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Abstract—In any given scene, a human observer is typically
more interested in some objects than others, and will pay more at-
tention to those objects they are interested in. This paper aims to
capture this attention focusing behavior by selectively merging a
fine-scale oversegmentation of a frame so that interesting regions
are segmented into smaller regions than uninteresting regions.
This results in a new type of image partitioning which reflects
in the image the amount of attention we pay to a particular
image region. This is done using a novel, interactive method for
learning merging rules for images and videos based on defining
a weighted distance metric between adjacent oversegments. We
present as an example application of this technique a new lossy
image and video stream compression method which attempts to
minimize the loss in areas of interest.

I. INTRODUCTION

It is natural for a human being to focus on ‘interesting’
objects when scanning a scene, and ignore ‘boring’, or back-
ground information. Existing image segmentation methods
tend to either segment an image into pieces of the same class
or split the scene into areas of roughly equal size, regardless
of how interesing the user finds each a particular region of
an image. In this paper, we present a method which works
with a user to determine how interesting parts of an image are
to them and split the image into partitions which reflect both
the interestingness of the partition and the differences between
imaged objects.

The way humans perceive the environment is the subject
of significant research in cognitive psychology. It is believed
that the human perceptual system has a visual spatial attention
property, which causes us to focus on a region of interest,
extracting more information about this region than other parts
of the scene [1], [2].

In this paper, we quantify this behavior by first fragmenting
the image into small, similarly sized homogeneous regions. We
then allow the user to define which of these segments are to be
merged, as they belong to a ‘boring’ object, and which are to
remain separate, either because they contain different objects,
or an ‘interesting’ object. We use this information to learn
a model which can merge these segments into a partitioned

image with fine partitioning over interesting regions and coarse
partitioning over boring regions, as shown in Fig. 1.

Fig. 1. (a) An image from the Berkeley image segmentation data set
showing (b) The attention focussed partitioning generated with the ostrich
as the interesting object and a ‘boring’ background.

The merging method that we present determines the distance
between oversegments and merges them if this distance is
below some threshold. Simply using Euclidian distances is
insufficient for our goal, as the oversegments of an interesting
object may have a similar distance between them as boring
regions. As such, we define a Mahalanobis distance based
metric similar to that proposed by Xing et al. [3] which makes
use of user input to learn which features in an image are
important to produce an attention focussed segmentation.

By retaining a fine ‘mesh’ of segments over interesting
regions, we are able to discard pixel-level information about
the image in favor of region averages while retaining a
significant amount of information about the regions that are of
interest. This allows us to generate a lossy compression which
concentrates the loss in regions which are uninteresting to the
user.

For the purposes of this paper, we want to generate a fine,
relatively homogeneous segmentation of the image into super-
pixels, or superpixel-like oversegments. It is also important



that each of these oversegments contains an image portion
that contains only one image object. As these oversegments
will be used to interactively train a distance metric later in our
process, it is also important that these oversegments are able
to be easily recognized and separated by a human observer.

There are many possible methods for producing overseg-
ments for an image, including Constrained Delaunay Triangu-
lation (CDT) [4], Superpixels [5] and Superpixel Lattices [6].
CDT was ruled out for our purposes as it fails to achieve the
required oversegment properties.

The Superpixel method by Mori [5], based on the Nor-
malized Cut algorithm [7], produces similarly sized, typically
homogeneous segments across the image. Superpixels are not
constrained to any particular distribution across the image,
and this lends itself well to ensuring that multiple image
objects do not fall into the same superpixel. However, the
irregularity in the oversegmentation makes it difficult to define
a neighborhood for superpixels, and superpixel generation is
quite slow.

The superpixel lattice presented by Moore et al. in [6]
is a technique which produces a defined number of semi-
regular superpixels arranged in a grid-like pattern across
the image. This provides well-defined neighborhoods for all
oversegments, and generation time is quite fast. Unfortunately,
the predefined structure makes it difficult for this technique to
resolve fine detail, and in a number of images the overseg-
ments generated were not as useful for our purposes as Mori’s
superpixels.

Merging superpixels has been the subject of some previous
exploration, however it has not been used to investigate
compression in this body of work. Dunlop et al. [8] make use
of multi-scale superpixel merging together with an appearance
model for rocks to develop a robust method for identifying
rocks in martian landscapes. Merging is also mentioned in
Moore et al.’s work [6] on superpixel lattices, which differs
from our approach in a number of key ways. First, they define
a specific number of segments to merge to, not allowing
the process to work its way to a natural conclusion, and
second he does not allow the user to specify interest, but
instead greedily removes the superpixel boundary with the
lowest cost. The work of Ren and Malik [9] also deals with
merging and splitting superpixels with the goal of generating
a ‘good’ image segmentation, which differs from the goal of
this paper which is to produce a segmentation which reflects
the interestingness of a region.

