the 3D case, the integrals with strongly singular
kernels without the divergence-free property can be
computed with Gauss quadrature over the territory divided
by four sectors in the radial-angle (Fig. 7b) coordinate
system as follows [24,25]:

Fii ¼
X4
l¼1

Z rl

yl

Z ðyÞ
0

qu�½xðr; yÞ; yi�

qnðyiÞ

� Jðr; yÞrdrdy ð3DÞ. ð35Þ

A similar description can be provided for decomposing the
integrand into an odd and an even function in the 3D case,
which is applicable with respect to the radial coordinate r.
It can be seen that the proposed symmetrical integration
scheme is very simple to use, with no special treatment
required for evaluating integrals with the strongly singular
kernels. The evaluation of singular integrals over territories
of straight line in 2D or of flat surface in 3D can be further
simplified, as is done in the BEM using constant boundary
elements [22].

There are near singular cases when the distance between
the source and the field points is very small but not
coincident. The distance transformation techniques [25,26]
are employed in the present work to deal with the integrals
in the near singular cases.

3. Numerical examples

To demonstrate the validity and accuracy of the
proposed BPM, potential problems controlled by Eq. (1)
with mixed boundary conditions (2) and (3) in elliptical and
square domains in 2D and a quarter cylinder domain in 3D
subject to mixed boundary conditions are considered. The
field variables and their derivatives are computed at
the locations in the domain, on the boundary and close
to the boundary using the proposed BPM. The numerical
results are compared with the exact solutions.

3.1. Example 1: a 2D elliptical domain

The geometry and node distributions (total node number
N ¼ 60 in this example) of the problem are shown in Fig. 8.
It is subjected to mixed boundary conditions (see Fig. 8).
The analytical solution of this problem is simply given as

uðx1;x2Þ ¼ lnðRÞ; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ aÞ2 þ ðx2 þ bÞ2

q
, (36)

where a ¼ 1 and b ¼ 0:6 are the major and minor half axes
of the ellipse. By using the first and the second equations,
respectively, with the indirect formulations of the proposed
meshless BPM, the field variables u and the derivatives
u1 ¼ qu=qx1 and u2 ¼ qu=qx2 in the domain are computed
along a straight line x2 ¼ 0. The results are plotted in Fig. 9
and compared with the analytical solution (36). It can be
seen from Fig. 9 that the results from the proposed model
are in good agreement with the analytical ones. With the
direct formulations, the field variables and derivatives are
computed along the elliptical boundary (x1 ¼ a cos y,
x2 ¼ b sin y). The results are listed in Fig. 10 and are
compared with the analytical ones. It can be seen from Fig.
10 the results from the proposed model are again in good
agreement with the analytical ones. In order to examine the
effect of the near singularity, the field variables and
derivatives are computed along an elliptical curve
(x1 ¼ 0:95a cos y, x2 ¼ 0:95b sin y) which is very close to
the boundary. The results are listed in Fig. 11, showing the
consistence of the computed results with the exact
solutions.
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To study the convergent performance of the proposed
algorithm, the root mean square (RMS) error is defined as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

k¼1

ðck � ekÞ

s
, (37)

where ck, ek and m represent, respectively, the results from
the proposed algorithm, analytical results and the total
nodal number. The RMS errors as functions of the total
node numbers using the indirect and direct formulations
are plotted in Figs. 12 and 13, respectively, showing the
convergence behaviour of the proposed BPM. The RMS
error of the BPM with the second equations of either direct
or indirect formulation shows stagnant at the order of
about 10�3, but the corresponding results with the first
equations is not stagnant, as seen in the results of Figs. 12
and 13. This phenomenon is considered to be induced from
the differences between the kernels of the two equations.
That is the reason why the first equation is predominantly
employed in practice while the second equation is generally
employed as a supplement to the first equations in some
special cases such as crack problems, thin structures to

avoid the degeneration of the system matrix, as well as the
direct recovery of the derivatives of field variables on the
boundary. It can be seen from Figs. 12 and 13 that there
are no distinct differences between the results from the first
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and the second equations, using either the indirect or direct
formulations of the proposed BPM.

3.2. Example 2: a 2D square domain

The second example is a square domain (1� 1) subject
to the mixed boundary conditions: uð1;x2Þ ¼ 1, uðx1; 1Þ¼0,
qðx1; 0Þ ¼ qð0; x2Þ ¼ 0, as shown in Fig. 14. In this case, the
analytical solution of this problem is

uðx1; x2Þ ¼
X1
k¼1

Ck cosh
1

2
ð2k � 1Þpx1

� �

� cos
1

2
ð2k � 1Þpx2

� �
, ð38Þ

where

Ck ¼
4ð�1Þkþ1

ð2k � 1Þp cosh½1
2
ð2k � 1Þp�

. (39)

In this example, only the direct formulation is employed
for evaluating the first and the second equations of the
proposed meshless BPM. The field variable u and
derivatives u1 and u2 in the domain are computed along a
straight line x1 ¼ 0:5. The predicted results are plotted in
Fig. 15 and compared with the analytical solutions. The
results for the field variable and derivative along the
Neumann boundary (x2 ¼ 0) are listed in Fig. 16 and
compared with the exact solutions. Further, the field
variables and derivatives close to the Dilichlet boundary
are evaluated along a straight line (x1 ¼ 0:95). The results
are plotted in Fig. 17, showing the consistency with the
exact solutions. It can be seen again from Figs. 16 and 17
that the predicted results are in good agreement with exact
solutions.

3.3. Example 3: a 3D quarter cylinder

The third example is a quarter cylinder with an inner
radius a ¼ 1, outer radius b ¼ 2 and thickness h ¼ 1 as
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shown in Fig. 18. The Dilichlet boundary condition is
specified at the surface x1 ¼ 0 and x2 ¼ 0 while the
Neumann boundary condition is specified at the remaining
surface. The problem has an analytical solution as follows:

uðx1; x2Þ ¼ � lnðRÞ; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ 0:5Þ2 þ x2

2 þ x2
3

q
. (40)

In our analysis, the boundary of the cylinder is discretized
by 640 boundary nodes and the problem is solved with the
direct formulations only for the sake of conciseness. The
field variables u and ukðk ¼ 1; 2; 3Þ in the domain are
evaluated along an arc of x1 ¼ 1:5 cos y, x2 ¼ 1:5 sin y,
x3 ¼ 0:5. The predicted results in the domain are listed in
Fig. 19 and compared with the exact solution (40). The
field variables on the outer cylindrical surface along an arc
of x1 ¼ b cos y, x2 ¼ b sin y, x3 ¼ 0:56 are also evaluated to
study further the performance of the proposed algorithm.
The predicted results are shown in Fig. 20 and are
compared with the exact solutions. Finally, to study
boundary effect, the field variables near the cylinder
boundary (x3 ¼ h along an arc of x1 ¼ 1:4 cos y,
x2 ¼ 1:4 sin y, x3 ¼ 0:95h) are evaluated and the results
are listed in Fig. 21. It can be seen again from Figs. 19–21
that the predicted results are consistent with that from the
exact solution (40).

4. Discussions

As the basis of the BPM is the BIE and the idea of the
BPM is stimulated by the boundary-type meshless method,
especially the MFS [15–20], the BPM can be considered as
a method with the features of both the BEM and the MFS,
as both of them are based on the fundamental solutions.
However, the BPM has features of one-point computation
in which the use of fictitious boundary is not required. That
is, it has the advantages of the BEM and the MFS but
excludes the shortcomings of both. In [20] although both
source and field points can be placed on real physical
boundaries, only the kernels with the divergence-free
property should be used with equally spaced node distribu-
tions along the boundary, which takes a form correspond-
ing to the second equation of the indirect formulations in
the proposed BPM. However, there is no such limitation in
the proposed BPM. Further the introduction of one-point

scheme to the proposed BPM will significantly improve the
computational efficiency of the method. The results pre-
sented show that the use of one-point scheme can achieve
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reasonably accurate results for most of the coefficients in
the system matrix. Consequently, Gauss quadrature is
required only in the cases that the source and field points
coincide or the distance between the two points is too
small. As a result, the computational cost can be
significantly saved. For example, in the 2D BPM, only
the diagonal and the sub-diagonal terms of the system
matrix are evaluated by Gauss quadrature, consisting 3/N
of the total coefficient terms only, where N is the order of
the system matrix. The feasibility of one-point scheme
comes from the properties of the fundamental solutions
that the greater the distance between the source and field
points is, the smaller the values and more essentially, the
smaller the variations of the fundamental solutions is. The
property has not been fully explored in the literature. The
discussion above is also true for other boundary-type
meshless methods based on the BIE, such as the BNM [8,9]
where the interpolation is realized by the moving least-
square approximation, the BPIM and BRPIM [27] where
the point interpolation is realized by using polynomials or
RBF as the basis functions. In these boundary-type
meshless methods, however, all of the coefficient terms
have to be evaluated by Gauss quadrature, which seems to
be unnecessary in the proposed BPM.

There are two functions in terms of boundary nodes. The
first is to describe the location and geometry of the
boundary. The second is to represent the field variables and
derivatives along the boundary. With the introduction of
the moving elements, the geometry of the curved boundary
can be described much better than that of constant
elements in the BEM. In addition, the integrals of singular
kernels can be evaluated using the well-established
techniques in BEM and the Gauss quadrature can be
carried out over the territory if necessary. As the
integration span corresponds only to the territory of the
collocation node in the BPM, the computational algorithm
can be switched readily between the Gauss quadrature and
one-point scheme. However, as the field variables over a
territory are assumed to be constant, it is postulated that
the accuracy of the BPM is better than that of the BEM
when using the constant elements but inferior to that of the
BEM when using the quadratic elements. It is believed that
the proposed approximation derivation procedure leading
to the BPM can be extended to numerous applications in
science and engineering. It is also considered that the BPM
would be more feasible to be combined with the fast
multipole technique [28] to solve large-scale problems,
which is underway.

5. Conclusion

In this study, a novel boundary-type meshless method,
the BPM, is developed. As a numerical method, the BPM
can be considered to have both the features of BEM and
MFS, as it is derived via an approximation procedure
based on the BIE and contains the main features of the
MFS such as the one-point scheme, where no integral

quadrature is required. Further, the deficiency of using a
pseudo-offset-boundary in most previous MFS, which may
result in ill-conditioned system matrices have been elimi-
nated in the proposed BPM. With the introduction of the
moving elements, the resulting weak singular, singular and
hypersingular kernel functions can be readily evaluated by
well-developed techniques in the BEM. The first and the
second equations in the indirect and direct formulations
are presented and tested by 2D and 3D potential problems
with mixed boundary conditions.
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