II. LEARNING A DISTANCE METRIC FOR SUPERPIXEL
MERGING

The crux of our attention-focussing procedure is determin-
ing which features for a particular image or class are important
when deciding to merge or separate two oversegments. This
problem has been of significant importance in the clustering
community for many years, and we take inspiration from their
methods [3], [10]. We do this in a partially supervised process
which allows the user to define similarity for the image class.

A. Oversegment Features

In order to determine whether oversegments should be
merged, we must extract information about each oversegment
in a consistent and sensible manner. For each oversegment, we
determine a set of N features, which we define as a feature
vector:

Oi = {oi1, oi2, ..., oiN} (1)

While this vector can contain arbitrary information, for this
paper we have restricted it to features that are invariant to both
rotation and scale. As oversegment size, shape and orientation
are largely arbitrary using Mori’s superpixels, we are unable
to use this information when deciding to merge oversegments.
For compression purposes, we want to perform this merging
using single channel images, which further limits the amount
of information that we are able to extract.

We use a 10-bin intensity histogram with constant bin
widths for each oversegment in the image, defined by the range
of intensities in the image as a whole. The histogram for each
oversegment is normalized by the number of pixels present
in the oversegment. Due to the way we define distance, we
are able to simply store each bin of the intensity histogram
as a separate entry in the feature vector. We also utilize a
simple set of eight texture features, derived using the method
presented by Varma and Zisserman in [11]. This texture set
features rotational invariance and low texture dimensionality.
We take the average response of each pixel in an oversegment
to each of these eight features as a description of the texture
of the oversegment.

B. Defining Pairs to Merge or Separate

A number of neighboring oversegment pairs are selected for
both merging and separation in a training input image. It is
important that this user input includes non-merge pairs for all
differing adjacent object classes to avoid excessive undesirable
merging and sufficient merge and non-merge pairs that all
desired interesting and boring regions are annotated. We define
a set of pairs to merge, S, as a set of observation couples
Oi, Oj from user input. We similarly define a set of pairs to
keep separate as D.

C. Distance Metric Learning

For any particular image or image class, some features
will be more important than others for determining whether
a pair of oversegments represent the same object. In order to
do this, we require a method for learning the importance of
each oversegment feature using the information that the user
provides.

We can consider this problem as determining the Maha-
lanobis distance, given by (2), between two oversegments.

Dij =
√

(Oi −Oj)TA−1(Oi −Oj) (2)

We want this metric to weight particular features in object
feature vectors so that oversegments to merge are closer under
this metric than oversegments to keep separate. To do this,



we must learn a covariance-like matrix A with elements that
correspond to the importance of that particular vector or
combination of vectors.

Finding an A which does this is a difficult problem. Xing et
al. [3] pose it as an optimization problem. This optimization
problem is posed in two ways, a relatively simple method for
finding a diagonal A given by (5) and an equivalent, but more
difficult, problem for finding full rank A, given by (9).

min
A

∑
(Oi6=j)∈S

‖Oi −Oj‖2A (3)

s.t.
∑

(Oi6=j)∈D

‖Oi −Oj‖A ≥ 1 (4)

A � 0. (5)

Using 5, Xing et al. define (6) as an equivalent problem
which can be efficiently minimized using the Newton-Raphson
method.

g(A) =
∑

Oi,Oj)∈S

‖Oi −Oj‖2A − log(
∑

(Oi,Oj)∈D

‖Oi −Oj‖A)

(6)
Solving this optimization is equivalent to finding A to within

a multiplication of A, which does not affect the eventual result
of the distance weighting.

max
A

g(A) =
∑

(Oi6=j)∈D

‖Oi −Oj‖A (7)

s.t.f(A) =
∑

(Oi6=j)∈S

‖Oi −Oj‖2A ≥ 1 (8)

A � 0. (9)

In this case, gradient ascent on (7) and projection of A
onto first the space constrained by (8) and then the space of all
positive semi definite matrices. These steps must be performed
in an iterative fashion to find the optimal A which does not
violate either constraint.

As we are working with histogram features, it is important
that we take into account the cross-correlation between his-
togram bins [12]. While we do not want to explicitly define
color similarity, we want to learn a full-rank A based on
user input that will implicitly account for the similarity of
colors within each histogram. Additionally, learning a full-rank
matrix allows our distance metric to capture richer information
on the interaction of features in a particular image object.

We use the method proposed by Xing et al. rather than
the Relevant Component Analysis method of Bar-Hillel et al.
[10] as it allows us to explicitly select pairs as different, which
enables more natural user interaction.

Increasing the number of features tends to improve the
performance of the merging algorithm. It does, however,
increase the complexity and duration of learning, and also
increases the likelihood that the algorithm fails to locate the
optimal solution within a reasonable number of iterations.

D. Determining a Distance Threshold for Merging

After determining the weighting matrix A, we want to
determine a threshold for determining whether to merge or
separate a pair of oversegments.

We do this by finding the distance between all oversegments
that have been marked by the user. We define: DM as the set of
distances between oversegments marked to merge and DS as
the set of distances between those marked to separate. We then
find the lowest value in DS and the highest value in DM . We
set the merging threshold Tm at the mean of these two values.
In the event that maxDM > minDS , we alternate between
discarding the highest value in DM and the lowest value in
DS until there is no longer an overlap. This discards outliers
in the training set which may be the result of input error in a
simple fashion which results in improved performance.

Oversegment merging is performed iteratively. After an
oversegmentation is merged, we repeat the distance calculation
on the returned segmentation, treating this as a new overseg-
mentation to be merged. This allows for oversegments to grow
based on their new properties, which generates larger segments
in the image. The merging threshold is decreased with each
iteration in order to limit the growth of the segmentation, and
prevent the ‘gradual shift’ problem from allowing the entire
image to merge into a single segment. We repeat this step until
the image segmentation converges.

An advantage to this partially supervised method is that
it does not require complex user mark-up of entire images to
learn the distance metric, instead allowing the user to annotate
only a relatively small amount of oversegment pairs in order
to achieve the desired focussing behaviour. Additionally, the
learned metrics can be used for several images of the same
class, as seen in Section III. We have found experimentaly
that a good focussed segmentation is returned from a variety of
images when trained with between twenty and forty user input
pairs, depending on the complexity of the scene. The number
of merge and separate pairs that are required will differ based
on the complexity of the image, and there do not need to be
the same number of pairs in both sets.

E. Iterative Oversegment Merging

Given the Mahalanobis metric A and the maximum thresh-
old for merging T , we can simply find the distance between
each oversegment i and each of its neighbors j using equation
(2), which we define as Dij . If Dij < T , then oversegments
i and j are merged, otherwise, they are left as they were.

When merging it is common for many pairs to be merged
together, resulting in non-neighbors being grouped into a sin-
gle segment. While this is often desirable, as segments become
larger errors occasionally occur in which oversegments which
should remain separate become merged. This can lead to large
sections of the image which contain different image objects
being merged due to a single error. To account for this, we
add an additional consistency check to the merging process.
By ensuring that the distance between any segment that is to
be added to an altered segment remains below the threshold



before adding it, we allow the algorithm to avoid merging very
different oversegments together through gradual change.

Oversegment merging is performed iteratively. After an
oversegmentation is merged, we repeat the distance calcu-
lation on the returned segmentation, treating this as a new
oversegmentation to be merged. This allows for oversegments
to grow based on their new properties, generating larger
segments in boring parts of the image. The merging threshold
is decreased with each iteration in order to limit the growth of
the segmentation, and prevent the a gradual shift of segments
towards the image mean from allowing the entire image to
merge into a single segment. We repeat this step until the
image segmentation converges.

III. OVERSEGMENT MERGING FOR VIDEO STREAM
COMPRESSION

Assuming we have a deterministic way of extracting over-
segments using a single channel, we can transmit a single
channel from the input video stream, perform the oversegment
merging at both sides and then transmit the color information
of each segment in terms of a segment mean. We make use
of the fact that the user defines the segmentation, retaining
finer detail in important or interesting regions, such as faces,
which improves the visual results of this compression. The
compression process works on a per-frame basis, transmitting
a grayscale video stream and a set of recolouration parameters
in place of the full color video stream. For this paper, we use
H.264 to compress the greyscale video stream. Oversegments
are generated from the compressed greyscale video stream
using Mori’s method at both the host and the client. The host
transmits the merging parameters for the video sequence and
a codebook containing the mean colour values of the merged
oversegments for each frame.

On the transmitting computer (HOST), we extract the in-
tensity channel of the NTSC image which we then transmit
to the receiving computer (CLIENT) along with either the
parameters A and T or the training pairs for this video stream.
We then compute the oversegmentation of this frame using the
method described in Section I on both machines. We then use
the oversegment merging method detailed above to generate a
focussed partition of the image on both machines. On HOST,
we then find the color channel averages for each segment,
which we transmit as a lookup table from HOST to CLIENT.
Finally, we recolor the image on CLIENT by setting the color
channels of each segment in the image from the lookup table.
This process results in a full-color image for each frame at
CLIENT which can then be reconstructed into a full-color
video stream.

For many video sequences, we need to learn the merging
parameters only for the first frame, which we are then able
to use for subsequent frames in the video. In the event
that the video stream contains disparate scenes which require
different merging parameters, we are able to slightly modify
the transmission procedure and send the required A and T
parameters together with a list of which frames each should
be used for.

The compression ratio depends largely on the complexity of
the scene imaged and the amount of motion in the sequence.
As our method utilisers the H.264 video compression method
to compress the greyscale video stream, our method is also
dependant on the factors which influence this, such as scene
motion and complexity.

We measure compression accuracy quantitatively in two
ways, with the Peak Signal to Noise Ratio (PSNR) [13] and
the Explained Variance (EV), as used in [6]. The Explained
Variance formulation has been modified slightly for this paper,
as the intensity is known for the reconstructed image. Moore
et al. present explained variation as:

R2 =
∑

i (µi − µ)2∑
i (xi − µ)2

(10)

where µ is the global pixel mean, xi is the actual pixel value
and µi is the average pixel value for the segment containing
pixel i. We have adjusted the definition of µi to be the
reconstructed pixel value at i, which includes the true intensity
value rather than the segment average. We calculate R2 in
NTSC space.

As mentioned previously, the HSV intensity value for the
image is transmitted exactly. To get a measure of the color
accuracy without artificially boosting the result, we have
modified both PSNR and EV to only measure the disparity
between the two NTSC color channel values. As expected,
we see lower PSNR and Explained Variance scores from these
modified results, but the values are all acceptably high. Table
I shows the average PSNR and EV values for a number of
webcam streams across their duration, for both the full and
color only formulations.

H.264 Full Color Unmerged Oversegment Merged Oversegment
Compression Compression

A 0.2663 0.2201 0.1747
B 0.2667 0.2445 0.1952
C 0.4612 0.3885 0.3446
D 0.8032 0.6411 0.6011

TABLE II
BITS PER PIXEL FOR EACH OF THE FOUR VIDEO SEQUENCES UNDER

VARIOUS COMPRESSION SCHEMES

Qualitatively, the recovered images look quite good. We lose
information about small colored regions in the image, such as
eye color, as the iris is usually contained in an oversegment
with a large amount of skin even before merging. The majority
of errors appear in background areas, particularly in areas
toward the edge of the scene which are subject to camera
vignetting. Colour quality in people’s faces and expressions is
quite high, and compression noise is rarely distracting to the
observer.

To test the level of compression, a number of short (37-123
frame) webcam video sequences were taken with backgrounds
of varying complexity. These videos were captured at 640x480
pixels in WMV format using an inexpensive Microsofttm



A (123 frames) B (73 frames) C (65 frames) D (36 frames)
Unmerged Merged Unmerged Merged Unmerged Merged Unmerged Merged

PSNR 43.9263 39.7123 40.1235 35.1125 38.1745 36.2811 35.9390 34.5874
Color PSNR 42.2606 37.9662 38.3796 33.3579 36.4290 34.5311 34.1907 32.8342

EV 0.9942 0.9822 0.9951 0.9836 0.9917 0.9877 0.9874 0.9834
Color EV 0.9485 0.8524 0.9871 0.9553 0.9448 0.9123 0.7390 0.6436

TABLE I
THE AVERAGE PSNR, COLOR PSNR, EV AND COLOR EV ACCURACY METRICS FOR FOUR COMPRESSED VIDEO SEQUENCES. THE COLUMNS
CORRESPOND TO FIGURE 2A-D RESPECTIVELY. WE COMPARE THE UNMERGED SUPERPIXEL COMPRESSION AND OUR MERGED SUPERPIXEL

COMPRESSION PERFORMANCE

LifeCam webcam. The Bits per Pixel (BPP) values of these is
shown in Table II. As can be seen, we achieve a BPP rate that
is between 25.16% and 34.40% lower than full color H.264
encoding.

IV. SUMMARY AND FUTURE WORK

Our method is able to generate an image segmentation
which produces fine segments over areas of interest while
producing larger segments over boring regions using a simple
superpixel merging technique inspired by the Mahalanobis
distance.

We achieve high compression and a good quality decom-
pression using a focussed lossy compression technique which
makes use of the ‘interestingness’ of image areas as defined
by user input to focus compression error on ‘boring’ regions.

Our present compression method treats each frame of the
video as entirely independent when transmitting color infor-
mation. Clearly, if we can track parts of the video stream
which have the same color properties as a previous frame, we
can reduce the codebook transmission from one per frame to
one for the video sequence, or at least for a section of the
sequence, which will increase the compression ratio.

Improving the underlying oversegment merging algorithm
can also improve the performance of the algorithm, both
in terms of the compression ratio and the quality of the
reconstruction.
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Fig. 2. (a-d) Images taken from a webcam with varying actors and backgrounds, showing Top: Training frame actual color, Second Top: Decompressed
training frame, Second Bottom: Original non-training frame, Bottom: Decompressed non-training frame


